Solid Modeling

Dr. Scott Schaefer

Solid Modeling Representations

- Constructive Solid Geometry
- Octrees
- Boundary Representations
- Implicit Representations

Constructive Solid Geometry

- Combine simple primitives together using set operations
 - Union, subtraction, intersection
- Intuitive operations for building more complex shapes

Constructive Solid Geometry

- Combine simple primitives together using set operations
 - Union, subtraction, intersection
- Intuitive operations for
 building more complex
 shapes

Constructive Solid Geometry

- Typically represented as binary tree
- Leaves store solids (sphere, cylinder, ...)
- Interior nodes are operations
 (union, subtraction, ...) or
 transformations

Ray Tracing CSG Trees

- Assume we have a ray R and a CSG tree T
- If T is a solid,
 - compute all intersections of R with T
 - return parameter values and normals
- If *T* is a transformation
 - apply inverse transformation to *R* and recur
 - apply inverse transpose of transformation to normals
 - return parameter values
- Otherwise *T* is a boolean operation
 - recur on two children to obtain two sets of intervals
 - apply operation in *T* to intervals
 - return parameter values.
- Display closest intersection point

Inside/Outside Test for CSG Trees

- Given a point p and a tree T, determine if p is inside/outside the solid defined by T
- If *T* is a solid
 - Determine if p is inside T and return
- If *T* is a transformation
 - Apply the inverse transformation to *p* and recur
- Otherwise *T* is a boolean operation
 - Recur to determine inside/outside of left/right children
 - If T is Union
 - If either child is inside, return inside, else outside
 - If T is Intersection
 - If both children are inside, return inside, else outside
 - If T is Subtraction
 - If *p* is inside left child and outside right child, return inside, else outside

Application: Computing Volume

- Monte Carlo method
- Put bounding box around object
- Pick *n* random points inside the box
 - Determine if each point is inside/outside the CSG Tree
- Volume $\approx vol(box) \frac{\#inside}{n}$

Octrees

- Models space as a tree with 8 children
- Nodes can be 3 types
 - ♦ Interior Nodes
 - ♦ Solid
 - ♦ Empty

Octrees

- Models space as a tree with 8 children
- Nodes can be 3 types
 - ♦ Interior Nodes
 - ♦ Solid
 - ♦ Empty

Building Octrees

- If cube completely inside, return solid node
- If cube completely outside, return empty node
- Otherwise recur until maximum depth reached

12/58

Octrees

- Storage space proportional to surface area
- ◆ Inside/Outside trivial
- ♦ Volume trivial
- ♦ CSG relatively simple
- Can approximate any shape
- Disadvantages
 - ♦ Blocky appearance

Octrees

- Storage space proportional to surface area
- ◆ Inside/Outside trivial
- Volume trivial
- ♦ CSG relatively simple
- Can approximate any shape
- Disadvantages
 - ♦ Blocky appearance

Boundary Representations

- Stores the boundary of a solid
 - ♦ Geometry: vertex locations
 - Topology: connectivity information
 - ♦ Vertices
 - Edges
 - ♦ Faces

Boundary Representations

- Constant time adjacency information
 - ♦ For each vertex,
 - Find edges/faces touching vertex
 - ♦ For each edge,
 - Find vertices/faces touching edge
 - ♦ For each face,
 - Find vertices/edges touching face

Half Edge Data Structure

Half Edge Data Structure

```
HalfEdge {
  HalfEdge next, prev, flip;
   Face face;
   Vertex origin;
   Edge edge;
                                             NHE
Face {
  HalfEdge edge; // part of this face
                                                            Flip
                                           face
                                                   HE
Vertex {
  HalfEdge edge; // points away
                                              PHE
Edge {
  HalfEdge he;
```

Half Edge Data Structure

- Given a face, find all vertices touching that face
- Given a vertex, find all edge-adjacent vertices
- Given a face, find all adjacent faces

Building a Topological Data Structure

- Must connect adjacent edges/faces/vertices
- Edges are critical in most data structures

Use a hash table indexed by two vertices

Boundary Representations

- Advantages
 - Explicitly stores neighbor information
 - ♦ Easy to render
 - ♦ Easy to calculate volume
 - Nice looking surface
- Disadvantages
 - CSG very difficult
 - Inside/Outside test hard

$$f(x, y) = x^2 + y^2 - 9$$

$$f(x, y) = x^2 + y^2 - 9$$

$$f(x, y) = x^2 + y^2 - 9$$

$$f(x, y) = x^2 + y^2 - 9$$

- No topology to maintain
- Always defines a closed surface!
- Inside/Outside test
- CSG operations

- No topology to maintain
- Always defines a closed surface!
- Inside/Outside test
- CSG operations

- No topology to maintain
- Always defines a closed surface!
- Inside/Outside test
- CSG operations

- No topology to maintain
- Always defines a closed surface!
- Inside/Outside test
- CSG operations
 - ♦ Union

- No topology to maintain
- Always defines a closed surface!
- Inside/Outside test
- CSG operations
 - ♦ Union

- No topology to maintain
- Always defines a closed surface!
- Inside/Outside test
- CSG operations
 - ◆ Union

- No topology to maintain
- Always defines a closed surface!
- Inside/Outside test
- CSG operations
 - ♦ Union

- No topology to maintain
- Always defines a closed surface!
- Inside/Outside test
- CSG operations
 - ◆ Union

- No topology to maintain
- Always defines a closed surface!
- Inside/Outside test
- CSG operations
 - ♦ Union

- No topology to maintain
- Always defines a closed surface!
- Inside/Outside test
- CSG operations
 - ◆ Union
 - ♦ Intersection

- No topology to maintain
- Always defines a closed surface!
- Inside/Outside test
- CSG operations
 - ◆ Union
 - ♦ Intersection

- No topology to maintain
- Always defines a closed surface!
- Inside/Outside test
- CSG operations
 - ◆ Union
 - ♦ Intersection
 - Subtraction

Advantages

- No topology to maintain
- Always defines a closed surface!
- Inside/Outside test
- CSG operations
 - ♦ Union
 - Intersection
 - Subtraction

Advantages

- No topology to maintain
- Always defines a closed surface!
- Inside/Outside test
- CSG operations
 - ◆ Union
 - ♦ Intersection
 - Subtraction

Disadvantages

- Hard to render no polygons
- Creating polygons amounts to root finding
- Arbitrary shapes hard to represent as a function

Non-Analytic Implicit Functions

Sample functions over grids

Non-Analytic Implicit Functions

Sample functions over grids

