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Polygons are a ubiquitous modeling primitive in computer graph-
ics. Their popularity is such that special purpose graphicshardware
designed to render polygons is commonplace. However, modeling
with polygons is problematic for highly faceted approximations to
smooth surfaces. Since these approximations can consist ofhun-
dreds of thousands of polygons, designers cannot be expected to
manipulate these approximations directly due to their sheer size.

Subdivision is a technique that solves this problem by represent-
ing a smooth shape in terms of a coarse polygonal model. This
coarse model can be refined to produce increasingly faceted ap-
proximations to the associated smooth shape. The subdivision rules
used during this refinement process depend only on the topological
connectivity of the initial polygonal model and yield surfaces with
guaranteed smoothness.

Figure 1: Subdivision of initial coarse model of a bishop (left),
subdivided once (middle), smooth limit surface (right).

During refinement, the rules associated with a subdivision
scheme are applied recursively to construct a sequence of polyg-
onal models. If these rules are represented by the operatorS, this
process has the form

pk � Spk�1  
Applying S to an initial modelp0 yields a sequence of polygonal
modelsp1 ! p2 !    . The rules comprisingS specify how the polyg-
onal faces ofpk�1 are split as well as how the vertices ofpk are
positioned in terms of the vertices ofpk�1. If these rules are cho-
sen carefully, the limit of this process is a smooth surfacep∞ that
approximates the coarse modelp0.

Figure 1 illustrates this process. The left of the figure shows the
original, coarse model of a bishop. After one round of subdivision,
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the bishop contains more faces and begins to resemble the final,
smooth shape. Continuing this process yields a smooth modelthat
follows the initial shape. Due to its flexibility and ease of use, sub-
division has made its way into several computer generated films and
shorts by Pixar as well as being included in many standard model-
ing packages such as Maya.

This tutorial explains how to implement several different subdi-
vision schemes under a single, unified framework. Our discussion
will illustrate Catmull-Clark subdivision [Catmull and Clark 1978]
for quadrilateral meshes, Loop subdivision [Loop 1987] fortrian-
gular meshes, and a newer combined subdivision scheme called
Quad/Triangle subdivision [Stam and Loop 2003] that allowsthe
inclusion of meshes with both quadrilateral and triangularfaces.
The algorithms that we explain do not require complicated data-
structures or mesh traversal algorithms. Instead we focus on meth-
ods that illustrate the simplicity of the implementation. Finally, we
end with a discussion on generating surfaces that are not smooth
everywhere, but instead contain sharp crease curves.
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We begin with a simple example of a subdivision scheme for curves.
Curve subdivision is simpler than surface subdivision while em-
bodying most of the relevant concepts (though in a modified form).
Cubic B-splines are a popular class of curves that are smoothand
possess a simple subdivision scheme. We study this subdivision
scheme first since many surface subdivision schemes (Catmull-
Clark, Loop) are based on generalizations of the subdivision rules
for cubic B-splines.

Given a polygonal curvepk, we denote theith vertex of pk by
pk

i . The edges of the polygonal curve are implicit in this represen-
tation since consecutive vertices (pk

i and pk
i,1) form an edge. The

subdivision rules for cubic B-splines then have the form

pk
2i

� 1
8 pk�1

i�1 - 3
4 pk�1

i - 1
8 pk�1

i,1
!

pk
2i,1

� 1
2 pk�1

i - 1
2 pk�1

i,1

 (1)

Given that there are two rules, the number of vertices in the polyg-
onal curve doubles after each round of subdivision. In particular,
the vertexpk�1

i is repositioned topk
2i while pk

2i,1 is inserted at the

midpoint of the edge frompk�1
i to pk�1

i,1 .
Lane and Riesenfeld [Lane and Riesenfeld 1980] observed that

the subdivision rules for cubic B-splines could be decomposed into
two separate sets of rules: one set for linear subdivision and another
for averaging (smoothing) the resulting curve. (This separation of a
subdivision scheme into multiple passes is known asfactorization.)
In particular, the rules for linear subdivision have the form

p̂k
2i

� pk�1
i

!
p̂k

2i,1
� 1

2 pk�1
i - 1

2 pk�1
i,1

!

where ˆpk denotes the polygonal curve produced by inserting a new
vertex at the midpoint of each edge ofpk�1. If we apply an averag-
ing pass of the form

pk
i

� 1
4

p̂k
i�1 -

1
2

p̂k
i -

1
4

p̂k
i,1 (2)



Figure 2: Subdivision of initial curve (top left), after linear subdi-
vision (top middle), after averaging (top right). Further subdivision
(bottom).

to p̂k, the resulting polygonal curve is exactly the same polygonal
curvepk produced by equation 1. Figure 2 (top) shows an example
of this process where the curve is first linearly subdivided and then
averaged.
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Figure 3: Averaging rule for curve subdivision (left). Geometric
interpretation as placing vertex at average of adjacent midpoints
(right).

The left portion of figure 3 shows a diagrammatic depiction of
the averaging rule of equation 2. The use of these diagrams iscom-
mon in defining subdivision rules. These diagrams show a local
portion of a polygonal mesh with weights attached to each ver-
tex in the diagram. The central vertex in the diagram is typically
repositioned by applying the weights in the diagram to theircorre-
sponding vertices. The right portion of the figure shows a geometric
interpretation of this averaging rule as sequence of two simpler av-
eraging operations. First, the midpoint of each edge in the diagram
is computed (depicted as square vertices). Next, the midpoint of
these vertices is computed yielding the final position of thecentral
vertex.

Building a geometric interpretation for the averaging ruleon the
left allows this rule to be generalized to curve networks in which
more than two edges meet at a common vertex. The left portion of
figure 4 shows several edges meeting at common vertex of valence
n (the valence of a vertex is the number of edges containing it).
Again, the averaging operation consists of computing the midpoints
of these edges (square vertices) and then calculating the centroid of
these square vertices. The right portion of the figure depicts these
two averaging steps written as a single averaging operation.

These general networks of curves naturally partition two-
dimensional space. As an application, figure 5 shows an example
of using curve networks to separate a mouse brain into its different
anatomical regions. The figure shows the curve network created by
an anatomist (left) and curve subdivided once (middle). Continu-
ing this process produces the final, smooth network partitioning the
brain (right).

While this subdivision scheme for curve networks is useful,its
true value lies in the methodology used to generate the scheme.
First, we factored a smooth subdivision scheme for curves into lin-
ear subdivision followed by an averaging pass. Next, we found a
geometric interpretation for this averaging pass that applied to curve
networks. In the next section, we apply a similar methodology to
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Figure 4: Using the geometric interpretation for curve networks to
place a vertex at the average of the midpoints for edges containing
that vertex (left). The generalized averaging rule for curve subdivi-
sion (right).

surfaces.
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In the previous section we represented polygonal curves by alist
of vertices with the topology of the curve implicit in the indexing
of the list. For surfaces, we adopt an explicit topology/geometry
representation. A surface is represented as a list of vertices�x !y!z�
and a list of faces where each face is a list of indices into thever-
tex list. This indexed data structure is common in graphics as it
facilitates the rendering of polygons, and explicitly separates the
topology from the geometric position of the vertices.
Quad Subdivision

We begin with quadrilateral subdivision, as this method is the
most similar to the curve method shown earlier. As in curve subdi-
vision, we perform subdivision in two steps: linear subdivision and
averaging.

Figure 6: Linear subdivision of polygonal faces for quad subdivi-
sion schemes. After one round, all faces are quads.

To perform linear subdivision on a polygonal face, we carry out
what is commonly called a Catmull-Clark split [Catmull and Clark
1978] on each face in the mesh. First, we insert new vertices at
the midpoints of each edge of the face and one new vertex at the
centroid of the face. Next, the vertices are connected to form m
quads from them-sided polygon as shown in figure 6.

Due to the use of a topology/geometry representation for the
polygonal mesh, we must ensure that every face sharing a common



Figure 5: Subdivision of a curve network partitioning a mouse brain into anatomical regions. Initial curve network (left). Subdivided once
(middle). Final, smooth curve network (right).

vertex uses the same topological index for that vertex. In particular,
if two faces sharing a common edge are subdivided, the index of
the new midpoint for that edge must be the same for all four new
faces that contain that vertex. We solve this problem by storing the
index for each new midpoint on an edge in a hash table keyed by
the indices of the two vertices lying at the endpoints of thatedge.

The algorithm for linear subdivision is then, for each polygon
composed of indices�v1

!v2
!    !vm�, check to see if the vertex on

edge�vi
!vi,1� is already in the hash table. If so, use the vertex

index stored in the hash table. If the vertex is not in the hashtable,
insert a new vertex into the mesh and add the index of that vertex
into the hash table with the key�vi

!vi,1� (call the new vertexei).
Add a vertex,c, at the centroid of the polygon into the vertex array.
Finally, form the new polygons�ei

!vi
!ei,1

!c�.
Notice that after one round of linear subdivision all of the poly-

gons are quads in the mesh. Also, all new vertices inserted into
the mesh after the first round of subdivision will have valence four
(valence is the number of polygons containing the vertex). As we
continue to subdivide the mesh, any new vertex will be valence four
and vertices not of valence four become increasingly isolated. Since
almost all vertices of the final surface will be valence four,we call
these verticesordinary vertices. Conversely, we call vertices not of
valence fourextraordinary vertices.
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Figure 7: Averaging pass for quad subdivision. Computationof
centroids with squares denoting the position of the centroid (left).
Averaging the centroids together generates the composite averaging
rule at an arbitrary valence vertex (right).

Once linear subdivision is complete, we perform one round of
averaging on the mesh. The averaging operation on quadrilateral
meshes is analogous to the averaging operation for curves. For
each vertex, we place that vertex at the average of the centroids
of all quads containing that vertex. Figure 7 (left) shows the cen-
troid calculation for each quad and the composite rule formed by
averaging the centroids together (right).

This averaging pass can be implemented as single pass over the
list of faces. Before the pass, we initialize each entry of a table of
new vertex positions to have value�0!0!0�. Next, for each quad
q, we compute the centroid ofq and add this centroid’s position
to the four entries in this table indexed by the vertices ofq. After
processing all of the faces in the mesh, we divide each entry in the
table by the valence of the vertex associated with the entry.(This
valence information can also be computed during the centroid cal-
culations.) Note that dividing by the valence forces the coefficients
of the associated averaging rule (shown in figure 7 right) to sum to
one and makes the resulting subdivision scheme affinely invariant.

Figure 8: Subdivision of a cube. Uncorrected averaging (left).
Catmull-Clark subdivision (right).

Figure 8 (left) illustrates an example surface produced by sub-
dividing a cube using this subdivision scheme. The surfacespro-
duced by this method areC2 everywhere except at extraordinary
vertices where the surface is onlyC1. Though the surface is smooth
everywhere, the shading of the surface varies rapidly near the va-
lence three vertices of the cube. These discontinuities aredue to the
fact that the surface normals do not vary smoothly in these regions.
(Technically, the surface is strictlyC1.)

To lessen the appearance of these discontinuities, we use the con-
cept of a correction factor introduced by Maillot and Stam [Maillot
and Stam 2001]. Let ˆpk

i be a vertex after linear subdivision andpk
i

be the position of the vertex after the averaging pass. We reposition
the vertices of the mesh according to the update equation

p̂k
i - w�n� �pk

i � p̂k
i �

wheren is the valence of the vertex andw�n� a function describ-
ing the correction factor. The correction factor that we choose for
quadrilateral subdivision isw�n� � 4

n . Notice that this rule does not
change ordinary vertices, as their positions remain the same.

Using the correction factor, we generate the surface shown in
figure 8 (right). This surface does not contain the discontinuities



shown previously and has a much more visually appealing shape.
In fact, this correction factor reproduces the popular Catmull-Clark
subdivision scheme [Catmull and Clark 1978].

We end the quadrilateral subdivision section with a warning.
Though we have developed a subdivision method capable of sub-
dividing arbitraryn-gons, this method should not be used on tri-
angulated surfaces. The reason is that the polygon split in figure 6
introduces an extraordinary vertex of valence three for each triangle
where the surface will be onlyC1. While use of a correction factor
helps smooth the surface in these regions, the resulting surface will
contain noticeable visual artifacts. Instead, a triangular subdivision
method should be used on these surfaces.

Triangle Subdivision
Though we have developed a subdivision scheme for quadrilat-

eral surfaces, many surfaces encountered in practice are not com-
posed of quads. Instead, the vast majority of surfaces contain tri-
angles as the base modeling primitive. These surfaces are inappro-
priate for quadrilateral subdivision so we must develop a triangular
subdivision scheme. Loop subdivision [Loop 1987] is a very pop-
ular subdivision scheme for triangular meshes. As we shall show,
Loop’s method can also be expressed in terms of linear subdivision
and an averaging scheme similar to that for quad meshes.

Unlike the quadrilateral subdivision method described above,
our triangular subdivision scheme will only process surfaces com-
posed entirely of triangles. However, this requirement is simple to
fulfill as all faces in the mesh can be triangulated.

Figure 10: Linear subdivision of triangles for triangular subdivision
schemes.

To perform linear subdivision on triangles, we insert new ver-
tices on the edge of each polygon using the hash table technique
described for quadrilateral subdivision. Each triangle isthen split
into four triangles as shown in figure 10. Notice that all new ver-
tices will have valence six in the mesh. Since triangular subdivision
produces surfaces with valence six vertices almost everywhere, va-
lence six vertices are ordinary while other valence vertices are ex-
traordinary vertices.

Averaging for triangular surfaces is similar to quadrilateral sur-
faces. For each vertex in the mesh, we place the vertex at the av-
erage of the centroids of all polygons containing that vertex. How-
ever, we use a weighted centroid for triangular surfaces shown in
figure 11. The centroid takes14 of the vertex being repositioned plus
3
8 of the two neighboring vertices. Notice that while the centroid
calculation for quads is uniform (1

4 of all vertices), the centroid cal-
culation for triangles is not uniform and depends upon whichvertex
the centroid is being accumulated into.1

Figure 12 (middle) shows an example of the triangular subdivi-
sion scheme applied to a stellated octahedron. The surfacespro-
duced by this method areC2 almost everywhere. At extraordinary
vertices, the surface areC1 except valence three vertices where the
surface is onlyC0. This lack of continuity can be seen clearly in the

1Using the more intuitive centroid for triangles (1
3 of each vertex) re-

sults in a surface scheme that isC1 everywhere while the weighted method
producesC2 surfaces except at extraordinary vertices.
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Figure 11: Centroid calculation for triangles (left). Repositioning
the vertex at the average of these centroids generates the triangle
averaging rule (right).

Figure 12: Subdivision of a stellated octahedron (left), uncorrected
triangle averaging (middle), corrected subdivision (right).

figure. Though the previous use of a correction factor has been
to smooth shading artifacts at extraordinary and not to alter the
smoothness of the surface, we must correct the triangular subdi-
vision scheme in order to generate a surface that is smooth every-
where.

The correction term that we choose for triangular surfaces repro-
duces Loop subdivision [Loop 1987]. This subdivision scheme has
the property that the surfaces generated areC2 everywhere except at
extraordinary vertices where the surface isC1. Furthermore, at ver-
tices of valence four and five, the surfaces will have discontinuous,
but bounded curvature. While the correction term for quadrilateral
subdivision is a simple polynomial (4

n ), the correction term for tri-
angular subdivision is more complicated and is

w�n� � 5
3 �

8
3
�3
8 -

1
4

Cos�2π
n

��2  

Warren [Warren and Weimer 2001] proposed a simpler correction
factor of 8

n,2 that also generates smooth surfaces everywhere but
does not have bounded curvature at vertices of valence four and
five.

Figure 12 (right) shows the same stellated octahedron subdivided
using the corrected triangle averaging method that produces Loop
subdivision surfaces. Notice how the corners are now rounded and
smooth. Figure 9 contains a more complicated example of a bunny
modeled using triangles and subdivided using the correction factor
that reproduces Loop subdivision as well.

Combined Quad/Triangle subdivision
So far we have developed methods that subdivide surfaces com-

posed of nearly all quadrilateral polygons or completely oftrian-
gles. However, this separation of subdivision schemes between



Figure 9: Subdivision of a bunny composed entirely of triangles using the factored Loop subdivision method. Initial mesh (left). Subdivided
once (middle). Final smooth surface (right).

the two mostly commonly used modeling primitives is unnecessary.
Some surfaces, such as cylinders/tori, are naturally parameterized
by quads while other surfaces are more conveniently parameter-
ized by triangles. To remedy this problem, Stam and Loop [Stam
and Loop 2003] presented a subdivision scheme that unified these
two methods (quads and triangles) into one subdivision scheme
that produces Catmull-Clark subdivision for all quadrilateral sur-
faces, Loop subdivision for all triangular surfaces and generates
smooth surfaces when both quads and triangles are present inthe
surface. We present a variant of Stam and Loop’s method, but
recast the scheme in terms of a generalized averaging pass. Our
quad/triangle subdivision scheme produces Catmull-Clarksubdivi-
sion on all quadrilateral surfaces, a variant of Loop subdivision on
all triangular surfaces and smooth surfaces when the model contains
both quads and triangles.

Once again we formulate this subdivision method as linear sub-
division and averaging. During linear subdivision, we split all
quadrilaterals as done for Catmull-Clark subdivision (shown in fig-
ure 6) and all triangles as in Loop subdivision (shown in figure 10).
Averaging precedes as before with centroids for quads computed
as the average of the four vertices and for triangles as in figure 11
(left). However, we weight each centroid by the angular contribu-
tion of that polygon in the ordinary case. For instance, the ordinary
case for quad subdivision is four quads containing a vertex so the
weight is 2π

4
� π

2 . Likewise, for triangular subdivision there are
six triangles containing a vertex in the ordinary case so theweight
for triangles is2π

6
� π

3 . Finally, we normalize by the sum of the
weights of the polygons containing each vertex.

In the case of vertices contained by only quads or only triangles,
this method produces the same results as the uncorrected quad and
triangle averaging methods respectively. Notice that at the bound-
ary where a triangle and a quad meet, linear subdivision willgen-
erate the polygonal structure shown in figure 13 (right) all along
the edge. In Stam and Loop’s paper on quad/triangle subdivision,
the authors define the polygonal configuration in figure 13 to be
an ordinary boundary between the two surfaces since that structure
is replicated along the entire interface between quads and triangles
(see figure 14). The averaging rules (applied after linear subdivi-
sion) chosen by Stam and Loop are also shown on the right of fig-
ure 13. The authors analyzed the smoothness of the surface atthis
edge and showed that the surface isC1 across the edge. From this
ordinary boundary, the authors then generalized their subdivision
scheme to vertices containing an arbitrary number of quads and
triangles. The subdivision scheme that we present for quadsand
triangles differs in the rules used at extraordinary vertices; how-
ever, our rules reproduce the subdivision rules of Stam and Loop’s
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Figure 13: Quad/Triangle subdivision is performed using the cen-
troids from quad and triangle subdivision weighted by theirangular
contribution: π

2 for quads andπ
3 for triangles (left). The resulting

subdivision rule along a ordinary quad/triangle boundary.

method along the ordinary boundary and, therefore, share the same
smoothness results along that edge.

Figure 14: Subdivision of a mixed quad/triangle surface.

Since our quad/triangle method generates triangle averaging on
all triangular surfaces, the surfaces will not be smooth at vertices
containing only three triangles (as shown in figure 12). To generate



smooth surfaces everywhere, we present the correction term

w�nt
!nq � � � 1 5 nq

� 0!nt
� 3

12
3nq,2nt

otherwise

wherenq/nt is the number of quads/triangles containing the vertex.
This correction generates Catmull-Clark surfaces with allquadrilat-
eral models and a variant of Loop surfaces with models composed
completely of triangles. However, the combined correctionterm
( 12

3nq ,2nt
) is not smooth at vertices contained by only three trian-

gles. Hence, we use a piecewise function forw�nt
!nq� that uses

the correction value for Loop subdivision at this valence togen-
erate a smooth surface. Stam and Loop also provided a correc-
tion term table in their paper that was generated by an optimization
method in an attempt to produce surfaces of bounded curvature at
low valence vertices. Interestingly, our polynomial correction term
is a surprisingly good approximation of that correction table even
though our rules differ slightly at extraordinary vertices. Instead of
performing our own optimization, we use the provided correction
term for simplicity. Figure 14 illustrates an example surface com-
posed of quads and triangles subdivided several times usingour
hybrid quad/triangle method.

� & �(�+( � ) � ����(+

So far, all of the surfaces that we have generated with subdivision
have been smooth (at leastC1 everywhere). However, many com-
mon surfaces are not smooth everywhere, but contain normal dis-
continuities such as creases and sharp corners. Fortunately, we can
augment our existing subdivision schemes to generate subdivision
rules capable of creatingC0 discontinuities in an otherwise smooth
surface.

To add this ability to subdivision, we use a tagged mesh structure
similar to that presented in Hoppe et. al [Hoppe et al. 1994].We
extend the topological elements in a mesh to include not onlytri-
angles and quads, but edges and vertices as well. Faces with more
than two indices are considered to be polygons, while those with ex-
actly two are edges and one are vertices. To identify sharp creases
in the mesh we annotate those edges where the creases should ap-
pear by inserting an edge into the topology structure for themesh.
Similarly, inserting a vertex into the mesh identifies a sharp corner.

To alter our subdivision scheme, we introduce the concept ofdi-
mension to vertices. We define thedimension of a vertex to be the
lowest dimensional cell touching that vertex (triangles/quads have
dimension two, edges have dimension one, and vertices have di-
mension zero). To compute the dimension of all of the vertices in
a mesh, we first initialize the dimension of all vertices to betwo.
Next, we perform a single pass over the cells (faces, edges, and ver-
tices stored in the topology list) where we set the dimensionof all
vertices in each polygon to be the minimum of their current dimen-
sion and the dimension of that cell.

We now perform subdivision as before using linear subdivision
and averaging. Linear subdivision is unchanged except thatedges
in the topology list must be subdivided into two edges where ver-
tices are inserted using the hash table technique describedin quad
subdivision. Next, we compute the dimension of all verticesin the
mesh. Finally, we complete one round of subdivision by perform-
ing averaging on the mesh. However, we alter the averaging process
with respect to the dimension of each vertex. For each cell, com-
pute its centroid (the centroid of an edge is the midpoint andthe
centroid of a vertex is just the position of that vertex). Forall ver-
tices that are contained in that cell, add the centroid to each vertex
only if the dimension of the vertex is equal to the dimension of the
cell being processed. Figure 15 contains pseudo-code that describes
the averaging pass for quad/triangle surfaces with creases.

// averagingPass ( Mesh m )

newVert� array of vertices initialized to�0,0,0� // initialization
dim � array containing dimension of each vertex
totalWeight� array initialized to 0
nt � array containing number of triangles touching each vertex
nq � array containing number of quads touching each vertex
Vert � the vertex array inm
for each polygont in m

for each vertexvi in t
if t is a vertex

cent� Vert�vi�
weight� 1

if t is an edge
cent� 1

2 �Vert�vi � , Vert�vi�1�	
weight� 1

if t is a triangle
cent� 1

4Vert�vi � , 3
8 �Vert�vi�1� , Vert�vi
1�	

weight� π
3

if t is a quad
cent� 1

4 �Vert�vi � , Vert�vi�1� , Vert�vi
1� , Vert�vi�2�	
weight� π

2
if dim[vi] = dimension oft // only add centroid if same dimension

totalWeight[vi ] += weight
newVert[vi] += weight * cent

for each vertexvi in m
newVert[vi] /= totalWeight[vi] // normalize vertices by the weights
if dim[vi ] = 2 // apply correction only for quads and triangles

newVert[vi] � Vert�vi � , w�nt �vi � �nq �vi �	 � �newVert�vi� � Vert�vi �	
return mesh with topology ofm but with newVert as the vertex list

Figure 15: Averaging pass for quad/triangle subdivision using di-
mension for creases

This method generates crease edges in the surface that follow the
B-spline curve subdivision technique described at the beginning of
this article. The network of crease edges subdivides independent
of other vertices in the surface. Therefore, modifying the crease
network induces a change in the surface where the surface inter-
polates the crease network. Also, notice that this description for
adding creases is independent of the subdivision scheme (Catmull-
Clark, Loop, or Quad/Triangle) as long as the method is expressed
in terms of linear subdivision and averaging. Figure 16 (top) shows
an example of an umbilic torus represented as a quadrilateral sur-
face containing crease edges with the final, smooth surface textured.
Figure 16 (bottom) illustrates an example of a ring that usesboth
crease edges and crease vertices to obtain its final shape.

Finally, as an example of a culmination of the techniques
presented here, figure 17 shows an example of a surface com-
posed of quads and triangles containing crease curves. This
three-dimensional model of a mouse brain was built from two-
dimensional cross-sections that were annotated with region in-
formation by an anatomist. The resulting surface separatesthe
brain into different anatomical regions using a network of surfaces
(more than two polygons may share an edge) similar to the two-
dimensional partition by networks of curves in figure 5. The model
also contains crease curves to control the interface between three
or more regions in the brain. The top of the figure shows the com-
plete brain as an initial mesh and the smooth surface resulting from
subdivision. On the bottom, the cerebellum has been extracted and
the crease curves highlighted on the edges. This model contains a
complicated quad/triangle structure and is smooth after subdivision.



� &� �� ��+�� �

We have described several different methods for subdividing sur-
faces composed of quads, triangles, or a combination of bothquads
and triangles. Furthermore, we augmented our smooth surfaces
with the ability to add normal discontinuities such as crease edges
and vertices. By separating subdivision into two separate passes
(linear subdivision and averaging), we achieved a simple method
for applying subdivision that did not require any complicated data-
structures or special cases. Also, this separation generated a com-
mon framework for different types of subdivision schemes and even
led to the construction of a new variant of a subdivision scheme for
quad/triangle surfaces.

We end with a note that the subdivision schemes presented here
are but a small subset of different methods available. In particular,
subdivision schemes are separated into two main divisions:inter-
polating and approximating. All the averaging methods described
here are approximating in that the surfaces do not interpolate the
vertices of the original surface. Interpolating methods [Kobbelt
1996; Zorin et al. 1996] (as the name implies) interpolate the ver-
tices of the original surface giving the user a more intuitive feel of
the final shape of the surface. However, these surfaces tend to be
only C1 and do not exhibit many of the desirable properties that
averaging methods possess.
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Figure 16: Umbilic torus subdivided using crease curves forthe sharp edges (top). Subdivision of a ring containing bothcrease edges and
vertices (bottom).

Figure 17: Model of a mouse brain separated into anatomical regions using a surface network as a subdivision surface. Initial model and
final, smooth model (top). Subdivision of cerebellum from coarse to fine with crease curves highlighted (bottom).


