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Abstract
We present a method for analytically calculating an anti-aliased rasterization of arbitrary polygons or fonts
bounded by Bézier curves in 2D as well as oriented triangle meshes in 3D. Our algorithm rasterizes multiple
resolutions simultaneously using a hierarchical wavelet representation and is robust to degenerate inputs. We
show that using the simplest wavelet, the Haar basis, is equivalent to performing a box-filter to the rasterized im-
age. Because we evaluate wavelet coefficients through line integrals in 2D, we are able to derive analytic solutions
for polygons that have Bézier curve boundaries of any order, and we provide solutions for quadratic and cubic
curves. In 3D, we compute the wavelet coefficients through analytic surface integrals over triangle meshes and
show how to do so in a computationally efficient manner.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.3]: Picture/Image Generation
- Antialiasing - Line and curve generation—[I.3.5]: Curve, surface, solid, and object representations

1. Introduction

Polygon rasterization is possibly the most fundamental oper-
ation in Computer Graphics. Nearly every modern computer
includes specialized hardware that is capable of rasterizing
millions of triangles per second. A rasterizer determines how
to color pixels from a polygon’s boundary, but pixels near
the boundary are difficult to classify. Simply testing if pixels
are interior to a polygon results in jagged edges, which are a
form of aliasing [Cro77]. In this paper, we describe a method
for analytically rasterizing an anti-aliased image.

Aliasing is a general term for any effect of sampling a sig-
nal that contains frequencies higher than half the sampling
rate. In polygon rasterization, the signal is a function χM
that is one inside the polygon and zero outside. Because χM
changes discontinuously along polygon edges, χM contains
infinitely high frequencies. To remove aliasing artifacts, it
is necessary to filter-out high frequencies from χM through
convolution. Different filters balance signal distortion and
simplicity. From most complex to simplest, the theoretically
ideal sinc filter removes only high frequencies, windowed
sinc filters such as Lanczos limit filter support, piecewise-
cubic filters [MN88] approximate a windowed sinc, while
the box filter is a piecewise constant approximation thereof.

Beyond rasterizing polygons, one can rasterize curved
boundaries. For example, fonts and vector images often de-
scribe regions bounded by Bézier curves. However, even

methods that calculate precise anti-aliasing of polygons only
approximate curves by linear pieces, which leads to aliasing
artifacts for these curved shapes.

We view pixels as square regions on a display. In this in-
terpretation, pixels that intersect a polygon’s boundary can
be partially covered. Rasterizing polygons into pixels that
store percent occupancy rather than Boolean inside/outside
information is equivalent to sampling χM convolved with a
box filter. Although box filters are often considered to be
poor approximations of the sinc filter, their interpretation
of calculating occupancy of cells is sometimes useful, es-
pecially in 3D. Because directly calculating the convolution
integral is difficult, the integral is often approximated by tak-
ing multiple samples per pixel [DW85].

Although we typically think of rasterization as a 2D prob-
lem, we can extend the idea to 3D. In 3D, the equivalent op-
eration is to calculate the occupancies of cube cells from the
triangles that enclose a volume. This volumetric rasterization
(voxelization) of an object builds an implicit representation
that is useful for operations, such as collision detection, Con-
structive Solid Geometry (CSG), and fluid simulation, that is
easier to calculate over volumes than boundaries.

Collision detection, for example, determines if objects in-
terpenetrate and can be solved by querying if points are in-
side (one), outside (zero), or near the boundary (fractional
values) of an object. If the cell containing a test point has
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Figure 1: Slices from a 3D rasterization of the Happy Buddha statue computed on a 643 grid to illustrate the anti-aliased
nature of wavelet rasterization.

a fractional occupancy, we only need to test the part of the
boundary that intersects that cell.

Implicit representations also provide a natural method of
calculating CSG set operations. We can approximate set op-
erations between two objects a and b by min(a,b) for inter-
section, max(a,b) for union, and min(a,1−b) for difference.
We can then convert the result back to a boundary represen-
tation as shown in Figure 8. Alternately, we can accelerate
exact CSG algorithms by using implicit representations of
objects to quickly classify surface elements of a mesh as be-
ing completely inside or outside each object. We can then
perform exact intersection tests within the remaining inde-
terminate voxels [CK10].

In fluid simulations, it is natural to model surface ten-
sion using a surface mesh, while pressure and advection are
best computed over a volumetric grid. Coupled with surface
contouring methods such as Marching Cubes [LC87], effi-
cient methods for implicitizing objects can accelerate fluid
simulations with air-water interfaces [TWGT10]. Calculat-
ing precise cell occupancies is important to preserve volume
in the simulation and to maintain a smooth surface.

Contributions

We calculate the exact wavelet coefficients of rasterized
polygons, fonts, and volumes. To compute the coefficients
efficiently, we transform integrals over the interior of an ob-
ject to integrals over the object’s boundary. There are many
integrals that we could use in this transform, so we choose
integrals that have the smallest support and computational
cost. The result is a fast algorithm for rasterizing 2D shapes
and implicitizing 3D volumes. Furthermore, our algorithm is
independent of surface connectivity and is robust to degen-
erate inputs and small gaps or overlaps in the surface.

1.1. Related Work

Perhaps the most obvious method for rasterizing an object
is to sample points over a regular grid. For each point in the

grid we cast a ray and count the number of intersections be-
tween the ray and the boundary [Lin90,TGR04]. If the num-
ber of intersections is odd, we classify the point as interior.
Otherwise, the point is exterior. This approach is useful be-
cause it does not depend on the orientation of the boundary,
but ray-intersections are difficult to handle robustly in 3D.

The classic scan-line rasterizer takes the more-efficient
approach of splitting an image into separate horizontal scan-
lines. In this algorithm, polygon edges split scan-lines into
separate spans that we then classify as inside or outside.
There are many extensions to this basic algorithm that take
multiple samples within each pixel to produce anti-aliased
images [DW85, Coo86, JC99, Kal07].

One of the first analytic box-filter rasterizers [Cat78] clips
polygons in a scene to each pixel and then clips polygons
against each other, ordered by depth. Areas of clipped poly-
gons are then added to find the pixel’s color. Duff developed
a scan converter [Duf89] that calculates analytic convolu-
tions with cubic splines. Similar to our method, Duff clips
only the edges of polygons to pixels. Our main advantage
over Duff’s algorithm is robustness to small imperfections
in input that cause errors to propagate across a line in scan-
line algorithms. This property is more important in 3D than
in 2D because 3D data is more likely to contain imperfec-
tions. A method of extruding box splines to filter triangles
has also been developed [McC95], but requires simplicial
decompositions of shapes.

Most rasterization algorithms are specific to polygons and
render curves by subdividing curves into dense collections of
lines [HE93]. However, there has been interest recently to di-
rectly rasterize fonts and vector graphics that are bounded by
Bézier curves. A typical approach to calculating anti-aliased
curves is to set the intensity of pixels based on an approx-
imate distance to the curve. One early method [FF97] uses
this approach to draw strokes, but handles nearby lines inad-
equately by calculating the minimum distance to all curves
rather than actual overlap. Using a distance-based pre-filter
to draw closed shapes only approximates true convolution.
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Newer algorithms tend to be designed with GPUs in
mind. One such algorithm [LB05] uses the implicit form
of quadratic Bézier curves, which are bounded by the tri-
angle formed by their control points. Loop et al. designed
a pixel shader to color pixels in each triangle using the im-
plicit form to determine if pixels are inside or outside the
curve. However, this method requires the curve’s interior to
be triangulated and only approximates anti-aliasing. Other
hardware-accelerated techniques [QMK06, QMK08, NH08]
improve the quality of anti-aliasing by pre-filtering images
with better approximated distance fields, but these methods
are still approximate.

In addition to rasterizing polygons and curves, we con-
sider the 3D equivalent of voxelizing surfaces. Some com-
putationally expensive algorithms [FT97, CC95] test points
inclusion. Other algorithms [FL00, HW02, DCB∗04, ED06,
ZCEP07, ED08] use the special-purpose hardware in a GPU
to accelerate volumetric rasterization. However, these al-
gorithms use no filtering, which leads to obvious aliasing.
Binary volumes are adequate for some applications, like
collision detection, but CSG operations and other methods
that extract surfaces from a volumetric representation re-
quire anti-aliasing to produce attractive surfaces. Although
super-sampling approximates the anti-aliased representation
of these binary volumes, super-sampling volumes is ex-
tremely expensive.

Other methods [IK00] approximate the signed distance
function of a surface, but often rely on finding closest points
on the surface [BA05]. Some researchers [SPG03, SOM04]
have used the GPU to accelerate the computation of signed
distance functions, but these methods are still slow because
of the complexity of the distance function.

Although seemingly unrelated to rasterization, surface re-
construction methods can also be used to rasterize an ob-
ject. Surface reconstruction algorithms approximate an im-
plicit function of an object from a set of points sampled
over the object’s surface. The reconstructed surface is then
calculated as a level set of the function. Several meth-
ods [Kaz05, KBH06, ACSTD07, MPS08] estimate the indi-
cator function for the object or the indicator function con-
volved with a small smoothing kernel.

The wavelet reconstruction work of Manson et
al. [MPS08] is closely related to our method. Their
method estimates wavelet coefficients of an indicator func-
tion from a set of noisy point samples. In order to smooth
the reconstructed surface, the authors chose to use smooth
wavelets with wide support and convolve their resulting
function with a Gaussian kernel. In contrast, we compute
exact integrals for Haar wavelets from lines, curves, or
triangles in 3D rather than summing over point sets, which
yields a more accurate and efficient rasterization.

Wavelets have also been applied to rendering ray-traced
scenes, but in a way that is very different from our method.
Overbeck et al. [ODR09] use ray-traced color samples in

the image plane to build wavelet coefficients of the image
and use the variance of the mean of wavelet coefficients to
determine where more samples are required. Additionally,
they use a smooth basis and reduce the contribution of coef-
ficients with high variance so that noisy regions of the image
(for example around out-of-focus objects, in soft shadows,
or on semi-glossy surfaces) appear blurred. In contrast, our
method uses wavelets to calculate interiors of 3D surfaces
and 2D polygons.

2. Rasterizing Objects Using Wavelets

Wavelets provide a basis for representing functions through a
hierarchy of localized refinements. They have a wide variety
of applications, from solving differential equations, to digi-
tal image processing, signal processing, and surface recon-
struction. The main advantage of wavelets over other repre-
sentations of a function is that wavelets are localized in both
the spatial and frequency domains. Although our explanation
and derivations extend to higher dimensions, for simplicity,
we initially restrict our discussion to 2D and will extend the
method to 3D later.

We wish to rasterize objects by calculating the percent oc-
cupancy of voxels in a regular grid. If the area M is the set
of points inside an object with boundary ∂M, represented as
a set of edges, then χM is defined as

χM(p) =
{

1, p ∈M
0, otherwise.

(1)

This function is an implicit representation of M from which
we can extract the boundary by finding the points where χM
transitions from zero to one. In particular, χM defines the
set of points that would be drawn if the polygon ∂M was
rasterized at infinite resolution. Taken to the limit, summing
super-samples [DEM96] over a pixel is equivalent to apply-
ing a box-filter or integrating χM over the pixel area. The
value of a pixel P is therefore given by∫

P χM(p) d p∫
P d p

. (2)

This equation shows that the value of a pixel is, ideally, equal
to the area of the polygon that intersects the pixel divided by
the area of the pixel. Our approach to rasterizing polygons is
to calculate the wavelet coefficients of χM up to pixel reso-
lution and then to invert the wavelet transform to complete
the rasterization.

Wavelets provide an orthonormal basis that allows lo-
cal refinements by adding higher-resolution basis functions.
Wavelets are represented by a scaling function φ and a
wavelet function ψ.

We use the following construction of two-dimensional
wavelets. Let ψ

0 = φ, ψ
1 = ψ, E′ be the set of vertices

{(0,0),(0,1),(1,0),(1,1)}, and E = E′\{(0,0)}. For each
e = (ex,ey) ∈ E′, j ∈ N, and k = (kx,ky) ∈ Z2, we define

ψ
e
j,k(p) = 2 j

ψ
ex(2 j px− kx)ψ

ey(2 j py− ky)
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Figure 2: The 2d Haar basis functions. Each function is shown over the domain [0,1)2 and is piecewise constant (−1/+1) on
each quadrant. Translations of Ψ̄

(0,0) give the low-resolution representation of the function, while scalings and translations of
the functions Ψ̄

(1,0), Ψ̄
(0,1), and Ψ̄

(1,1) add high-resolution details.

where p = (px, py). Every function g that is locally inte-
grable on R2 has the wavelet expansion

g(p) = ∑
k∈Z2

c(0,0)0,k ψ
(0,0)
0,k (p)+ ∑

j∈N
∑

k∈Z2
∑

e∈E
ce

j,kψ
e
j,k(p), (3)

where each ce
j,k is given by

ce
j,k =

∫∫
R2

g(p)ψe
j,k(p) d p. (4)

Here, the index e indicates which basis functions is used
and k denotes its translation at resolution j. Because the
functions have supports that are power of two contractions
of a square, the wavelet hierarchy in 2D is naturally repre-
sented by a quadtree. Note that j controls the resolution of
the wavelet expansion. In practice, we truncate j to stop at
pixel resolution.

If we consider the wavelet coefficients of χM and use the
definition of χM in Equation 1, Equation 4 reduces to

ce
j,k =

∫∫
M

ψ
e
j,k(p) d p. (5)

Integrating over the domain of M is difficult, so we use
the divergence theorem to relate the integral over M to an in-
tegral over its boundary ∂M. The divergence theorem states
that ∫∫

M

∇·Fe
j,k(p) d p =

∮
p∈∂M

Fe
j,k(p) ·n(p) dσ (6)

where F = ( fx, fy) is a vector-valued function on R2, n(p)
is the outward unit normal to the curve ∂M at point p, and
dσ is the differential length of ∂M. By finding functions Fe

j,k
that satisfy ∇·Fe

j,k = ψ
e
j,k, we can calculate the wavelet co-

efficients of χM using only the polygon boundary in the line
integrals

ce
j,k = ∑

i

∫ 1

0
Fe

j,k(Pi(t)) ·n(Pi(t))‖P′i (t)‖dt. (7)

where Pi represents the ith polynomial segment of the bound-
ary (line segment for polygons).

This construction follows that of Manson et al. [MPS08]
except that we show how to compute the integral exactly
rather than to approximate the integral by summing over
points. We can use any orthogonal basis, each of which of-
fers a trade-off among support, smoothness, symmetry, and
ease of computation. Unlike more complex wavelets, Haar
wavelets [Haa10] have small support and analytic functions.
Specifically, the scaling function

φ(t) =
{

1, 0≤ t < 1
0, otherwise.

generates the Haar basis, and ψ is given by

ψ(t) = φ(2t)−φ(2t−1).

The 2D Haar wavelets, shown in Figure 2, exactly rep-
resent piecewise-constant functions made of squares and
model a box-filtered sampling of an image given by Equa-
tion 2. Because χM is constant over both the interior and
exterior and wavelets have constant precision, wavelet coef-
ficients are only non-zero where the boundary intersects the
basis functions. This property yields an adaptive quadtree
that is refined only along the boundary of the polygon.

We make a few simplifying assumptions to facilitate anal-
ysis. First we calculate basis functions over the [0,1)2 do-
main (the support of the 2D Haar basis) by translating the
input edges by −k and scaling by 2 j. Furthermore, we clip
edges to this domain because the support of the wavelet
functions is only [0,1)2. Note that we only need to clip the
boundary edges rather than the polygons themselves because
we calculate a boundary integral. This simplification allows
us to drop the j,k subscripts so that

ψ
e(p) = ψ

ex(px)ψ
ey(py).

There are many possible function Fe in 2D that satisfy
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Figure 3: We show spirals with 2, 20, and 10000 arms. The
images were all rendered at 5122 pixels on a side. When
many arms pass through each pixel there is no aliasing from
numerical inaccuracies.

∇·Fe(p) = ψ
e(p). In particular, if α+β = 1, then

Fe(p) =
(
αΨ̄

ex(px)ψ
ey(py),βψ

ex(px)Ψ̄
ey(py)

)
where

Ψ̄
`(t) =

∫ t

0
ψ
`(s) ds

and ` ∈ {0,1}. Not all choices of α,β yield practical solu-
tions or efficient calculations. In the following sections we
show how we choose α, β such that Equation 7 yields a cal-
culation that has both small support and low computational
cost.

2.1. 2D Polygons

The c(0,0) coefficient is special because it exists only for the
root node of the quadtree and gives the value that is refined
by all other wavelet coefficients. The c(0,0) coefficient also
has the clear geometric interpretation of being the area of the
polygon. Letting α = β = 1

2 in Equation 7 yields∫ 1

0
F(0,0)(P(t)) ·n(P(t))‖P′(t)‖dt =

1
2

det
(
v0,v1

)
where v0 and v1 are the end-points of the edge defined by P.
Adding determinants of edges is geometrically equivalent to
adding the areas of the triangles formed between edges and
the origin, which is a simple method for using signed areas
to compute the area of a polygon.

The three coefficients other than c(0,0) calculate the dif-
ference between a cell and its sub-cells at the next higher
resolution. These three refinement coefficients, in addition
to the known scale coefficient, uniquely determine values of
all four sub-cells.

Now consider the c(1,0) coefficient (c(0,1) follows in a sim-
ilar manner). Again, we could choose α = β = 1

2 to give

F(1,0)(p) = 1
2 (Ψ̄(px)φ(py),ψ(px)Φ̄(py)),

where Ψ̄ = Ψ̄
1 and Φ̄ = Ψ̄

0. Although this function satisfies
the divergence theorem, F(1,0) has infinite support because
Φ̄ has support of [0,∞). We only want to use detail functions
with finite support such that we limit the number of edges

Figure 4: We compare the quality of rasterizing a 50-point
(top) and 100,000-point (bottom) star with the GPU using
16xQ supersampling, AGG, and our wavelet rasterizer on a
5122 grid.

that influence a coefficient. Notice, however, that the support
of Ψ̄ is finite and is [0,1). By choosing α = 1, β = 0 for
F(1,0) and α = 0, β = 1 for F(0,1), we obtain the compactly
supported functions

F(1,0)(p) = (Ψ̄(px),0)
F(0,1)(p) = (0,Ψ̄(py)).

We must also calculate the coefficients of the wavelets that
add differences across the diagonal. Manson et. al. [MPS08]
chose the most symmetric set of functions F that have com-
pact support and thus used the diagonal detail function

F(1,1)(p) =
1
2
(Ψ̄(px)ψ(py),ψ(px)Ψ̄(py)).

This symmetric solution is ideal for noisy data, but our
boundary is a perfect polygon, and noise is not a con-
cern. Therefore, we simplify this computation even more by
choosing α = 1, β = 0 to give

F(1,1)(p) = (Ψ̄(px)ψ(py),0).

The functions Fe are piecewise-linear because Ψ̄ is
piecewise-linear. However, each quadrant is linear, so we
evaluate these integrals by splitting each polygon edge Pi
into the quadrants and transforming the domains of the quad-
rants to be [0,1)2. We then add the contribution of each split
edge to the coefficients. Quadrants that do not contain an
edge contribute nothing. Appendix A gives concise formulas
for computing the contribution to each wavelet coefficient
for each node of the quadtree.

2.2. 2D Bézier Curves

It is common to specify closed regions by quadratic and
cubic Bézier curves in font rendering or vector graphics.
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Figure 5: We rasterize a polygon made of disconnected
edges (left) using a standard scanline rasterizer (center) and
our wavelet rasterizer (right). Wavelets localize errors be-
cause of their local support.

Because Equation 7 is very general, we can handle curved
boundaries in addition to straight edges. We represent the
boundary of a shape as a set of general Bézier curves pa-
rameterized by t ∈ [0,1). Using the fact that n(P(t)) =
P⊥(t)/‖P′(t)‖, where P⊥(t) = (−P′y(t),P

′
x(t)), Equation 7

becomes

ce = ∑
i

∫ 1

0
Fe(Pi(t)) ·P⊥i (t) dt.

Notice that, because each segment Pi(t) is polynomial,
P⊥i (t) and Fe(Pi(t)) are also polynomial. The definite in-
tegral is then easy to evaluate and results in an expression
that is quadratic in the Bézier control points. Like in Sec-
tion 2.1, Fe is piecewise-polynomial, and we can compute
the coefficients ce using the same formula in Equation 8 of
Appendix A, except that we replace the functions with those
in Appendix B for quadratic and cubic Bézier curves. The
only remaining difficulty is to recursively clip Bézier curves
to cells of the quadtree, for which we use a recursive subdi-
vision scheme [SP86].

2.3. 3D Triangle Surfaces

In 3D, we assume the boundary ∂M of our volume M is com-
posed of triangles. Like in 2D, we define our wavelet basis
as the tensor product of Haar scale and wavelet functions so
that there are eight types of functions in total, indexed by e,
that we contract and translate by j,k.

ψ
e
j,k(p) = 23 j/2

ψ
ex(2 j px−kx)ψ

ey(2 j py−ky)ψ
ez(2 j pz−kz)

Also like in 2D, we translate and scale input triangles rather
than modify the basis functions and clip transformed trian-
gles to the unit cube. We therefore restrict our discussion to
the normalized basis

ψ
e(p) = ψ

ex(px)ψ
ey(py)ψ

ez(pz).

To satisfy Equation 6, we find functions Fe whose diver-
gences are equal to ψ

e. These functions have the general
form α+β+ γ = 1,

Fe(p) =

αΨ̄ex (px)ψey (py)ψez (pz)
βψex (px)Ψ̄ey (py)ψez (pz)

γψex (px)ψey (py)Ψ̄ez (pz)

 .

Figure 6: Comparison of font rendering between FreeType
(left) and our Wavelet algorithm (center). In the difference
image (right), red values indicate that our rendering has
a higher cell coverage while blue indicates that we have a
lower cell coverage. Differences are multiplied by a factor
of 10 for visibility.

We choose functions that have as small a support as possible
and that are as efficient to compute as possible, yielding

F(0,0,0)(p) = 1
3 (Φ̄(px),Φ̄(py),Φ̄(pz))

F(1,0,0)(p) = (Ψ̄(px),0,0)
F(0,1,0)(p) = (0,Ψ̄(py),0)
F(0,0,1)(p) = (0,0,Ψ̄(pz))

F(1,1,0)(p) = (Ψ̄(px)ψ(py),0,0)
F(1,0,1)(p) = (ψ(px)Ψ̄(pz),0,0)
F(0,1,1)(p) = (0,Ψ̄(py)ψ(pz),0)
F(1,1,1)(p) = (Ψ̄(px)ψ(py)ψ(pz),0,0).

Again, the wavelet functions (functions 2-8) have finite
support, although the scale function (F(0,0,0)) does not, but
there is only one top-level scale function corresponding to
the root node of the octree. Also like in 2D, the symmetric
solution α = β = γ = 1/3 for the c(0,0,0) coefficient gives the
determinant of the triangle. This is equivalent to the signed
volume of the tetrahedron formed between the triangle and
the origin.

c(0,0,0) =
∫

p∈T
F(0,0,0)(p) ·ndσ =

1
6

det
(
v0,v1,v2

)
We compute the remaining coefficients just like in 2D by
splitting triangles with vertices (v0,v1,v2) into octants that
we label Qi, j,k. We give the closed-form solution to the
piecewise integral in Appendix C.

3. Results

We compare the 2D rasterization performance of our algo-
rithm against other freely available, high-quality scanline
rasterizers. Specifically, we compare our polygon rasteriza-
tion on a Core i7 960 against Anti-Grain Geometry (AGG),
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Figure 7: Approximation of Bézier curves by line segments
introduces error, even when a line segment is used for each
pixel the curve intersects. This approximation underesti-
mates coverage in convex regions (left) and overestimates
coverage in concave regions (right).

which is an open-source, highly-optimized software raster-
izer, and native GPU rasterization on an Nvidia 8800GT. For
font rasterization, we compare against a high-quality open-
source font rasterizer called FreeType. Even though our al-
gorithm is relatively efficient in terms of computation, we
cannot compete with the speed of native hardware or even
highly optimized software implementations with assembly
tuning. For complex shapes, the speed of our algorithm is
about a factor of three slower than these optimized imple-
mentations. We rasterized a circle with a million vertices
at 10242 resolution in 50.2ms on the GPU with 16xQ anti-
aliasing, 36.8ms with AGG, and 107ms with our method.

Many rasterizers, like the GPU, only operate on trian-
gles, which means that the shape must be triangulated before
rendering. However, some shapes, like the one in Figure 3,
can be difficult or time-consuming to triangulate. The figure
shows three polygons of increasing complexity. Each arm of
the spiral is composed of 10,000 line segments, and the arms
combine to form a complex concave shape. Our algorithm
still accurately rasterizes the shape even when the number
of spirals (10,000 arms in a 5122 image) is far greater than
the image resolution. We encourage the reader to zoom into
the figure to see the rasterization without artificial aliasing
caused by deficiencies in the sampling algorithm for PDFs.

Although Figure 3 contains shapes that are difficult to tri-
angulate, Figure 4 shows an example of a shape that is easy
to triangulate and can be compared with other rasterization
implementations. The figure shows an example of a 50-point
star and a 100,000-point star rendered by the GPU, AGG,
and our method. The 50-point stars look very similar with
the different rasterizers, but some aliasing is present in the
GPU rendering since 16 samples yields a total of 16 gray
levels for the image. The high-frequency shape on the bot-
tom illustrates the artifacts of super-sampling on the GPU,
even with the highest anti-aliasing setting, as well as AGG’s
failure in this case. In contrast, our result smoothly transi-
tions from black to white.

Figure 8: We calculate the CSG set difference between the
head and the Eurographics logo using an anti-aliased ras-
terization of each model on a 10243 grid with our method.

Quality and robustness are strong points in favor of
wavelet rasterization. Wavelets build a low-resolution image
that is subsequently refined in localized areas, which means
that the overall picture is retained even in the presence of de-
generacies and holes. Small errors in the polygon can have
a large effect, as shown in the example of the non-closed
polygon in Figure 5, because a scanline rasterizer with an
even-odd fill-rule propagates information only from the cur-
rent line to the right. However, the wavelet rasterizer uses
information in both the x and y directions to refine a coarse
image locally, but requires oriented edges. Although it is dif-
ficult to say what the correct rasterization of a non-closed
polygon is, wavelet rasterization localizes rasterization er-
rors and produces a plausible image.

For polynomial boundaries such as those found in fonts
and vector graphics, we calculate the occupancy of pixels
analytically rather than segment the curve into dense collec-
tions of lines. Figure 6 shows a comparison between our out-
put and the output of FreeType. We rasterized an upper case
“T” with both methods at 256pt and 16pt sizes. Blue pixels
indicate that our image had lower occupancy, whereas red
pixels indicate we had higher occupancy (multiplied by ten
for visibility) in the difference images. Notice that FreeType
overestimates occupancies in regions of negative curvature
and underestimates occupancies in regions of positive curva-
ture. This artifact is primarily an effect of the bias introduced
by linear approximation, as shown in Figure 7.

Wavelet rasterization is particularly useful for rasterizing
volumes of triangle meshes. Table 1 shows the times taken to
rasterize triangle meshes of increasing complexity. The high-
est resolution mesh we use is a reconstruction of Michelan-
gelo’s David statue, which contains 7.2 million triangles that
we rasterized at a resolution of 40963. Storing one byte per
voxel consumes 64GB of space at this resolution, but our
adaptive octree stores the entire function in memory because
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2563 40963

polys coeff synth coeff synth
Armadilloman 30.0k .113 .022 7.31 3.99
Head 477k .393 .023 12.0 4.74
Buddha 1.09M .557 .021 10.7 3.34
David 2mm 7.23M 2.25 .019 14.8 1.79

Table 1: Time taken (in seconds) to rasterize volumes of in-
creasing complexity at 2563 and 40963. We show the time
taken for coefficient calculation and synthesis separately.

the tree is only refined around the boundary of the surface.
We spend the majority of our time computing the wavelet co-
efficients, and this computation is proportional to the surface
area of the object times tree depth. However, computing the
function values from these coefficients (i.e. synthesis) over
a uniform grid is proportional to the object’s volume and
grows quickly as the resolution increases.

It is difficult to demonstrate anti-aliasing in a volumetric
image, but we have endeavored to do so in Figure 1. This
figure shows slices through the volume of the Happy Bud-
dha statue. Notice that the silhouette of each slice is anti-
aliased. Moreover, voxels have partial occupancies at the
front and back of the statue because anti-aliasing occurs in
the z-dimension as well as the x,y-dimensions. This effect is
most easily visible on Buddha’s back.

Anti-aliasing is important for many algorithms that pro-
cess rasterized volumes. For example, CSG operations can
be performed by rasterizing the volumes of two meshes,
performing a pairwise CSG operation on the two volumes,
and then extracting a surface as a level set using an algo-
rithm such as Marching Cubes (MC) [LC87]. Figure 8 shows
such an operation using our wavelet rasterization on a 10243

grid. The quality of the surface generated by MC depends
on the rasterization algorithm. Figure 9 shows the result of
using a binary rasterization, which is typical of other meth-
ods [CC95, FT97, FL00, HW02, DCB∗04, ED06, ZCEP07,
ED08], and our anti-aliased rasterization over a 2563 grid.
Note that MC smoothes the surface from the binary vox-
elization because vertices lie at the midpoints of grid edges
and are connected using the MC table. Even so, MC gener-
ates only a small set of orientations for the polygons from a
binary voxelization, which produces a poor-quality surface.

4. Conclusions and Future Work

We believe that 2D and 3D rasterization is a fundamental
problem in Computer Graphics, and our algorithm offers a
method for analytically computing anti-aliased, box-filtered
rasterizations. The method we present is efficient and gen-
eral in that we can rasterize arbitrary 2D polygons, shapes
bounded by Bézier curves, and 3D triangle surfaces.

In wavelet rasterization, wavelet synthesis and analysis
correspond to pre- and post-filtering. Direct extension to

Figure 9: The CSG operation from Figure 8 computed on a
2563 grid contoured with Marching Cubes. The left shows
the result of using binary rasterization and the right shows
the result from our anti-aliased rasterization.

higher order filters is trivial for filters that form orthogo-
nal bases, though most common filters do not satisfy this
property. Interestingly, sinc forms an orthogonal wavelet ba-
sis but has infinite support. We believe that extending our
method to non-orthogonal filters is non-trivial but would like
to explore this possibility in the future.

Wavelet rasterization also provides anti-aliased images at
multiple resolutions that we can compute by truncating the
summation of the detail coefficients in Equation 3 before
pixel resolution. This progressive refinement of rasterized
images suggests the interesting possibility of generating a
fixed-framerate rasterizer that continuously adds detail un-
til a time limit for the frame is reached. Extremely detailed
geometry would simply result in a more pixelated image
rather than dropped frames. However, such a change would
require a relatively large overhaul of the current rasterization
pipeline used by modern GPUs.

Another interesting aspect of wavelet rasterization is that
it is extremely easy to parallelize. If addition is atomic, the
contribution of every line segment, curve, or triangle can be
processed independently. Each depth can also be processed
independently, although it is probably more efficient to reuse
the clipping operations from parent cells. Conversion of co-
efficients to function values is even more easily parallelized,
because memory accesses are disjoint.
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Appendix A: Polygon Coefficient Calculation

Before scaling edges, calculate the c(0,0) coefficient as

c(0,0) +=
1
2

det(v0,v1).
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Note that we only compute the c(0,0) coefficient for the root
node of the quadtree. We compute the other three coeffi-
cients for all nodes (interior and leaf, although the quadtree
is only refined where the boundary intersects the nodes). Let
the edge intersecting the quadrant Qi, j have vertices (v0,v1).
We define the constant terms Kx, Ky and the linear terms Lx,
Ly in each direction as

Kx(Q) = 1
4 (v0,y − v1,y)

Ky(Q) = 1
4 (v1,x − v0,x)

Lx(Q) = 1
8 (v0,y − v1,y)(v0,x + v1,x)

Ly(Q) = 1
8 (v1,x − v0,x)(v0,y + v1,y).

The coefficients for the basis functions are then given by
summing over all edges intersecting the support of the ba-
sis function using the following expressions:

c(1,0) += Lx(Q0,0)+Lx(Q0,1)+Kx(Q1,0)

−Lx(Q1,0)+Kx(Q1,1)−Lx(Q1,1)

c(0,1) += Ly(Q0,0)+Ly(Q1,0)+Ky(Q0,1)

−Ly(Q0,1)+Ky(Q1,1)−Ly(Q1,1)

c(1,1) += Lx(Q0,0)−Lx(Q0,1)+Kx(Q1,0)
−Lx(Q1,0)−Kx(Q1,1)+Lx(Q1,1).

(8)

Appendix B: Bézier Coefficient Calculation

We use the same computation in Equation 8 except that we
replace the function calls for Lx,Ly,Kx,Ky to compute the
coefficients for a Bézier curve of any degree. We assume that
each quadratic Bézier curve is split into quadrants Qi, j and
that each piece of the curve within a quadrant has control
points (v0,v1,v2). Then c(0,0) can still be written in terms of
determinants

c(0,0) +=
1
3

det(v0,v1)+
1
3

det(v1,v2)+
1
6

det(v0,v2)

and

Kx(Q) = 1
4 (v0,y − v2,y)

Ky(Q) = 1
4 (v2,x − v0,x)

Lx(Q) = 1
24 (3v0,xv0,y +2v0,yv1,x −2v0,xv1,y + v0,yv2,x

+2v1,yv2,x − (v0,x +2v1,x +3v2,x)v2,y)

Ly(Q) = 1
24 (2v1,yv2,x + v0,y(2v1,x + v2,x)−2v1,xv2,y

+3v2,xv2,y − v0,x(3v0,y +2v1,y + v2,y)).

Similarly, a cubic Bézier curve with control points
(v0,v1,v2,v3) has a scale coefficient

c(0,0) += 3
10 det(v0,v1)+

3
20 det(v1,v2)+

3
10 det(v2,v3)

+ 3
20 det(v0,v2)+

3
20 det(v1,v3)+

1
20 det(v0,v3)

and the constant and linear terms in each quadrant are given
by

Kx(Q) = 1
4 (v0,y − v3,y)

Ky(Q) = 1
4 (v3,x − v0,x)

Lx(Q) = 1
80 (6v2,yv3,x +3v1,y(v2,x + v3,x)

+ v0,y(6v1,x +3v2,x + v3,x)

+ v0,x(10v0,y −6v1,y −3v2,y − v3,y)

−6v2,xv3,y −10v3,xv3,y −3v1,x(v2,y + v3,y))

Ly(Q) = 1
80 (6v2,yv3,x +3v1,y(v2,x + v3,x)

+ v0,y(6v1,x +3v2,x + v3,x)

−6v2,xv3,y +10v3,xv3,y −3v1,x(v2,y + v3,y)
− v0,x(10v0,y +6v1,y +3v2,y + v3,y)).

Appendix C: Triangle Coefficient Calculation

Coefficient calculation for triangles follows the same pattern
as for polygons in 2D. Before scaling triangles, calculate the
c(0,0,0) coefficient as

c(0,0,0) +=
1
6

det(v0,v1,v2).

We again define functions Kx,Ky,Kz and Lx,Ly,Lz corre-
sponding to the constant and linear portions of the computa-
tion in each quadrant as

Kx(Q) = 1
16 (−v1,zv2,y + v0,z(−v1,y + v2,y)

+ v0,y(v1,z − v2,z)+ v1,yv2,z)

Ky(Q) = 1
16 (v0,z(v1,x − v2,x)+ v1,zv2,x

− v1,xv2,z + v0,x(−v1,z + v2,z))

Kz(Q) = 1
16 (−v1,yv2,x + v0,y(−v1,x + v2,x)

+ v0,x(v1,y − v2,y)+ v1,xv2,y)

Lx(Q) = −1
48 (v0,x + v1,x + v2,x)(v0,z(v1,y − v2,y)

+ v1,zv2,y − v1,yv2,z + v0,y(−v1,z + v2,z))

Ly(Q) = 1
48 (v0,y + v1,y + v2,y)(v0,z(v1,x − v2,x)

+ v1,zv2,x − v1,xv2,z + v0,x(−v1,z + v2,z))

Lz(Q) = −1
48 (v0,y(v1,x − v2,x)+ v1,yv2,x

− v1,xv2,y + v0,x(−v1,y + v2,y))(v0,z + v1,z + v2,z).

Assuming that Qi, j,k represents the portion of the polygon
(triangulated) in the i jk octant with vertices v0,v1,v2, we
can then compute the wavelet coefficients using

c(1,0,0) += Lx(Q0,0,0)+Lx(Q0,0,1)+Lx(Q0,1,0)+Lx(Q0,1,1)

+Kx(Q1,0,0)−Lx(Q1,0,0)+Kx(Q1,0,1)−Lx(Q1,0,1)

+Kx(Q1,1,0)−Lx(Q1,1,0)+Kx(Q1,1,1)−Lx(Q1,1,1)

c(0,1,0) += Lx(Q0,0,0)+Lx(Q0,0,1)+Lx(Q1,0,0)+Lx(Q1,0,1)
+Kx(Q0,1,0)−Lx(Q0,1,0)+Kx(Q0,1,1)−Lx(Q0,1,1)

+Kx(Q1,1,0)−Lx(Q1,1,0)+Kx(Q1,1,1)−Lx(Q1,1,1)

c(0,0,1) += Lx(Q0,0,0)+Lx(Q1,0,0)+Lx(Q0,1,0)+Lx(Q1,1,0)
+Kx(Q0,0,1)−Lx(Q0,0,1)+Kx(Q1,0,1)−Lx(Q1,0,1)

+Kx(Q0,1,1)−Lx(Q0,1,1)+Kx(Q1,1,1)−Lx(Q1,1,1)

c(1,1,0) += Lx(Q0,0,0)+Lx(Q0,0,1)−Lx(Q0,1,0)−Lx(Q0,1,1)

+Kx(Q1,0,0)−Lx(Q1,0,0)+Kx(Q1,0,1)−Lx(Q1,0,1)
−Kx(Q1,1,0)+Lx(Q1,1,0)−Kx(Q1,1,1)+Lx(Q1,1,1)

c(1,0,1) += Lx(Q0,0,0)−Lx(Q0,0,1)+Lx(Q0,1,0)−Lx(Q0,1,1)

+Kx(Q1,0,0)−Lx(Q1,0,0)−Kx(Q1,0,1)+Lx(Q1,0,1)
+Kx(Q1,1,0)−Lx(Q1,1,0)−Kx(Q1,1,1)+Lx(Q1,1,1)

c(0,1,1) += Lx(Q0,0,0)−Lx(Q0,0,1)+Lx(Q1,0,0)−Lx(Q1,0,1)

+Kx(Q0,1,0)−Lx(Q0,1,0)−Kx(Q0,1,1)+Lx(Q0,1,1)
+Kx(Q1,1,0)−Lx(Q1,1,0)−Kx(Q1,1,1)+Lx(Q1,1,1)

c(1,1,1) += Lx(Q0,0,0)−Lx(Q0,0,1)−Lx(Q0,1,0)+Lx(Q0,1,1)

+Kx(Q1,0,0)−Lx(Q1,0,0)−Kx(Q1,0,1)+Lx(Q1,0,1)
−Kx(Q1,1,0)+Lx(Q1,1,0)+Kx(Q1,1,1)−Lx(Q1,1,1).
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