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1 Introduction

Polygons are a ubiquitous modeling primitive in computeapdr
ics. Their popularity is such that special purpose graphécdware
designed to render polygons is commonplace. However, rimzdel
with polygons is problematic for highly faceted approxiioas to
smooth surfaces. Since these approximations can consiatref
dreds of thousands of polygons, designers cannot be exbtxte
manipulate these approximations directly due to their isbize.
Subdivision is a technique that solves this problem by spre

the bishop contains more faces and begins to resemble tHe fina
smooth shape. Continuing this process yields a smooth ntioalel
follows the initial shape. Due to its flexibility and ease seysub-
division has made its way into several computer generated fhd
shorts by Pixar as well as being included in many standardeiod
ing packages such as Maya.

This tutorial explains how to implement several differembdi-
vision schemes under a single, unified framework. Our dsons
will illustrate Catmull-Clark subdivision [Catmull and &k 1978]
for quadrilateral meshes, Loop subdivision [Loop 1987]tftan-

ing a smooth shape in terms of a coarse polygonal model. This gular meshes, and a newer combined subdivision schemed calle

coarse model can be refined to produce increasingly faceted a
proximations to the associated smooth shape. The sulmtivigies
used during this refinement process depend only on the tgigalo
connectivity of the initial polygonal model and yield surés with
guaranteed smoothness.

Figure 1: Subdivision of initial coarse model of a bishopftjle
subdivided once (middle), smooth limit surface (right).

During refinement, the rules associated with a subdivision
scheme are applied recursively to construct a sequencelyi-po
onal models. If these rules are represented by the opesathis
process has the form

pk = spf-L.
Applying Sto an initial modelp® yields a sequence of polygonal
modelsp?, p?,.... The rules comprising specify how the polyg-
onal faces ofp“~1 are split as well as how the vertices pf are
positioned in terms of the vertices pf=1. If these rules are cho-
sen carefully, the limit of this process is a smooth surfptahat
approximates the coarse mogé!

Figure 1 illustrates this process. The left of the figure shive
original, coarse model of a bishop. After one round of suiséin,
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Quad/Triangle subdivision [Stam and Loop 2003] that alldies
inclusion of meshes with both quadrilateral and triangtitaes.
The algorithms that we explain do not require complicateth-da
structures or mesh traversal algorithms. Instead we foouseth-
ods that illustrate the simplicity of the implementatiornnddly, we
end with a discussion on generating surfaces that are nodtemo
everywhere, but instead contain sharp crease curves.

2 Curve Subdivision

We begin with a simple example of a subdivision scheme forezir
Curve subdivision is simpler than surface subdivision &l&m-
bodying most of the relevant concepts (though in a modifieahfo
Cubic B-splines are a popular class of curves that are smauath
possess a simple subdivision scheme. We study this sulotivis
scheme first since many surface subdivision schemes (Qatmul
Clark, Loop) are based on generalizations of the subdivigites
for cubic B-splines.

Given a polygonal curvg@®, we denote théth vertex ofp* by
p}‘. The edges of the polygonal curve are implicit in this repres
tation since consecutive verticeﬁr(and p{‘H) form an edge. The
subdivision rules for cubic B-splines then have the form

K Lokl 3pk=1, 1 k1
IE’zi gpi—i_ll'(zllpi liélpurl’_ 1)
Poiy1 = P11 S

Given that there are two rules, the number of vertices in thiggp
onal curve doubles after each round of subdivision. In paldr,
the vertexpk—1 is repositioned tgl; while pk;_, is inserted at the
midpoint of the edge fronpk~* to pf 1.

Lane and Riesenfeld [Lane and Riesenfeld 1980] observed tha
the subdivision rules for cubic B-splines could be decoragdasto
two separate sets of rules: one set for linear subdivisidreaother
for averaging (smoothing) the resulting curve. (This safian of a
subdivision scheme into multiple passes is knowfeat®rization.)
In particular, the rules for linear subdivision have thenior

ﬁgi p=(711
K _1,.k-1, 1.k-1
P21 1S a1 VN

wherepX denotes the polygonal curve produced by inserting a new
vertex at the midpoint of each edge@f-1. If we apply an averag-
ing pass of the form

1. 1. 1.,
p= Zpik_1+5p!‘+ Zpg(+1 2
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Figure 2: Subdivision of initial curve (top left), after 8ar subdi-

vision (top middle), after averaging (top right). Furthabdivision
(bottom).
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to p¥, the resulting polygonal curve is exactly the same polyona

curve p* produced by equation 1. Figure 2 (top) shows an example

of this process where the curve is first linearly subdivided then
averaged.
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Figure 3: Averaging rule for curve subdivision (left). Geetnic
interpretation as placing vertex at average of adjacenpaints

(right).

The left portion of figure 3 shows a diagrammatic depiction of
the averaging rule of equation 2. The use of these diagraomis
mon in defining subdivision rules. These diagrams show d loca
portion of a polygonal mesh with weights attached to each ver
tex in the diagram. The central vertex in the diagram is @fbic
repositioned by applying the weights in the diagram to theire-
sponding vertices. The right portion of the figure shows antdc
interpretation of this averaging rule as sequence of twkkmav-
eraging operations. First, the midpoint of each edge in thgrdm
is computed (depicted as square vertices). Next, the mitlpdi
these vertices is computed yielding the final position ofdéetral
vertex.

Building a geometric interpretation for the averaging rohethe
left allows this rule to be generalized to curve networks imch
more than two edges meet at a common vertex. The left porfion o
figure 4 shows several edges meeting at common vertex ofcglen
n (the valence of a vertex is the number of edges containing it).
Again, the averaging operation consists of computing thapoints
of these edges (square vertices) and then calculating tebof
these square vertices. The right portion of the figure depietse
two averaging steps written as a single averaging operation

These general networks of curves naturally partition two-
dimensional space. As an application, figure 5 shows an deamp
of using curve networks to separate a mouse brain into ifisrdift
anatomical regions. The figure shows the curve network edday
an anatomist (left) and curve subdivided once (middle). tibon
ing this process produces the final, smooth network pantitgpthe
brain (right).

While this subdivision scheme for curve networks is useifsl,
true value lies in the methodology used to generate the sehem
First, we factored a smooth subdivision scheme for curvieslin-
ear subdivision followed by an averaging pass. Next, we doan
geometric interpretation for this averaging pass thatiagpb curve
networks. In the next section, we apply a similar methodpliay
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Figure 4: Using the geometric interpretation for curve roeks to

place a vertex at the average of the midpoints for edges icimga

that vertex (left). The generalized averaging rule for ewsubdivi-
sion (right).

surfaces.

3 Surface Subdivision

In the previous section we represented polygonal curves list a
of vertices with the topology of the curve implicit in the &dng
of the list. For surfaces, we adopt an explicit topologyfgetry
representation. A surface is represented as a list of esHicy, z}
and a list of faces where each face is a list of indices intoséire
tex list. This indexed data structure is common in graphigét a
facilitates the rendering of polygons, and explicitly sepes the
topology from the geometric position of the vertices.
Quad Subdivision

We begin with quadrilateral subdivision, as this methodhis t
most similar to the curve method shown earlier. As in cundedsu
vision, we perform subdivision in two steps: linear subsiion and
averaging.

Figure 6: Linear subdivision of polygonal faces for quaddvie
sion schemes. After one round, all faces are quads.

To perform linear subdivision on a polygonal face, we camt o
what is commonly called a Catmull-Clark split [Catmull ant®
1978] on each face in the mesh. First, we insert new vertites a
the midpoints of each edge of the face and one new vertex at the
centroid of the face. Next, the vertices are connected to for
quads from then-sided polygon as shown in figure 6.

Due to the use of a topology/geometry representation for the
polygonal mesh, we must ensure that every face sharing a oamm



Figure 5: Subdivision of a curve network partitioning a metisain into anatomical regions. Initial curve network jleSubdivided once

(middle). Final, smooth curve network (right).

vertex uses the same topological index for that vertex. itiquaar,

This averaging pass can be implemented as single pass ever th

if two faces sharing a common edge are subdivided, the inflex o list of faces. Before the pass, we initialize each entry cilde of
the new midpoint for that edge must be the same for all four new new vertex positions to have valyé,0,0}. Next, for each quad

faces that contain that vertex. We solve this problem byirgjadhe

g, we compute the centroid af and add this centroid’s position

index for each new midpoint on an edge in a hash table keyed by to the four entries in this table indexed by the vertices|.ofAfter

the indices of the two vertices lying at the endpoints of duge.
The algorithm for linear subdivision is then, for each payg
composed of indice$v,,V,,...,vm}, check to see if the vertex on

edge{v;,vi,} is already in the hash table. If so, use the vertex

index stored in the hash table. If the vertex is not in the hable,
insert a new vertex into the mesh and add the index of thagxert
into the hash table with the kefy;, v, ;} (call the new vertex).
Add a vertexg, at the centroid of the polygon into the vertex array.
Finally, form the new polygonse;, v;, € _4,C}.

Notice that after one round of linear subdivision all of thadyp
gons are quads in the mesh. Also, all new vertices inserted in
the mesh after the first round of subdivision will have vatefaur
(valence is the number of polygons containing the vertexg.wé
continue to subdivide the mesh, any new vertex will be vaddoar
and vertices not of valence four become increasingly iedlabince
almost all vertices of the final surface will be valence faue, call
these verticesrdinary vertices. Conversely, we call vertices not of
valence fourextraordinary vertices.
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Figure 7: Averaging pass for quad subdivision. Computatibn
centroids with squares denoting the position of the cedtfieft).
Averaging the centroids together generates the compag&taging
rule at an arbitrary valence vertex (right).

Once linear subdivision is complete, we perform one round of

averaging on the mesh. The averaging operation on quatdlat

meshes is analogous to the averaging operation for curves. F

each vertex, we place that vertex at the average of the ¢gatro
of all quads containing that vertex. Figure 7 (left) showes ten-
troid calculation for each quad and the composite rule forime
averaging the centroids together (right).

processing all of the faces in the mesh, we divide each entitye
table by the valence of the vertex associated with the eifiiyis
valence information can also be computed during the cehtral-
culations.) Note that dividing by the valence forces thefaments
of the associated averaging rule (shown in figure 7 rightuto
one and makes the resulting subdivision scheme affinelyiamna

Figure 8: Subdivision of a cube. Uncorrected averaging)(lef
Catmull-Clark subdivision (right).

Figure 8 (left) illustrates an example surface produceduly s
dividing a cube using this subdivision scheme. The surfates
duced by this method ai@? everywhere except at extraordinary
vertices where the surface is orly. Though the surface is smooth
everywhere, the shading of the surface varies rapidly rreawva-
lence three vertices of the cube. These discontinuitiedwseao the
fact that the surface normals do not vary smoothly in thegiens.
(Technically, the surface is strictiy.)

To lessen the appearance of these discontinuities, we eiseth
cept of a correction factor introduced by Maillot and StanajNbt
and Stam 2001]. Lep}(”be a vertex after linear subdivision aphl
be the position of the vertex after the averaging pass. Wasigpn
the vertices of the mesh according to the update equation

P+ w(n) (pk — pr)

wheren is the valence of the vertex awe(n) a function describ-

ing the correction factor. The correction factor that weadefor

quadrilateral subdivision is(n) = ‘ﬁ‘. Notice that this rule does not

change ordinary vertices, as their positions remain theesam
Using the correction factor, we generate the surface shown i

figure 8 (right). This surface does not contain the discaiitigs



shown previously and has a much more visually appealingeshap
In fact, this correction factor reproduces the popular Cait@lark
subdivision scheme [Catmull and Clark 1978].

We end the quadrilateral subdivision section with a warning
Though we have developed a subdivision method capable ef sub
dividing arbitraryn-gons, this method should not be used on tri-
angulated surfaces. The reason is that the polygon spligimefi6
introduces an extraordinary vertex of valence three foh ¢éangle
where the surface will be onigl. While use of a correction factor
helps smooth the surface in these regions, the resultifigcguwill
contain noticeable visual artifacts. Instead, a triangsidodivision
method should be used on these surfaces.

Triangle Subdivision

Though we have developed a subdivision scheme for quadrilat
eral surfaces, many surfaces encountered in practice aone
posed of quads. Instead, the vast majority of surfaces icotrta
angles as the base modeling primitive. These surfaces @pprio-
priate for quadrilateral subdivision so we must developangular
subdivision scheme. Loop subdivision [Loop 1987] is a verpp
ular subdivision scheme for triangular meshes. As we shallvs
Loop’s method can also be expressed in terms of linear sisiativ
and an averaging scheme similar to that for quad meshes.

Unlike the quadrilateral subdivision method describedvabo
our triangular subdivision scheme will only process swefacom-
posed entirely of triangles. However, this requirementrigge to
fulfill as all faces in the mesh can be triangulated.

Figure 10: Linear subdivision of triangles for triangulabsivision
schemes.

To perform linear subdivision on triangles, we insert new- ve
tices on the edge of each polygon using the hash table taghniq
described for quadrilateral subdivision. Each triangléhen split
into four triangles as shown in figure 10. Notice that all neav-v
tices will have valence six in the mesh. Since trianguladstision
produces surfaces with valence six vertices almost evezyaylva-
lence six vertices are ordinary while other valence vestae ex-
traordinary vertices.

Averaging for triangular surfaces is similar to quadritatesur-
faces. For each vertex in the mesh, we place the vertex awthe a
erage of the centroids of all polygons containing that verkéow-
ever, we use a weighted centroid for triangular surfaces/stio
figure 11. The centroid tak%of the vertex being repositioned plus
g of the two neighboring vertices. Notice that while the ceiutr

calculation for quads is unifomﬁ(of all vertices), the centroid cal-
culation for triangles is not uniform and depends upon whittex
the centroid is being accumulated info.

Figure 12 (middle) shows an example of the triangular stibdiv
sion scheme applied to a stellated octahedron. The surfaces
duced by this method af@? almost everywhere. At extraordinary
vertices, the surface a@! except valence three vertices where the
surface is onlf20. This lack of continuity can be seen clearly in the

1Using the more intuitive centroid for triangleé ©f each vertex) re-

sults in a surface scheme tha everywhere while the weighted method
producesC? surfaces except at extraordinary vertices.
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Figure 11: Centroid calculation for triangles (left). Rsjiimning
the vertex at the average of these centroids generatesidhglér
averaging rule (right).
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Figure 12: Subdivision of a stellated octahedron (leftgamected
triangle averaging (middle), corrected subdivision (fjgh

figure. Though the previous use of a correction factor has bee
to smooth shading artifacts at extraordinary and not tor dtte
smoothness of the surface, we must correct the triangulzdisu
vision scheme in order to generate a surface that is smoetly-ev
where.

The correction term that we choose for triangular surfaepeo-
duces Loop subdivision [Loop 1987]. This subdivision schéras
the property that the surfaces generated3reverywhere except at
extraordinary vertices where the surfac€ls Furthermore, at ver-
tices of valence four and five, the surfaces will have disoooius,
but bounded curvature. While the correction term for quatial
subdivision is a simple polynomiaﬁﬂ, the correction term for tri-
angular subdivision is more complicated and is

5 83 1 2
w(n) = 3 3(8-}— 4Cos( )<
Warren [Warren and Weimer 2001] proposed a simpler cooecti
factor of Wsz that also generates smooth surfaces everywhere but
does not have bounded curvature at vertices of valence fuir a
five.

Figure 12 (right) shows the same stellated octahedron gidledi
using the corrected triangle averaging method that praduoep
subdivision surfaces. Notice how the corners are now rodiaael
smooth. Figure 9 contains a more complicated example of aybun
modeled using triangles and subdivided using the cornediotor
that reproduces Loop subdivision as well.

Combined Quad/Triangle subdivision

So far we have developed methods that subdivide surfaces com
posed of nearly all quadrilateral polygons or completelytriain-
gles. However, this separation of subdivision schemes derw

o
n
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Figure 9: Subdivision of a bunny composed entirely of trlaegising the factored Loop subdivision method. Initial m@eft). Subdivided
once (middle). Final smooth surface (right).
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the two mostly commonly used modeling primitives is unneaeg % 3
Some surfaces, such as cylinders/tori, are naturally petexrimed

by quads while other surfaces are more conveniently pammet
ized by triangles. To remedy this problem, Stam and LoopniSta
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two methods (quads and triangles) into one subdivision raehe
that produces Catmull-Clark subdivision for all quadelat sur-
faces, Loop subdivision for all triangular surfaces andegates %
smooth surfaces when both quads and triangles are presthd in
surface. We present a variant of Stam and Loop’s method, but
recast the scheme in terms of a generalized averaging pags. O
quad/triangle subdivision scheme produces Catmull-Glatdivi-

sion on all quadrilateral surfaces, a variant of Loop subkitin on

all triangular surfaces and smooth surfaces when the mod&ins Figure 13: Quad/Triangle subdivision is performed usirgy¢an-
both quads and triangles. troids from quad and triangle subdivision weighted by tlaeigular

Once again we formulate this subdivision method as linelay su  contribution: LZT for quads andg for triangles (left). The resulting
division and averaging. During linear subdivision, we sl subdivision rule along a ordinary quad/triangle boundary.
quadrilaterals as done for Catmull-Clark subdivision (@hdn fig-
ure 6) and all triangles as in Loop subdivision (shown in fegl@).
Averaging precedes as before with centroids for quads ctedpu
as the average of the four vertices and for triangles as imefigl
(left). However, we weight each centroid by the angular dbut
tion of that polygon in the ordinary case. For instance, ttdénary
case for quad subdivision is four quads containing a vertethe
weight is ZT" = ’7’ Likewise, for triangular subdivision there are
six triangles containing a vertex in the ordinary case sonéight
for triangles is%" = ’g’ Finally, we normalize by the sum of the
weights of the polygons containing each vertex.

In the case of vertices contained by only quads or only ttes)g o
this method produces the same results as the uncorrectddaqda RN
triangle averaging methods respectively. Notice that attund- RN
ary where a triangle and a quad meet, linear subdivisiongeiti- SARAA O
erate the polygonal structure shown in figure 13 (right) &dhg
the edge. In Stam and Loop’s paper on quad/triangle sulimtivis
the authors define the polygonal configuration in figure 13€0 b
an ordinary boundary between the two surfaces since thattste
is replicated along the entire interface between quadsranptes
(see figure 14). The averaging rules (applied after linebdisi+
sion) chosen by Stam and Loop are also shown on the right of fig- ) L ) )
ure 13. The authors analyzed the smoothness of the surféitis at Figure 14: Subdivision of a mixed quad/triangle surface.
edge and showed that the surfac€lsacross the edge. From this
ordinary boundary, the authors then generalized their igisioh
scheme to vertices containing an arbitrary number of quads a
triangles. The subdivision scheme that we present for qaads Since our quad/triangle method generates triangle avegami
triangles differs in the rules used at extraordinary vesgjchow- all triangular surfaces, the surfaces will not be smootheatices
ever, our rules reproduce the subdivision rules of Stam aapls containing only three triangles (as shown in figure 12). Tioegate
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method along the ordinary boundary and, therefore, sharsaine
smoothness results along that edge.




smooth surfaces everywhere, we present the correction term

15 Ng=0n=3
w(r,Ng) = an1+22m otherwise

whereng/n; is the number of quads/triangles containing the vertex.
This correction generates Catmull-Clark surfaces withyadidrilat-
eral models and a variant of Loop surfaces with models coagos
completely of triangles. However, the combined correctiemm
(%:%m) is not smooth at vertices contained by only three trian-

gles. Hence, we use a piecewise functionwgn;,ng) that uses
the correction value for Loop subdivision at this valencegém-

erate a smooth surface. Stam and Loop also provided a correc-

tion term table in their paper that was generated by an opéitiain
method in an attempt to produce surfaces of bounded cuevatur
low valence vertices. Interestingly, our polynomial cotien term
is a surprisingly good approximation of that correctionléadven
though our rules differ slightly at extraordinary verticésstead of
performing our own optimization, we use the provided cdicec
term for simplicity. Figure 14 illustrates an example sogfaom-
posed of quads and triangles subdivided several times wsing
hybrid quad/triangle method.

4 Creased Surfaces

So far, all of the surfaces that we have generated with sigboliv
have been smooth (at lea@t everywhere). However, many com-
mon surfaces are not smooth everywhere, but contain noristal d
continuities such as creases and sharp corners. Fortynagetan
augment our existing subdivision schemes to generate \ssioai
rules capable of creatirgP discontinuities in an otherwise smooth
surface.

To add this ability to subdivision, we use a tagged mesh &irac
similar to that presented in Hoppe et. al [Hoppe et al. 19%&
extend the topological elements in a mesh to include not tizly
angles and quads, but edges and vertices as well. Faces wigh m
than two indices are considered to be polygons, while thatheax-
actly two are edges and one are vertices. To identify shagses
in the mesh we annotate those edges where the creases spould a
pear by inserting an edge into the topology structure fomtlesh.
Similarly, inserting a vertex into the mesh identifies a ptaorner.

To alter our subdivision scheme, we introduce the concegt-of
mension to vertices. We define tbamension of a vertex to be the
lowest dimensional cell touching that vertex (trianglesids have
dimension two, edges have dimension one, and vertices have d
mension zero). To compute the dimension of all of the vestioe
a mesh, we first initialize the dimension of all vertices totwe.
Next, we perform a single pass over the cells (faces, edgdsjex-
tices stored in the topology list) where we set the dimensioall
vertices in each polygon to be the minimum of their curreneh-
sion and the dimension of that cell.

We now perform subdivision as before using linear subdivisi
and averaging. Linear subdivision is unchanged exceptetthges
in the topology list must be subdivided into two edges whexe v
tices are inserted using the hash table technique desdritmpchd
subdivision. Next, we compute the dimension of all verticethe
mesh. Finally, we complete one round of subdivision by penfo
ing averaging on the mesh. However, we alter the averagogess
with respect to the dimension of each vertex. For each ceth-c
pute its centroid (the centroid of an edge is the midpoint ted
centroid of a vertex is just the position of that vertex). Bthver-
tices that are contained in that cell, add the centroid th @actex
only if the dimension of the vertex is equal to the dimensibthe
cell being processed. Figure 15 contains pseudo-codedbatides
the averaging pass for quad/triangle surfaces with creases

/I averagingPass ( Mesh m)

newVert« array of vertices initialized t§0,0,0  // initialization
dim « array containing dimension of each vertex
totalWeight« array initialized to 0
n, « array containing number of triangles touching each vertex
ng < array containing number of quads touching each vertex
Vert + the vertex array im
for each polygort in m
for each vertex; int
if tis a vertex
cent« Vert]v]
weight« 1
if tis an edge
cente 3 (Vertlv,]+ Vertlv,, ,])
weight« 1
if tis a triangle
cente 3Verty,]+ 3 (Vertlv, ]+ Vertv,_])
weight« I
if tis a quad
cente 3 (Vert[vi]+ Vertlv, ;] + Vertlv,_,] + Vertlv,_,])
weight« J
if dim[v;] = dimension oft  // only add centroid if same dimension
totalWeight}; ] += weight
newVertl:] += weight * cent
for each vertex; in m
new\Vertl;] /= totalWeightl;]  // normalize vertices by the weights
ifdim[vi]=2 // apply correction only for quads and triangles
newVert;] « Vertv.]+w(n[v;],ng[V;]) * (newVerfv;] — Vert[vi])

return mesh with topology ah but with new\Vert as the vertex list

Figure 15: Averaging pass for quad/triangle subdivisiomgisli-
mension for creases

This method generates crease edges in the surface that thio
B-spline curve subdivision technique described at thertrégg of
this article. The network of crease edges subdivides inubge
of other vertices in the surface. Therefore, modifying thease
network induces a change in the surface where the surfaee int
polates the crease network. Also, notice that this desongor
adding creases is independent of the subdivision schenim(la
Clark, Loop, or Quad/Triangle) as long as the method is esgae
in terms of linear subdivision and averaging. Figure 16 )Y&mws
an example of an umbilic torus represented as a quadrilatera
face containing crease edges with the final, smooth surfxtared.
Figure 16 (bottom) illustrates an example of a ring that us®h
crease edges and crease vertices to obtain its final shape.

Finally, as an example of a culmination of the techniques
presented here, figure 17 shows an example of a surface com-
posed of quads and triangles containing crease curves. This
three-dimensional model of a mouse brain was built from two-
dimensional cross-sections that were annotated with megie
formation by an anatomist. The resulting surface separies
brain into different anatomical regions using a networkwfaces
(more than two polygons may share an edge) similar to the two-
dimensional partition by networks of curves in figure 5. Thedel
also contains crease curves to control the interface betweee
or more regions in the brain. The top of the figure shows the-com
plete brain as an initial mesh and the smooth surface regutibm
subdivision. On the bottom, the cerebellum has been egtlatd
the crease curves highlighted on the edges. This modelinsrda
complicated quad/triangle structure and is smooth aftedisision.



5 Conclusion

We have described several different methods for subdigidir-
faces composed of quads, triangles, or a combination ofduats
and triangles. Furthermore, we augmented our smooth ssrfac
with the ability to add normal discontinuities such as ceeedges
and vertices. By separating subdivision into two separasses
(linear subdivision and averaging), we achieved a simpléhate
for applying subdivision that did not require any complezhtiata-
structures or special cases. Also, this separation geteeatom-
mon framework for different types of subdivision schemes$ even
led to the construction of a new variant of a subdivision soféor
quad/triangle surfaces.

We end with a note that the subdivision schemes presented her
are but a small subset of different methods available. Itiqudar,
subdivision schemes are separated into two main divisioner-
polating and approximating. All the averaging methods disd
here are approximating in that the surfaces do not interpdle
vertices of the original surface. Interpolating methodshkelt
1996; Zorin et al. 1996] (as the name implies) interpolatewér-
tices of the original surface giving the user a more inteifieel of
the final shape of the surface. However, these surfaces ¢ebe t
only C! and do not exhibit many of the desirable properties that
averaging methods possess.
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Figure 16: Umbilic torus subdivided using crease curvesHersharp edges (top). Subdivision of a ring containing lootiase edges and
vertices (bottom).
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Figure 17: Model of a mouse brain separated into anatomégabns using a surface network as a subdivision surfacéallnodel and
final, smooth model (top). Subdivision of cerebellum fronars® to fine with crease curves highlighted (bottom).



