Solid Modeling

Dr. Scott Schaefer

Solid Modeling Representations

- Constructive Solid Geometry
- Octrees
- Boundary Representations
- Implicit Representations

Constructive Solid Geometry

- Combine simple primitives together using set operations
- Union, subtraction, intersection
- Intuitive operations for building more complex shapes

Constructive Solid Geometry

- Combine simple primitives together using set operations
- Union, subtraction, intersection
- Intuitive operations for building more complex shapes

Constructive Solid Geometry

- Typically represented as binary tree
- Leaves store solids (sphere, cylinder, ...)
- Interior nodes are operations
(union, subtraction, ...) or transformations

Ray Tracing CSG Trees

- Assume we have a ray R and a CSG tree T
- If T is a solid,
- compute all intersections of R with T
- return parameter values and normals
- If T is a transformation
- apply inverse transformation to R and recur
- apply inverse transpose of transformation to normals
- return parameter values
- Otherwise T is a boolean operation
- recur on two children to obtain two sets of intervals
- apply operation in T to intervals
- return parameter values.
- Display closest intersection point

Inside/Outside Test for CSG Trees

- Given a point p and a tree T, determine if p is inside/outside the solid defined by T
- If T is a solid
- Determine if p is inside T and return
- If T is a transformation
- Apply the inverse transformation to p and recur
- Otherwise T is a boolean operation
- Recur to determine inside/outside of left/right children
- If T is Union
- If either child is inside, return inside, else outside
- If T is Intersection
- If both children are inside, return inside, else outside
- If T is Subtraction
- If p is inside left child and outside right child, return inside, else outside

Application: Computing Volume

■ Monte Carlo method
■ Put bounding box around object

- Pick n random points inside the box
- Determine if each point is inside/outside the CSG Tree
- Volume $\approx \operatorname{vol}(\text { box })^{\# i n s i d e / n}$

Octrees

- Models space as a tree with 8 children
- Nodes can be 3 types
- Interior Nodes
- Solid
- Empty

Octrees

- Models space as a tree with 8 children
- Nodes can be 3 types
- Interior Nodes
- Solid
- Empty

Building Octrees

- If cube completely inside, return solid node
- If cube completely outside, return empty node
- Otherwise recur until maximum depth reached

Octrees

- Advantages
- Storage space proportional to surface area
- Inside/Outside trivial
- Volume trivial
- CSG relatively simple
- Can approximate any shape
- Disadvantages
- Blocky appearance

Octrees

- Advantages
- Storage space proportional to surface area
- Inside/Outside trivial
- Volume trivial
- CSG relatively simple
- Can approximate any shape
- Disadvantages
- Blocky appearance

Boundary Representations

- Stores the boundary of a solid
- Geometry: vertex locations
- Topology: connectivity information
- Vertices
- Edges
- Faces

Boundary Representations

- Constant time adjacency information
-For each vertex,
- Find edges/faces touching vertex
- For each edge,
- Find vertices/faces touching edge
- For each face,
- Find vertices/edges touching face

Half Edge Data Structure

Half Edge Data Structure

HalfEdge \{
HalfEdge next, prev, flip;
Face face;
Vertex origin;
Edge edge;
Face \{
HalfEdge edge; // part of this face \}

Vertex \{

HalfEdge edge; // points away
\}
Edge \{
HalfEdge he;

Half Edge Data Structure

- Given a face, find all vertices touching that face
- Given a vertex, find all edge-adjacent vertices
- Given a face, find all adjacent faces

Building a Topological Data Structure

- Must connect adjacent edges/faces/vertices
- Edges are critical in most data structures
- Use a hash table indexed by two vertices

Boundary Representations

- Advantages
- Explicitly stores neighbor information
- Easy to render
- Easy to calculate volume
- Nice looking surface
- Disadvantages
- CSG very difficult
- Inside/Outside test hard

Implicit Representations of Shape

- Shape described by solution to $f(x)=c$

$$
f(x, y)=x^{2}+y^{2}-9
$$

Implicit Representations of Shape

- Shape described by solution to $f(x)=c$

$$
f(x, y)=x^{2}+y^{2}-9
$$

Implicit Representations of Shape

- Shape described by solution to $f(x)=c$

$$
f(x, y)=x^{2}+y^{2}-9
$$

Implicit Representations of Shape

- Shape described by solution to $f(x)=c$

$$
f(x, y)=x^{2}+y^{2}-9
$$

Advantages

- No topology to maintain
- Always defines a closed surface!
- Inside/Outside test
- CSG operations

Advantages

- No topology to maintain
- Always defines a closed surface!
- Inside/Outside test
- CSG operations

Advantages

- No topology to maintain
- Always defines a closed surface!
- Inside/Outside test
- CSG operations

Advantages

- No topology to maintain
- Always defines a closed surface!
- Inside/Outside test
- CSG operations
- Union

Advantages

- No topology to maintain
- Always defines a closed surface!
- Inside/Outside test
- CSG operations
- Union

Advantages

- No topology to maintain
- Always defines a closed surface!
- Inside/Outside test
- CSG operations
- Union

$$
+\underbrace{+\begin{array}{|cc|}
\hline- & \\
\hline- & - \\
- & - \\
\hline
\end{array}+}_{+}
$$

Advantages

- No topology to maintain
- Always defines a closed surface!
- Inside/Outside test
- CSG operations
- Union

Advantages

- No topology to maintain
- Always defines a closed surface!
- Inside/Outside test
- CSG operations
- Union

Advantages

- No topology to maintain
- Always defines a closed surface!
- Inside/Outside test
- CSG operations
- Union

Advantages

- No topology to maintain
- Always defines a closed surface!
- Inside/Outside test
- CSG operations
- Union
- Intersection

Advantages

■ No topology to maintain

- Always defines a closed surface!

■ Inside/Outside test
■ CSG operations

- Union
- Intersection

Advantages

- No topology to maintain
- Always defines a closed surface!
- Inside/Outside test
- CSG operations
- Union
- Intersection
- Subtraction

Advantages

- No topology to maintain
- Always defines a closed surface!
- Inside/Outside test
- CSG operations
- Union
- Intersection
- Subtraction

Advantages

■ No topology to maintain

- Always defines a closed surface!

■ Inside/Outside test

- CSG operations
- Union
- Intersection
- Subtraction

Disadvantages

- Hard to render - no polygons
- Creating polygons amounts to root finding
- Arbitrary shapes hard to represent as a function

Non-Analytic Implicit Functions

- Sample functions over grids

Non-Analytic Implicit Functions

- Sample functions over grids

Data Sources

2D Polygon Generation

3D Polygon Generation

3D Polygon Generation

Fun Examples

Fun Examples

Fun Examples

Fun Examples

