Dr. Scott Schaefer

- Interpolation
 - ◆ Interpolation through Linear Algebra
 - ◆ Lagrange interpolation
- Bezier curves
- B-spline curves

■ How do we create smooth curves?

■ How do we create smooth curves?

■ Parametric curves with polynomials

$$p(t) = (x(t), y(t))$$

$$x(t) = a + bt + ct^2 + dt^3$$

$$y(t) = e + ft + gt^2 + ht^3$$

$$x(t) = t$$

$$y(t) = 1 - t + t^2 - t^3$$

$$x(t) = t$$
$$y(t) = 3 - t + t^2 - t^3$$

$$x(t) = t$$

$$y(t) = 1 - t + t^2 - t^3$$

$$x(t) = t$$

$$y(t) = 1 + t + t^2 - t^3$$

$$x(t) = t$$

$$y(t) = 1 - t + t^2 - t^3$$

$$x(t) = t$$

$$y(t) = 1 - t + 3t^2 - t^3$$

$$x(t) = t$$

$$y(t) = 1 - t + t^2 - t^3$$

$$x(t) = t$$

$$y(t) = 1 - t + t^2 + t^3$$

■ Controlling the shape of the curve

$$x(t) = t$$

$$y(t) = 1 - t + t^2 + t^3$$

Power-basis coefficients not intuitive ——for controlling shape of curve!!!

$$y(t) = a + bt + ct^2 + dt^3$$

$$y(t) = a + bt + ct^{2} + dt^{3}$$

$$y(0) = a = 3$$

$$y(1) = a + b + c + d = 1$$

$$y(2) = a + 2b + 4c + 8d = 3$$

$$y(3) = a + 3b + 9c + 27d = 1$$

$$y(t) = a + bt + ct^{2} + dt^{3}$$

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \\ 1 & 2 & 4 & 8 \\ 1 & 3 & 9 & 27 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} = \begin{pmatrix} 3 \\ 1 \\ 3 \\ 1 \end{pmatrix}$$

$$y(t) = a + bt + ct^2 + dt^3$$

$$\begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} = \begin{pmatrix} 3 \\ -20/3 \\ 6 \\ -1/3 \end{pmatrix}$$

■ Find a polynomial that passes through specified values

Intuitive control of curve using "control points"!!!

- Perform interpolation for each component separately
- Combine result to obtain parametric curve

- Perform interpolation for each component separately
- Combine result to obtain parametric curve

- Perform interpolation for each component separately
- Combine result to obtain parametric curve

$$f(t) = (1-t)y_0 + t y_1$$

$$f(t) = (1-t)y_0 + t y_1$$

$$g(t) = (2-t)y_1 + (t-1)y_2$$

$$f(t) = (1-t)y_0 + t y_1$$

$$g(t) = (2-t)y_1 + (t-1)y_2$$

$$h(t) = \frac{(2-t)f(t) + t g(t)}{2}$$

■ Identical to matrix method but uses a geometric construction

 $f(t) = (1-t)y_0 + t y_1$

■ Identical to matrix method but uses a geometric construction

 $f(t) = (1-t)y_0 + t y_1$

Uniform Lagrange Interpolation

■ Base Case

◆ Linear interpolation between two points

■ Inductive Step

- lacktriangle Assume we have points $y_i, ..., y_{n+1+i}$
- Build interpolating polynomials f(t), g(t) of degree n for $y_i, ..., y_{n+i}$ and $y_{i+1}, ..., y_{n+1+i}$

♦
$$h(t) = \frac{(n+1+i-t)f(t)+(t-i)g(t)}{n+1}$$

- h(t) interpolates all points y_i , ..., y_{n+1+i} and is of degree n+1
- lacktriangle Moreover, h(t) is unique

Lagrange Evaluation Pseudocode

```
Lagrange(pts, i, t)
  n = length(pts)-2
  if n is 0
     return pts[0](i+1-t)+pts[1](t-i)
 f=Lagrange(pts without last element, i, t)
  g=Lagrange(pts without first element, i+1, t)
  return ((n+1+i-t)f+(t-i)g)/(n+1)
```

Problems with Interpolation

Problems with Interpolation

■ Polynomial curves that seek to approximate rather than to interpolate

Bernstein Polynomials

- Degree 1: (1-t), t
- Degree 2: $(1-t)^2$, 2(1-t)t, t^2
- Degree 3: $(1-t)^3$, $3(1-t)^2t$, $3(1-t)t^2$, t^3

Bernstein Polynomials

- Degree 1: (1-t), t
- Degree 2: $(1-t)^2$, 2(1-t)t, t^2
- Degree 3: $(1-t)^3$, $3(1-t)^2t$, $3(1-t)t^2$, t^3
- Degree 4: $(1-t)^4$, $4(1-t)^3t$, $6(1-t)^2t^2$, $4(1-t)t^3$, t^4

Bernstein Polynomials

- Degree 1: (1-t), t
- Degree 2: $(1-t)^2$, 2(1-t)t, t^2
- Degree 3: $(1-t)^3$, $3(1-t)^2t$, $3(1-t)t^2$, t^3
- Degree 4: $(1-t)^4$, $4(1-t)^3t$, $6(1-t)^2t^2$, $4(1-t)t^3$, t^4
- Degree 5: $(1-t)^5$, $5(1-t)^4t$, $10(1-t)^3t^2$, $10(1-t)^2t^3$, $5(1-t)t^4$, t^5
- **.**..
- Degree $n: \binom{n}{i} (1-t)^{n-i} t^i$ for $0 \le i \le n$

$$p(t) = \sum_{i=0}^{n} \binom{n}{i} (1-t)^{n-i} t^{i} p_{i}$$

$$p(t) = \sum_{i=0}^{n} \binom{n}{i} (1-t)^{n-i} t^{i} p_{i}$$

$$p(t) = (1-t)^{3} (0,0) + 3(1-t)^{2} t(1,0) + 3(1-t)t^{2} (1,1) + t^{3} (0,1)$$

$$p(t) = \sum_{i=0}^{n} \binom{n}{i} (1-t)^{n-i} t^{i} p_{i}$$

$$p(t) = (3(1-t)t, (3-2t)t^2)$$

$$p(t) = \sum_{i=0}^{n} \binom{n}{i} (1-t)^{n-i} t^{i} p_{i}$$

$$p(0) = \sum_{i=0}^{n} \binom{n}{i} (1-0)^{n-i} 0^{i} p_{i} = p_{0}$$

$$p(1) = \sum_{i=0}^{n} \binom{n}{i} (1-1)^{n-i} 1^{i} p_{i} = p_{n}$$

$$p(1) = \sum_{i=0}^{n} \binom{n}{i} (1-1)^{n-i} 1^{i} p_{i} = p_{n}$$

- Interpolate end-points
- Tangent at end-points in direction of first/last edge

$$p(t) = \sum_{i=0}^{n} \binom{n}{i} (1-t)^{n-i} t^{i} p_{i}$$

- Interpolate end-points
- Tangent at end-points in direction of first/last edge

$$\frac{\partial p(t)}{\partial t} = \frac{\partial}{\partial t} \sum_{i=0}^{n} \binom{n}{i} (1-t)^{n-i} t^{i} p_{i} = \sum_{i=0}^{n} \binom{n}{i} p_{i} \left(i (1-t)^{n-i} t^{i-1} - (n-i)(1-t)^{n-i-1} t^{i} \right)$$

- Interpolate end-points
- Tangent at end-points in direction of first/last edge

$$\frac{\partial p(0)}{\partial t} = n(p_1 - p_0)$$

$$\frac{\partial p(1)}{\partial t} = n(p_n - p_{n-1})$$

- Interpolate end-points
- Tangent at end-points in direction of first/last edge
- Curve lies within the convex hull of the control points

Convex Hull

■ The smallest convex set containing all points p_i

Convex Hull

■ The smallest convex set containing all points p_i

- Interpolate end-points
- Tangent at end-points in direction of first/last edge
- Curve lies within the convex hull of the control points
 Pagier

- Polynomials aren't pretty
- Is there an easier way to evaluate the equation of a Bezier curve?

$$p(t) = \sum_{i=0}^{n} \binom{n}{i} (1-t)^{n-i} t^{i} p_{i}$$

Bezier Evaluation Pseudocode

```
Bezier(pts, t)
  if (length(pts) is 1)
      return pts[0]
  newPts={}
  For ( i = 0, i < \text{length}(pts) - 1, i++)
      Add to newPts(1-t)pts[i] + t pts[i+1]
  return Bezier ( newPts, t )
```


Adaptive Rendering of Bezier Curves

- If control polygon is close to a line, draw the control polygon
- If not, subdivide and recur on subdivided pieces

Adaptive Rendering of Bezier Curves

- If control polygon is close to a line, draw the control polygon
- If not, subdivide and recur on subdivided pieces

- If control polygon is close to a line, draw the control polygon
- If not, subdivide and recur on subdivided pieces

- If control polygon is close to a line, draw the control polygon
- If not, subdivide and recur on subdivided pieces

- If control polygon is close to a line, draw the control polygon
- If not, subdivide and recur on subdivided pieces

- If control polygon is close to a line, draw the control polygon
- If not, subdivide and recur on subdivided pieces

■ Given two Bezier curves, determine if and where they intersect

- Check if convex hulls intersect
- If not, return no intersection
- If both convex hulls can be approximated with a straight line, intersect lines and return intersection
- Otherwise subdivide and recur on subdivided pieces

Application: Font Rendering

Application: Font Rendering

Problems with Bezier Curves

- More control points means higher degree
- Moving one control point affects the entire curve

Problems with Bezier Curves

- More control points means higher degree
- Moving one control point affects the entire curve

B-spline Curves

- Not a single polynomial, but lots of polynomials that meet together smoothly
- Local control

B-spline Curves

- Not a single polynomial, but lots of polynomials that meet together smoothly
- Local control

Lane-Reisenfeld subdivision algorithm

Linearly subdivide the curve by inserting the midpoint on each edge

Perform averaging by replacing each edge by its midpoint d times

Subdivide the curve repeatedly

B-spline Properties

- Curve lies within convex hull of control points
- Variation Diminishing: Curve wiggles no more than control polygon
- Influence of one control point is bounded
- Degree of curve increases by one with each averaging step
- Smoothness increases by one with each averaging step

B-spline Curve Example

B-spline Curve Example

B-spline Curve Example

