Smooth Curves

Dr. Scott Schaefer

9§ TAMU

l"‘ Computer

Science

Smooth Curves

m Interpolation
« Interpolation through Linear Algebra
o Lagrange interpolation

m Bezier curves

m B-spline curves

2/109

Smooth Curves

m How do we create smooth curves?

3/109

Smooth Curves

m How do we create smooth curves?

m Parametric curves with polynomials

p(t) = (x(t), y(t))

4/109

Smooth Curves

m Controlling the shape of the curve
x(t) =a+Dbt +ct” +dt°
y(t)=e+ ft + gt* +ht®

5/109

Smooth Curves

m Controlling the shape of the curve
X(t) =t
y(t)=1-t+t° —t°

6/109

Smooth Curves

m Controlling the shape of the curve
X(t) =t
y(t)=3-t+t°—t°

7/109

Smooth Curves

m Controlling the shape of the curve
X(t) =t
y(t)=1-t+t° —t°

8/109

Smooth Curves

m Controlling the shape of the curve
X(t) =t
y(t) =1+t +t° —t°

9/109

Smooth Curves

m Controlling the shape of the curve
X(t) =t
y(t)=1-t+t° —t°

10/109

Smooth Curves

m Controlling the shape of the curve
X(t) =t
y(t)=1-t+3t° —t°

11/109

Smooth Curves

m Controlling the shape of the curve
X(t) =t
y(t)=1-t+t° —t°

12/109

Smooth Curves

m Controlling the shape of the curve
X(t) =t
y(t)=1-t+t° +t°

—

13/109

Smooth Curves

m Controlling the shape of the curve
X(t) =t
y(t)=1-t+t° +t°

Power-basis coefficients not intuitive
for controlling shape of curve!!! \/

14/109

Interpolation

m Find a polynomial that passes through
specified values

y(t) =a+bt+ct’ +dt* y 4

15/109

Interpolation

m Find a polynomial that passes through
specified values

y(t) =a+bt+ct’ +dt* y 4
y(0)=a=3
y()=a+b+c+d =1
y(2)=a+2b+4c+8d =3
y(3)=a+3b+9c+27d =1

16/109

Interpolation

m Find a polynomial that passes through
specified values

y(t) =a+bt+ct’ +dt* y 4

1 0 0 O0Ya)l (3
1 1 1 114b 1
1 2 4 8|c| |3
1 3 9 27\d) (1) | | | | >

17/109

Interpolation

m Find a polynomial that passes through
specified values

y(t) =a+bt+ct’ +dt* y 4

fa) (3)
b || 2%
C 6

\d) 7 ——————+—>

18/109

Interpolation

m Find a polynomial that passes through

specified values

Intuitive control of curve using
“control points™!!!

yA

19/109

Interpolation

m Perform interpolation for each component
separately

m Combine result to obtain parametric curve

Y 4 p(t) = (x(t), y(t))

20/109

Interpolation

m Perform interpolation for each component
separately

m Combine result to obtain parametric curve

Y 4 p(t) = (x(t), y(t))

21/109

Interpolation

m Perform interpolation for each component
separately

m Combine result to obtain parametric curve

Y 4 p(t) = (x(t), y(t))

22/109

Lagrange Interpolation

m ldentical to matrix method but uses a
geometric construction

yA

23/109

Lagrange Interpolation

m ldentical to matrix method but uses a

geometric construction
FM)=0A-1)y, +ty,

24/109

Lagrange Interpolation

m Identical to matrix method but uses a
geometric construction
fF)=QA-1)y,+ty,
g(t)=(2-)y,+({t-Dy,
y A
Yy

25/109

Lagrange Interpolation

m ldentical to matrix method but uses a

geometric construction
FM)=0A-1)y, +ty,
g(t) =(2-1)y, +({t-1)y,

" 0 - @D Otg()

h(t) 2
Yo Y,

26/109

Lagrange Interpolation

m ldentical to matrix method but uses a
geometric construction
f)=@1-1)y,+ty,
gt)=2-1)y, +({t-1)y,

y A
v, h(t) = (2-t)f(t)+tg(t)
ht) 2
. TG LGS
——

27/109

Lagrange Interpolation

m ldentical to matrix method but uses a
geometric construction
f)=@1-1)y,+ty,
gt)=2-1)y, +({t-1)y,

y A
" - @00 ta
ht) 2
Yo Y> h(l) — L =Y
2
——

28/109

Lagrange Interpolation

m ldentical to matrix method but uses a
geometric construction
f)=@1-1)y,+ty,
gt)=2-1)y, +({t-1)y,

y A
Y1 h(t) = (2-t) T (t)+tg(t)
h(t) 2
Yo Y, h(0)= (2-0)f (2) +09(0)
| | I | >

29/109

Lagrange Interpolation

m ldentical to matrix method but uses a
geometric construction
f)=@1-1)y,+ty,
gt)=2-1)y, +({t-1)y,

y A
" NI R{ORRT10
ht) 2
y y h(O):%:y
0 2 2 0
——

30/109

Lagrange Interpolation

m ldentical to matrix method but uses a

geometric construction
FM)=0A-1)y, +ty,
g(t) =(2-1)y, +({t-1)y,

" 0 - @D Otg()

ht) 2

31/109

yA

Lagrange Interpolation

m ldentical to matrix method but uses a
geometric construction
f)=@1-1)y,+ty,
gt)=2-1)y, +({t-1)y,

y A
" NI R{ORRT10
ht) 2
y vy, h@)=2Ye_y
0 2 2 2
——

32/109

Lagrange Interpolation

m ldentical to matrix method but uses a
geometric construction

33/109

Lagrange Interpolation

m ldentical to matrix method but uses a
geometric construction

34/109

Lagrange Interpolation

m ldentical to matrix method but uses a
geometric construction

m(t) = (3-t)h(t) +tk(t)
V4 3
Y1 Ys

35/109

Uniform Lagrange Interpolation

m Base Case
¢ Linear interpolation between two points

m [nductive Step
o Assume we have points i, ..., Yn.1+i

+ Build interpolating polynomials f(t), g(t) of degree n for

yi: R yn+i and yi+1> T yn+1+i
(Nn+1+1-t)f@)+(t—1)g(t)

o N(t) = -
|
¢ N(t) interpolates all pointsy;, ..., ¥,.1+; and is of degree
n+1

+ Moreover, h(t) is unique

36/109

Lagrange Evaluation Pseudocode

Lagrange(pts, I, t)
n = length(pts)-2
IfnisO
return pts[O](i+1-t)+pts[1](t-1)
f=Lagrange(pts without last element, I, t)
g=Lagrange(pts without first element, 1+1, t)
return ((n+1+i-t)f+(t-1)g)/(n+1)

37/109

Problems with Interpolation

38/109

Problems with Interpolation

999999

Bezier Curves

m Polynomial curves that seek to approximate
rather than to interpolate

A

e v

40/109

Bernstein Polynomials

m Degree 1: (1-1), t
m Degree 2: (1-1)%, 2(1-t)t, t2
m Degree 3: (1-t)3, 3(1-t)2t, 3(1-t)t2, t3

41/109

Bernstein Polynomials

Degree 1: (1-1), t

Degree 2: (1-1)%, 2(1-t)t, t2

Degree 3: (1-t)3, 3(1-t)4t, 3(1-t)t2, t3

Degree 4: (1-t)%, 4(1-t)3t, 6(1-t)4t2, 4(1-t)t3,t4

42/109

Bernstein Polynomials

Degree 1: (1-1), t

Degree 2: (1-1)%, 2(1-t)t, t2

Degree 3: (1-t)3, 3(1-t)4t, 3(1-t)t2, t3

Degree 4: (1-t)%, 4(1-t)3t, 6(1-t)4t2, 4(1-t)t3,t4
Degree 5: (1-t)°, 5(1-t)4t, 10(1-t)3t%, 10(1-t)2t3
S5(1-t)t4,

m Degree n: [?](1—0“? for 0<i<n

43/109

Bezier Curves

p(t) = i(?](l—t)”iti P

44/109

Bezier Curves

p(t) = i(?](l—t)”iti P

p(t) = (1-1)°(0,0) +3(1—1t)*t(1,0) + 3(1—t)t*(L,1) +t>(0,1)

45/109

Bezier Curves

p(t) = i(?](l—t)”iti P
p(t) = (3(L—1t)t, (3—2t)t%)

f

46/109

Bezier Curve Properties

m Interpolate end-points

p(t) = i(?j(l—t)“‘ti P

47/109

Bezier Curve Properties

m Interpolate end-points

p(0) = i(?)(l—o)”i 0'p; = p,

48/109

Bezier Curve Properties

m Interpolate end-points

p(l) = i(?j(l—l)”ili P = P,

49/109

Bezier Curve Properties

m Interpolate end-points
pd) = Z[?j(l—l)“ili Pi = P,

f

50/109

Bezier Curve Properties

m Interpolate end-points

m Tangent at end-points in direction of first/last
edge

p(t) = i(?j(l—t)”‘t‘ P

51/109

Bezier Curve Properties

m Interpolate end-points

m Tangent at end-points in direction of first/last
edge

8{;?) _ st iznol(?j(l_t)niti D, :Iznol(ll"lj D, (i (1—t)™ i _(n_i)(l_t)n—i—lti)

52/109

Bezier Curve Properties

m Interpolate end-points
m Tangent at end-points in direction of first/last
edge

8%(t0) =n(p, ~ py) °

6%(1) — n(pn o pn—l)

53/109

Bezier Curve Properties

m Interpolate end-points

m Tangent at end-points in direction of first/last
edge

m Curve lies within the convex hull of the
control points

54/109

Convex Hull

m The smallest convex set containing all points
Pi

55/109

Convex Hull

m The smallest convex set containing all points
Pi

56/109

Bezier Curve Properties

m Interpolate end-points

m Tangent at end-points in direction of first/last
edge

m Curve lies within the convex hull of the
control points

Bezier Lagrange

57/109

Pyramid Algorithms for
Bezier Curves

m Polynomials aren’t pretty

m Is there an easier way to evaluate the
equation of a Bezier curve?

p(t) = i(?j(l—t)”‘t‘ P

58/109

Pyramid Algorithms for
Bezier Curves

(1_t) po+t Py (1_t) p1+t P, (1_t) pz"'t Ps
pO pl p2 p3

59/109

Pyramid Algorithms for
Bezier Curves

@-t)°py+2(1-D)t p,+t° p, (@A-t)’p, +2(L-t)t p, +1* p,
7NN
YAANVAVAN

Po Py P2 Ps

60/109

Pyramid Algorithms for
Bezier Curves

(1-t)°p, +3(1—-t)°t p, +3A-t)t°p, +t° p
0 1 2 3
- t

7
NN
NN

Po Py P2 Ps

1
—1

61/109

Bezier Evaluation Pseudocode

Bezier(pts, t)
If (length(pts) is 1)
return pts[O]
newPts={}
For (1=0, 1< length(pts) — 1, i++)
Add to newPts (1-t)pts[i] + t pts[i+1]
return Bezier (newPts, t)

62/109

Subdividing Bezier Curves

m Glven a single Bezier curve, construct two
smaller Bezier curves whose union Is exactly
the original curve

63/109

Subdividing Bezier Curves

m Glven a single Bezier curve, construct two
smaller Bezier curves whose union Is exactly
the original curve

64/109

Subdividing Bezier Curves

m Glven a single Bezier curve, construct two
smaller Bezier curves whose union Is exactly
the original curve

65/109

Subdividing Bezier Curves

m Glven a single Bezier curve, construct two
smaller Bezier curves whose union Is exactly
the original curve

66/109

Subdividing Bezier Curves

m Glven a single Bezier curve, construct two
smaller Bezier curves whose union Is exactly
the original curve

67/109

Subdividing Bezier Curves

e o/
YA
ETAvA

P P, 0, N

68/109

Subdividing Bezier Curves

Control points for
right curve!!!

1/‘ t
1/ -
2R

Po P P, Ps

69/109

Subdividing Bezier Curves

Y6 Po + 7% P+ % Py + 6 Py

7

VaPo+raPi+7uPy JaPi+ 2P+ 0P,
Pt P Pt)P, V2Pt Ps

Py Py P, 3

70/109

Adaptive Rendering of Bezier Curves

m If control polygon is close to a line, draw the
control polygon

m I not, subdivide and recur on subdivided
pleces

Adaptive Rendering of Bezier Curves

m If control polygon is close to a line, draw the
control polygon

m I not, subdivide and recur on subdivided
pleces

| .
R

72/109

Adaptive Rendering of Bezier Curves

m If control polygon is close to a line, draw the
control polygon

m If not, subdivide and recur on subdivided
pieces

73/109

Adaptive Rendering of Bezier Curves

m If control polygon is close to a line, draw the
control polygon

m If not, subdivide and recur on subdivided
pieces

74/109

Adaptive Rendering of Bezier Curves

m If control polygon is close to a line, draw the
control polygon

m If not, subdivide and recur on subdivided
pieces

75/109

Adaptive Rendering of Bezier Curves

m If control polygon is close to a line, draw the
control polygon

m If not, subdivide and recur on subdivided
pieces

76/109

Applications: Intersection

m Gilven two Bezier curves, determine if and
where they intersect

77/109

Applications: Intersection

m Check If convex hulls intersect
m If not, return no intersection

m If both convex hulls can be approximated

with a straight line, intersect lines and return
Intersection

m Otherwise subdivide and recur on subdivided
pleces

78/109

Applications: Intersection

999999

Applications: Intersection

000000

Applications: Intersection

111111

Applications: Intersection

888888

Applications: Intersection

888888

Applications: Intersection

888888

Applications: Intersection

888888

Applications: Intersection

888888

Applications: Intersection

888888

Applications: Intersection

888888

Applications: Intersection

999999

Application: Font Rendering

90/109

Application: Font Rendering

91/109

Problems with Bezier Curves

m More control points means higher degree

m Moving one control point affects the entire
curve

92/109

Problems with Bezier Curves

m More control points means higher degree

m Moving one control point affects the entire

CUrve
®

93/109

B-spline Curves

m Not a single polynomial, but lots of
polynomials that meet together smoothly

m |_ocal control

VAN

94/109

B-spline Curves

m Not a single polynomial, but lots of
polynomials that meet together smoothly

m |_ocal control
®

95/109

Rendering B-spline Curves

Lane-Reisenfeld subdivision algorithm

Linearly subdivide the curve by inserting the
midpoint on each edge

Perform averaging by replacing each edge by
Its midpoint d times

Subdivide the curve repeatedly

96/109

Rendering B-spline Curves

Rendering B-spline Curves

98/109

Rendering B-spline Curves

99/109

Rendering B-spline Curves

1111111

Rendering B-spline Curves

1111111

Rendering B-spline Curves

1111111

Rendering B-spline Curves

1111111

Rendering B-spline Curves

1111111

Rendering B-spline Curves

1111111

B-spline Properties

m Curve lies within convex hull of control
points

m Variation Diminishing: Curve wiggles no
more than control polygon

m Influence of one control point is bounded

m Degree of curve increases by one with each
averaging step

m Smoothness Increases by one with each
averaging step

106/109

B-spline Curve Example

107/109

B-spline Curve Example

108/109

B-spline Curve Example

109/109

