Intersecting Simple Surfaces

Dr. Scott Schaefer

Types of Surfaces

- Infinite Planes
- Polygons
- Convex
- Ray Shooting
- Winding Number
- Spheres
- Cylinders

Infinite Planes

- Defined by a unit normal n and a point o

$$
n \cdot(x-o)=0
$$

Infinite Planes

- Defined by a unit normal n and a point o

$$
\begin{aligned}
& n \cdot(x-o)=0 \\
& L(t)=p+v t
\end{aligned}
$$

Infinite Planes

- Defined by a unit normal n and a point o

$$
\begin{aligned}
& n \cdot(x-o)=0 \\
& L(t)=p+v t
\end{aligned}
$$

$$
n \cdot(p+v t-o)=0
$$

Infinite Planes

- Defined by a unit normal n and a point o

$$
\begin{aligned}
& n \cdot(x-o)=0 \\
& L(t)=p+v t
\end{aligned}
$$

$$
n \cdot v t=n \cdot(o-p)
$$

Infinite Planes

- Defined by a unit normal n and a point o

$$
\begin{aligned}
& n \cdot(x-o)=0 \\
& L(t)=p+v t \\
& t=\frac{n \cdot(o-p)}{n \cdot v}
\end{aligned}
$$

Infinite Planes

- Defined by a unit normal n and a point o

$$
\begin{aligned}
& n \cdot(x-o)=0 \\
& L(t)=p+v t \\
& p+v \frac{n \cdot(o-p)}{n \cdot v}
\end{aligned}
$$

Polygons

- Intersect infinite plane containing polygon
- Determine if point is inside polygon

Polygons

- Intersect infinite plane containing polygon
- Determine if point is inside polygon
- How do we know if a point is inside a polygon?

Point Inside Convex Polygon

Point Inside Convex Polygon

- Check if point on same side of all edges

Point Inside Convex Polygon

■ Check if point on same side of all edges

Point Inside Convex Polygon

- Check if point on same side of all edges

Point Inside Convex Polygon

- Check if point on same side of all edges

Point Inside Convex Polygon

- Check if point on same side of all edges

Point Inside Convex Polygon

■ Check if point on same side of all edges

Point Inside Convex Polygon

- Check if point on same side of all edges

Point Inside Convex Polygon

- Check if point on same side of all edges

Point Inside Convex Polygon

- Check if point on same side of all edges

Point Inside Convex Polygon

- Check if point on same side of all edges

Point Inside Convex Polygon

Point Inside Polygon Test

- Given a point, determine if it lies inside a polygon or not

Ray Test

- Fire ray from point
- Count intersections
- Odd = inside polygon
- Even $=$ outside polygon

Problems With Rays

- Fire ray from point
- Count intersections
- Odd = inside polygon
- Even $=$ outside polygon
- Problems
- Ray through vertex

Problems With Rays

- Fire ray from point
- Count intersections
- Odd = inside polygon
- Even = outside polygon
- Problems
- Ray through vertex

Problems With Rays

- Fire ray from point
- Count intersections
- Odd = inside polygon
- Even $=$ outside polygon
- Problems
- Ray through vertex
- Ray parallel to edge

A Better Way

A Better Way

- One winding = inside

A Better Way

A Better Way

■ zero winding $=$ outside

Requirements

- Oriented edges
- Edges can be processed in any order

Computing Winding Number

- Given unit normal n
- $\theta=0$
- For each edge (p_{1}, p_{2})
$\theta+=\frac{n \cdot\left(\left(p_{1}-x\right) \times\left(p_{2}-x\right)\right)}{\|\left(p_{1}-x\right) \times\left(p_{2}-x\right) \mid} \cos ^{-1}\left(\frac{\left(p_{1}-x\right) \cdot\left(p_{2}-x\right)}{\left|p_{1}-x\right| p_{2}-x \mid}\right)$
- If $|\theta|>\pi$, then inside

Advantages

■ Extends to 3D!

- Numerically stable
- Even works on models with holes (sort of)
- No ray casting

Intersecting Spheres

- Three possible cases
- Zero intersections: miss the sphere
- One intersection: hit tangent to sphere
- Two intersections: hit sphere on front and back side

■ How do we distinguish these cases?

Intersecting Spheres

$$
F(x)=(x-c) \cdot(x-c)-r^{2}=0
$$

Intersecting Spheres

$$
\begin{gathered}
F(x)=(x-c) \cdot(x-c)-r^{2}=0 \\
F(L(t))=(p+v t-c) \cdot(p+v t-c)-r^{2}=0
\end{gathered}
$$

Intersecting Spheres

$$
\begin{gathered}
F(x)=(x-c) \cdot(x-c)-r^{2}=0 \\
F(L(t))=(p+v t-c) \cdot(p+v t-c)-r^{2}=0 \\
F(L(t))=(v \cdot v) t^{2}+2 v \cdot(p-c) t+(p-c) \cdot(p-c)-r^{2}=0
\end{gathered}
$$

Intersecting Spheres

- $F(L(t))=0$ is quadratic in t

$$
F(L(t))=\underbrace{(v \cdot v)}_{a} t^{2}+\underbrace{2 v \cdot(p-c)}_{b} t+\underbrace{(p-c) \cdot(p-c)-r^{2}}_{c}=0
$$

Intersecting Spheres

- $F(L(t))=0$ is quadratic in t

$$
F(L(t))=\underbrace{(v \cdot v)}_{a} t^{2}+\underbrace{2 v \cdot(p-c)}_{b} t+\underbrace{(p-c) \cdot(p-c)-r^{2}}_{c}=0
$$

- Solve for t using quadratic equation

$$
t=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

- If $b^{2}-4 a c<0$, no intersection
- If $b^{2}-4 a c=0$, one intersection
- Otherwise, two intersections

Normals of Spheres

$$
F(x)=(x-c) \cdot(x-c)-r^{2}=0
$$

$$
\nabla F(x)=x-c
$$

Infinite Cylinders

- Defined by a center point C, a unit axis direction A and a radius r

Infinite Cylinders

- Defined by a center point C, a unit axis direction A and a radius r

Infinite Cylinders

- Defined by a center point C, a unit axis direction A and a radius r
1.Perform an orthogonal projection to the plane defined by C, A on the line $L(t)$ and intersect $\xrightarrow[\hat{L}(t)]{\text { with }}$ circle in 2D

Infinite Cylinders

- Defined by a center point C, a unit axis direction A and a radius r

2. Substitute t parameters
from 2D intersection to
3 D line equation

Infinite Cylinders

- Defined by a center point C, a unit axis direction A and a radius r
3.Normal of 2D circle is the same normal of cylinder at point of intersection

Infinite Cylinders

- Defined by a center point C, a unit axis direction A and a radius r

Infinite Cylinders

- Defined by a center point C, a unit axis direction A and a radius r

