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Abstract

We provide a formal proof of equivalence between the class of fractals created by

Recursive Turtle Programs (RTP) and Iterated Affine Transformations (IAT). We

begin by reviewing RTP ( a geometric interpretation of non-bracketed L-systems

with a single production rule) and IAT (Iterated Function Systems restricted to

affine transformations). Next, we provide a simple extension to RTP that generalizes

RTP from conformal transformations to arbitrary affine transformations. We then

present constructive proofs of equivalence between the fractal geometry generated

by RTP and IAT that yield conversion algorithms between these two methods. We

conclude with possible extensions and a few open questions for future research.
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1 Introduction

In computer graphics, there are several different methods for generating 2D

geometry based on points and lines. One simple model is to use a turtle, as
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in LOGO-like languages. A turtle is represented by a state such as a posi-

tion and a direction vector, and the turtle moves in response to commands

such as FORWARD and TURN. Each command induces a transformation of

the turtle state in its local coordinate frame. The trail that the turtle leaves

behind forms the geometry which we will refer to as Turtle Geometry. A seem-

ingly unrelated model, Affine Geometry, generates shapes by performing affine

transformations (e.g., translation, rotation, scaling and shearing) on a set of

initial shapes in a global coordinate system.

Both models are capable of composing complicated and beautiful graphics

[1,2], and both are popular tools for generating self-similar fractals [3], such

as the tree-like fractal and its variations in figure 1. These fractals consist of

components that are affinely transformed versions of themselves.

One way to generate these fractals is to iteratively apply contractive affine

transformations to some initial shape [1]; the fractal is the limit shape (or the

attractor) of these transformations. Another way is to write a turtle program

with turtle commands and recursive calls in a LOGO-like environment [2]. The

fractal is the shape drawn at the limit of the recursion. A natural question to

pose is: which model, iterated affine transformations (IAT) or recursive turtle

programs (RTP), is more powerful for generating fractals?

In modern computer graphics, people have studied the relationship between

L-systems, a string rewriting scheme with a turtle interpretation[4], and Iter-

ated Function Systems (IFS), a superset of IAT containing arbitrary contrac-

tive transformations. Prusinkiewicz et al. [5] first mentioned a procedure for

converting L-systems that result in constant branching angles and scalings to

IFS with condensation sets. Culik et al. [6] formalize the notion of “uniform
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growth” and generalize the preceding results to provide conversion from uni-

formly growing L-systems to mutually recursive IFS. In the other direction,

Prusinkiewicz et al. [7] consider language-restricted IFS in which sequences of

transformations can be represented by formal languages, and provide a con-

version method to an equivalent L-system with a turtle interpretation. In a

different approach, Hart [8] introduces the object instancing paradigm and

provides methods for converting both L-systems and IFS into this new model

for generating fractals.

Unfortunately, due to the complexity and diversity of L-systems and IFS, these

conversion methods are often incomplete or lack formal rigor. For example,

previous work is restricted only to IFS containing affine transformations, and,

in particular, oriented conformal maps (although not explicitly stated). Dis-

cussions of L-systems, on the other hand, often rely on bracketed branching

production rules to avoid accumulated changes in the turtle state. Moreover,

no procedural algorithm exists for converting the transformations in an IFS

into the symbols in an L-system.

In our work, we will study both L-systems and IFS in their simplest set-

tings. We consider first a simple RTP, which corresponds to a non-bracketed

L-system with a single production rule, and an IAT containing oriented con-

formal maps. We will show that these two methods are equivalent in their

expressive power, and we will provide formal conversion algorithms in both di-

rections. We then consider IAT containing arbitrary non-singular affine trans-

formations, and an augmented RTP with a new syntax of turtle commands.

As we will see, these two extended methods for generating fractals are again

equivalently powerful, and the conversion algorithms are simple adaptations

of those in the simpler setting. By establishing these equivalences rigorously in
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these basic settings, it is then possible to extend these techniques to formally

prove equivalences between more complex RTPs (or L-systems) and IATs (or

IFSs).

We start by introducing in detail these two methods for generating fractals,

and comparing several RTPs and IATs that generate the same fractals. The

conversion algorithms are presented next together with proofs of equivalence.

We conclude with a discussion of related issues and possible extensions of our

results, while posing some open questions for further research.

2 Fractal Generating Methods

2.1 Recursive Turtle Programs (RTP)

In 2D turtle geometry, the turtle is represented by a set of 2D vectors embody-

ing its state, and its movement is governed by a set of commands that induce

translation, scaling or rotation of the state vectors. We will examine two types

of turtle frameworks that differ in their set of state vectors and commands.

2.1.1 Classical Turtle

Traditionally, a turtle state is described by the turtle’s location in the plane

(P = {p1, p2}), and a vector (u = {u1, u2}) denoting both the direction in

which it is facing and its step size. (Note that this model differs slightly from

standard Logo, but has exactly the same expressive power; see page 136 in

“Turtle Geometry” by Abelson and Disessa [2].) There are four turtle com-

mands, FORWARD, MOVE, TURN and RESIZE. Each command takes a
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single scalar value as its parameter and alters the turtle state as follows:

(1) FORWARD(d): move forward d turtle steps, and draw a straight line,

Pnew = P + d ∗ u, unew = u

(2) MOVE(d): same effect as FORWARD(d), but without drawing.

(3) TURN(a): rotate heading by a,

Pnew = P,

unew = {u1cos(a)− u2sin(a), u1sin(a) + u2cos(a)}

(4) RESIZE(s): alter step size by a factor of s,

Pnew = P, unew = s ∗ u

Observe that these commands are really transforming the turtle with respect

to the turtle’s current state. For example, FORWARD translates the turtle

along the current forward direction, and TURN rotates the turtle around the

current position. Indeed, the current turtle state describes a local coordinate

system S in which the next turtle command takes effect. Each turtle command

can be interpreted as a transformation matrix L that converts the turtle’s

current coordinate system S to the turtle’s next coordinate system Snew via

Snew = L ∗ S (1)

Note that the transformations induced by the commands for this classical

turtle are oriented angle-preserving transformations (i.e., oriented conformal

maps). Hence S is always orthogonal and uniform, so S can be expressed in

terms of the turtle state vectors plus an orthogonal vector u′. Using homoge-
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nous coordinates,

S =





u

u′

P





=





u1 u2 0

−u2 u1 0

p1 p2 1





(2)

From (1) and (2), we derive in table 1 the transformation matrix corresponding

to each turtle command as .

2.1.2 Augmented Turtle

To allow arbitrary affine transformations on the turtle’s local coordinate sys-

tem (which is important for our later discussion of the equivalence of RTP

and IAT), we can let the turtle hold two direction vectors. This augmented

turtle is represented by a position (P = {p1, p2}) in the plane, a forward vector

(u = {u1, u2}) pointing ahead, and a left-hand vector (v = {v1, v2}) pointing

to its left. The reason to have this second direction vector v is that now we

can fully describe an arbitrary turtle coordinate system as:

S =





u

v

P





=





u1 u2 0

v1 v2 0

p1 p2 1





(3)

Accordingly, our advanced turtle can accept commands that perform non-

conformal transformations. To make the extension simple, we inherit the same

commands from the classical framework, but augment new syntax and trans-
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formation matrices as in table 2.

Note that the commands FORWARD and MOVE preserve the same meaning

as in the classical framework. The RESIZE command now can take two argu-

ments that change the length of the forward vector and the left-hand vector

independently. The TURN command also accepts two parameters that rotate

the forward vector and the left-hand vector independently in the turtle’s

coordinate system. From the turtle’s point of view, the turtle’s two vectors

are both of unit length and orthogonal to each other, and the TURN com-

mand rotates each vector relative to this orthonormal basis. An equivalent

definition of TURN(α1, α2) is to first map the turtle’s coordinate system S

to a fixed global coordinate system, then rotate the x-axis vector by α1 and

the y-axis vector by α2, and subsequently map the global coordinate system

back to S by applying the inverse of the first map. For example, applying

TURN(1
2
π,1

2
π) to the turtle’s coordinate system on the left of figure 2 would

modify the turtle’s two direction vectors as on the right of figure 2 (note that

the length of each vector changes accordingly). Figure 3 illustrates the effect

of the modified TURN and RESIZE commands on the shapes drawn by the

augmented turtle. Both TURN and RESIZE can still take a single parame-

ter. To be consistent with our previous definitions, TURN(α) is equivalent to

TURN(α, α), and RESIZE(s) is equivalent to RESIZE(s, s).

The classical turtle is a special case of the augmented turtle whose left-hand

vector is always orthogonal to and has the same length as the forward vector,

and which only accepts TURN or RESIZE commands that affect both axes

uniformly. The augmented turtle, on the other hand, carries a more flexible

coordinate system that gives the turtle programmer more control over shape

generation.
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2.1.3 Fractals from RTP

A turtle program is a finite sequence of turtle commands, and draws points

and lines generated by the turtle’s path. To generate fractal shapes, which may

contain an infinite number of points and line segments, we resort to recursion.

A recursive turtle program (RTP) is composed of:

(1) Base case: a finite set of turtle commands that draw some shape at the

bottom level of recursion,

(2) Recursion body: a finite set of turtle commands as well as recursive calls

to the program itself. (Note that here we do not allow mutually recursive

turtle programs, which will be a topic of discussion in section 4.2.)

The fractal is the limit shape generated by the RTP as the depth of recursion

goes to infinity. Note that the recursion body corresponds to the production

rule in an L-system, and recursive calls correspond to production symbols.

For simplicity, we will study RTPs containing a single recursion body and

no state stack. However, the techniques we shall develop can be extended for

RTPs with multiple recursion bodies and stack commands (see section 4),

which correspond to L-systems with multiple production rules and brackets.

In practice, we only need to recur to a finite level for visualization. An example

RTP is shown in figure 4 left using classical turtle commands, which generate

the tree-like fractal in figure 5 top with increasing depth of recursion (assuming

the initial turtle state is at the origin with forward vector {1, 0} ). On the

right of figure 4 is another example RTP but using the augmented turtle

commands. The only essential difference between these two programs lies in

the two RESIZE commands. When the variables {α, β} assume values other

than {1, 1}, the program on the right generates variations of the same fractal
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as its classical counterpart. For example, the middle and right fractals from

figure 1 can be produced as shown in the middle and bottom of figure 5, where

{α, β} are set to {0.75, 1} and {1, 0.75} respectively.

Observe from figure 5 that the drawing commands in the base case of an RTP

generate a different portion of the fractal than the drawing commands in the

recursion body. The outer “leaves” (shown as dark lines) of the tree are drawn

by the FORWARD command in the base case, and the tree “branches” (shown

as gray lines) are drawn by the FORWARD command in the recursion body.

In both RTPs, the base case and the recursion body introduce no net change

in the turtle state. Any overall changes in the position or the heading of the

turtle in the base case or in a recursion body may have an unsettling impact on

the convergence of the turtle state, which will be discussed briefly in section 4.

For now we assume that the RTPs in our discussion involve no overall change

in the turtle state either in their base case or in their recursion body.

2.2 Iterated Affine Transformations (IAT)

In affine geometry, complex shapes are generated from simple shapes by per-

forming affine transformations in a global coordinate system. The class of

shapes that can be generated is determined by the class of transformations

allowed. We will examine two groups of affine transformations: oriented con-

formal maps and arbitrary non-singular affine transformations.
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2.2.1 Oriented Conformal Maps

Oriented conformal maps, or angle-preserving affine transformations, are prod-

ucts of elementary transformations such as translations, rotations, and uniform

scalings. The corresponding matrices are summarized in the first three lines

of table 3. As we have seen in the classical turtle framework, such transforma-

tions always preserve the orthogonality and the uniformity of the coordinate

system.

2.2.2 Arbitrary non-singular affine transformations

An arbitrary affine transformation is any transformation that preserves collinear-

ity (i.e., points lying on a line still lie on a line after transformation) and ratios

of distances (e.g., the midpoint of a line segment remains the midpoint after

transformation). Such affine transformations are products of a larger group of

elementary transformations, including non-uniform scaling and shearing. The

corresponding transformation matrices are shown in table 3.

2.2.3 Fractals from IAT

To generate fractal shapes, we can iteratively apply a set of affine transfor-

mations to some initial shapes. Specifically, an iterated affine transformation

(IAT) [1] is composed of:

(1) A set of affine transformation matrices: {A1, . . . , An},
(2) A condensation set C: either the empty set or a finite collection of points

and lines, and

(3) An initial geometry F0: either the empty set or an initial finite collection
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of points and lines.

The geometry at the (p + 1)st iteration is defined inductively as

Fp+1 = A1(Fp) ∪ . . . ∪ An(Fp) ∪ C (4)

The fractal is the limit shape of the IAT as the depth of iteration goes to

infinity. To generate the same tree-like fractal of which the first few iterations

are shown in figure 5 top, we can construct an IAT using the conformal maps

(we will show how one can compute these matrices using turtle programs in

Section 3.3)

A1 =





1
2

1
2

0

−1
2

1
2

0

0 1 1





, A2 =





1
2
−1

2
0

1
2

1
2

0

0 1 1





,

along with the condensation set and initial geometry

C = Line({0, 0}, {0, 1}), F0 = Line({−1, 1}, {1, 1}).

We can also define an IAT that generates the fractals shown in the middle

and bottom of figure 5 using the non-conformal maps

A1 =





β
2

α
2

0

−β
2

α
2

0

0 1 1





, A2 =





β
2
−α

2
0

β
2

α
2

0

0 1 1





,

along with the condensation set and initial geometry

C = Line({0, 0}, {0, 1}), F0 = Line({−1, 1}, {1, 1})
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where {α, β} are the same scaling parameters as in the augmented turtle RTP

in figure 4.

Note that the condensation set C is necessary in order to produce the com-

plete fractal. For example, the previous IATs would generate only the outer

“leaves” of the tree-like fractal in figure 5 without the condensation set, which

is necessary to construct the “branches” of the tree.

In order to generate convergent geometry, we require that the affine trans-

formations Ai are contractive maps. That is, the distance between any two

distinct points in the plane always contracts after the transformation. Due to

the Contractive Mapping Theorem [1], Fp always converges to the same limit

shape no matter what F0 we choose to start with (provided that either F0 6= ∅
or C 6= ∅). For example, if we choose our initial geometry F0 to be either a

triangle or a quadrilateral in the tree-like fractal example, the geometry gen-

erated by the IAT for these two initial shapes look more alike as the number

of iterations increases (see figure 6). In the limit, we obtain the same fractal

shapes, since the tiny copies of F0 all shrink to points.

3 Equivalence and conversion algorithms

3.1 Observations

Comparing the fractal trees generated by RTP and IAT in the previous section

along with many other examples leads to following observations:

(1) The base case of an RTP corresponds to the initial geometry F0 in an IAT.

(They are both responsible for generating the dark lines in the fractals
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in figure 5).

(2) The turtle commands in the recursion body of an RTP correspond to the

condensation set C in an IAT. (They are both responsible for generating

the gray lines in the fractals in figure 5).

(3) The RTP has the same number of recursive calls as the number of affine

transformations in the corresponding IAT.

These observations suggest that we can express the shape generated by an

RTP by a recurrence relation similar to (4) for an IAT.

3.2 Recurrence relation for RTP

Our construction of this recurrence relation is based on the following propo-

sition (Similar results are also obtained by Prusinkiewicz [7]):

Proposition 3.1 Suppose L1, . . . , Ln are the transformation matrices corre-

sponding to the turtle commands c1, . . . , cn, and let Sk be the turtle’s coordinate

system after the kth turtle command ck is executed. Then L = Ln ∗ . . . ∗ L1 is

the transformation matrix that transforms S0 to Sn.

Proof: From (1) we have Sk = Lk ∗ Sk−1, therefore Sn = Ln ∗ Sn−1 =

Ln ∗ Ln−1 ∗ Sn−2 = . . . = Ln ∗ . . . ∗ L1 ∗ S0.

Since the shape drawn by the turtle consists of geometries that are generated

in the turtle’s coordinate system, we have the following corollary:

Corollary 3.2 Suppose L1, . . . , Lk, . . . , Ln are the transformation matrices

corresponding to the turtle commands c1, . . . , ck, . . . , cn. Let Pk be the shape

drawn by the turtle program {c1, . . . , ck}, and let Qk be the shape drawn by the
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turtle program {ck+1, . . . , cn}. Then Pn = Q0 = Pk∪L(Qk) for k = 1, . . . , n−1,

where L = Lk ∗ . . . ∗ L1.

For an RTP with n recursive calls, we can compose transformation matrices

Ni(i = 1, . . . , n+1) as the product of the transformation matrices correspond-

ing to the turtle commands in between the recursive calls in reverse order :

Ni = Li
ni
∗ . . . ∗ Li

1 (5)

where Li
k represents the transformation matrix corresponding to the kth turtle

command after the (i − 1)th recursive call (or since the beginning of the

recursion body if i = 1), and ni is the total number of such commands before

the ith recursive call (or before the end of the recursion body if i = n + 1).

Once we have Ni we can formulate matrices Mi that transform the canoni-

cal orthogonal basis (i.e.; the initial turtle coordinate system) to the turtle’s

coordinate system at the beginning of the ith recursive call as follows:

M1 = N1, Mi = Ni ∗Mi−1(2 ≤ i ≤ n) (6)

Note that (6) holds if and only if each recursive call introduces no net change

in the turtle state (a more complicated formulation results if net change is

introduced, as will be discussed in section 4.1).

Denote by G0 the shape generated by the drawing commands in the base case,

and by R the shape generated by the drawing commands in the recursion body.

Due to Corollary 3.2, the shape Gp+1 produced by the RTP with recursion

depth p + 1 satisfies the following recurrence relation:

Gp+1 = M1(Gp) ∪ . . . ∪Mn(Gp) ∪R (7)
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Observe the close resemblance between (4) and (7), which matches our prior

observations. We can now study equivalences and conversion algorithms be-

tween RTPs and IATs based on the common structure of their recurrences.

3.3 Convert RTP to IAT

The conversion algorithm is given by the following two propositions:

Proposition 3.3 The geometry generated by an RTP using the classical turtle

commands and states can be reproduced by an equivalent IAT using oriented

conformal maps.

Proof: Since each Li
k in equation (5) is an oriented conformal map, their

products, Ni and Mi, as defined in (5) and (6), are oriented conformal maps

as well. Therefore we can construct the following conformal IAT:

F0 = G0, C = R, Ai = Mi(i = 1, . . . , n).

where G0 and R are the shapes that the RTP draws in the base case and in the

recursion body. Now compare the geometries Fp and Gp defined respectively

by recurrence relations (4) and (7). They have the same base case and satisfy

the same recurrence; therefore, by induction, Fp = Gp for all p ≥ 0.

Proposition 3.4 The geometry generated by an RTP using the augmented

turtle commands and states can be reproduced by an equivalent IAT using

arbitrary affine transformations.

Proof: Since each Li
k in equation (5) is a non-singular affine transformation,

their products, Ni and Mi, as defined in (5) and (6), are also non-singular

affine transformations. The rest of the proof is identical to that of Proposition
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3.3.

The proofs of Proposition 3.3 and Proposition 3.4 provide a conversion pro-

cedure from an RTP to an equivalent IAT. All we need to do is to construct

F0 and C from the turtle commands, and to build the matrices Ai from the

turtle transformation matrices given in (5) and (6).

To see this process in action, we will now convert the classical RTP on the

left of figure 4 to an IAT using oriented conformal maps. The conversion from

the augmented RTP on the right of figure 4 to an IAT using arbitrary affine

transformations follows closely to the form of this procedure. We proceed in

the following fashion:

(1) Construct initial geometry F0: The base case draws a line between {−1, 1}
and {1, 1}. Hence F0 = Line({−1, 1}, {1, 1}).

(2) Construct condensation set C: The recursion body draws a line between

{0, 0} and {0, 1}. Hence C = Line({0, 0}, {0, 1}).
(3) Construct matrices Ai: First we build the products Ni: N1 = LR(−1

4
π) ∗

LS(
√

2
2

) ∗ LT (1) ∗ LR(1
2
π), N2 = LR(−1

2
π), and N3 = LR(1

2
π) ∗ LT (1) ∗

LS(
√

2) ∗ LR(−1
4
π). Next we compute the transformations Ai (Mi) from

(6):

A1 =





1
2

1
2

0

−1
2

1
2

0

0 1 1





, A2 =





1
2
−1

2
0

1
2

1
2

0

0 1 1





Observe that Ai, C and F0 are identical to the first IAT of section 2.2.3 which

produces the same tree-like fractal as our RTP.
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The conversion procedure is useful in several ways. Because a turtle always

walks and turns in its local coordinate system, it is often difficult to understand

the “big picture” of the resulting geometry from the turtle commands. On the

other hand, the equivalent IAT captures the self-similarity of the fractal pre-

cisely through global transformation matrices. Hence the conversion from RTP

to IAT provides some insight into the geometry of the fractal corresponding

to the turtle program.

Moreover, the convergence properties of the geometry generated by iterated

affine transformations are well-known. By converting an RTP to an equivalent

IAT, the convergence of the resulting fractal shape can be studied directly by

examining the contractiveness of the transformation matrices.

It also follows from this conversion procedure that, in analogy to the observa-

tion that the fractal shape of an IAT does not depend on the initial shape F0,

what the turtle draws in the base case (without introducing net change in the

turtle state) does not affect the limit shape. As we will see in section 4.1, this

property still holds if both the base case and the recursion body introduce the

same net change in the turtle state.

3.4 Convert IAT to RTP

Conversely, we can construct an equivalent RTP for any given IAT. Our con-

struction is based on the following propositions:

Proposition 3.5 Every oriented conformal map can be represented as the

product of four classical turtle transformation matrices.
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Proof: Since a conformal map A transforms one orthogonal basis to another,

using the notation in table 3, A can be decomposed into the following product:

A = AS(s) ∗ AR(α) ∗ AT (dx, dy)

where s is the scaling factor, α measures the rotation angle, and {dx, dy} is

the translation vector. We can rewrite this product as the product of four

classical turtle transformation matrices shown in table 1:

A = LS(s) ∗ LR(α− β) ∗ LT (d) ∗ LR(β) (8)

where d =
√

dx2 + dy2 and β is the angle between the translation vector

{dx, dy} and the vector {1, 0}.

Proposition 3.6 Every non-singular affine transformation can be represented

as the product of four augmented turtle transformation matrices.

Proof: Any non-singular affine transformation A can be written using homo-

geneous coordinates in the following form:

A =





a b 0

c d 0

e f 1





where ad 6= bc. Similar to (8), we can decompose A into the product of the

following four augmented turtle transformation matrices shown in table 2:

A = LNS(s1, s2) ∗ LNR(α1 − β, α2 − β) ∗ LT (δ) ∗ LR(β) (9)
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where s1 =
√

a2 + b2, s2 =
√

c2 + d2, δ =
√

e2 + f 2, α1 is the angle between

the vector {a, b} and {1, 0}, α2 is the angle between the vector {c, d} and

{0, 1}, and β is the angle between the vector {e, f} and {1, 0}.

Proposition 3.5 and Proposition 3.6 suggest that the effect of applying any ori-

ented conformal map (or arbitrary non-singular affine transformation) can be

reproduced using a sequence of four classical (or augmented) turtle commands:

TURN, MOVE, TURN, and SCALE. (Note that the order is reversed, accord-

ing to Proposition 3.1.) The parameters for each command can be computed

by measuring the angles and distances in the canonical coordinate system as

shown in figure 7.

Now we can complete the proof of equivalence between RTP and IAT by

proving the following two propositions:

Proposition 3.7 The geometry generated by an IAT using oriented confor-

mal maps can be reproduced by an equivalent RTP using classical turtle com-

mands and states.

Proof: Let Ai(i = 1, . . . , n) be the affine transformations in the given IAT.

Construct the following n + 1 matrices:

N1 = A1, Ni = Ai ∗ Ai−1
−1(2 ≤ i ≤ n), Nn+1 = An

−1. (10)

Since Ai are oriented and conformal, Ni are oriented and conformal. Due to

Proposition 3.5, there exists a recursive turtle program P whose recursion

body consists of classical turtle commands and whose corresponding matrices

satisfy relation (5). Let the base case of P draw the same shape G0 as the

initial geometry F0 in the IAT, and return to the initial turtle state. Augment
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turtle commands to the recursion body, if necessary, to draw the same shape

R as the condensation set C in the IAT, without making an overall change

to the initial turtle state. Since Nn+1 ∗ . . . ∗ N1 = I (where I is the identity

matrix), no net change in the turtle state is introduced in each recursive call.

Hence we can substitute (10) into (6) and get:

Mi = Ai(1 ≤ i ≤ n).

Now compare the geometry Fp and Gp defined respectively by recurrence re-

lations (4) and (7). They have the same base case and recurrence structure;

therefore, by induction, Fp = Gp for all p ≥ 0.

Proposition 3.8 The geometry generated by an IAT using arbitrary non-

singular affine transformations can be reproduced by an equivalent RTP using

augmented turtle commands and states.

Proof: Let Ai(i = 1, . . . , n) denote the affine transformations in the given

IAT. Construct n + 1 matrices Ni as in (10). Since Ai express non-singular

affine transformations, Ni denote non-singular affine maps. Due to Proposition

3.6, there exists a recursive turtle program P whose recursion body consists of

augmented turtle commands and whose corresponding matrices satisfy relation

(5). The rest of the proof is identical to that of Proposition 3.7.

To construct an equivalent RTP from a given IAT, the key is to decompose

the matrices Ni, defined in (10), into transformation matrices corresponding

to the classical (or augmented) turtle commands. As an example, we will

construct an RTP equivalent to the IAT with conformal maps in section 2.2.3.

Here we only demonstrate how to formulate the non-drawing commands in

the recursion body, since the base case and the drawing commands in the
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recursion body can easily be derived from the initial geometry F0 and the

condensation set C of the IAT. Note that the conversion of an IAT with

arbitrary non-singular affine transformations follows closely to the form of the

following procedure.

(1) Construct Ni from the transformations Ai of the IAT as

N1 = A1, N2 = A2 ∗ A−1
1 , N3 = A−1

2

(2) Decompose Ni into turtle commands:

N1: TURN(1
2
π), MOVE(1), TURN(−1

4
π), RESIZE(

√
2

2
).

N2: TURN(−1
2
π).

N3: TURN(−1
4
π), MOVE(

√
2), TURN(1

2
π), RESIZE(

√
2).

(3) The recursion body (without the drawing commands) is the conjunc-

tion of the turtle commands above and two recursive calls, one after the

decomposed commands of N1 and the other after the decomposed com-

mands of N2.

Observe that the resulting RTP differs slightly with the RTP on the right

of figure 4. This is because the decomposition of the Ni is not unique. In

fact, there are infinitely many ways to decompose Ni into turtle commands,

resulting in infinitely many RTPs that are equivalent to a given IAT. Hence

the mapping between the set of RTPs and IATs is not one-to-one.

The conversion from an IAT to an equivalent RTP is useful for composing a

turtle program that generates a given fractal. It is sometimes difficult to con-

struct the corresponding RTP directly from a given fractal, especially those

involving non-conformal transformations. Often, we can compose the equiv-
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alent IAT more easily by examining the self-similarity of the fractal shape.

Then, using the conversion algorithm presented here, an RTP can be gener-

ated automatically from the IAT.

As an example, we will construct an RTP that draws a quadratic Bezier curve,

such as the one shown on the right of figure 8. Using De Casteljau’s subdivi-

sion algorithm, this quadratic Bezier curve can be generated using an IAT that

transforms the original control triangle with vertices ({0, 0}, {1, 0}, {0.3, 1}) to

the control triangles of the first and second halves of the curve. The transfor-

mation matrices are

A1 =





0.4 0.5 0

0.03 0.35 0

0 0 1





, A2 =





0.6 −0.5 0

0.07 0.15 0

0.4 0.5 1





,

along with the condensation set and initial geometry

C = ∅, F0 = Line({0, 0}, {1, 0}).

The equivalent RTP consists of the augmented turtle commands shown in

figure 9. The shapes drawn by this RTP at the first few recursion levels are

shown in figure 8 left. Observe that this RTP would be very hard to construct

without the help of the corresponding IAT.
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4 Discussion

4.1 Net change in turtle state

The conversion algorithm from an RTP to an IAT presented in the previous

section is based on the assumption that no net change in the turtle state

is introduced in the base case or recursive calls. However, many well-known

RTPs, such as the one on the right of figure 11 which produces the C-curve

in figure 10, do involve overall change in the turtle state. In fact, as we shall

see, this assumption is not absolutely necessary for an RTP to be convertible

to an equivalent IAT.

Suppose the base case of an RTP results in an overall transformation O0

of the turtle’s coordinate system. Due to Proposition 3.1, the accumulated

transformation Op of the turtle’s coordinate system at the end of the RTP

with recursion depth p is computed as

Op = Nn+1 ∗Op−1 ∗ . . . ∗N2 ∗Op−1 ∗N1 (11)

where n is the number of recursive calls, and Ni are defined as in (5). Hence

(6) is reformulated as:

Mp+1
1 = N1,M

p+1
i = Ni ∗Op ∗Mp+1

i−1 (2 ≤ i ≤ n) (12)

Note that the superscript p + 1 is added to the transformation matrices Mi

in (6) because the transformation of the turtle’s coordinate system before

each recursive call now depends on the overall changes in the turtle state Op

introduced by the preceding recursive calls, which may vary with the recursion
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depth p. Consequently, the recurrence relation for the shape Gp+1 produced

by this RTP is expressed as

Gp+1 = Mp+1
1 (Gp) ∪ . . . ∪Mp+1

n (Gp) ∪R (13)

Note that, in general, this RTP cannot be converted to an IAT with step-

by-step equivalence using the algorithm presented in section 3, because Mp+1
i

depends on the recursion depth p. However, we have the following observation:

Proposition 4.1 If O1 = O0 in (11), then Op = O0 for every p > 0.

Proof: By induction on p. The statement holds in the case where p = 1.

Suppose Op = O0 for all p ≤ k. From (11) we have:

Ok+1 = Nn+1 ∗Ok ∗ . . . ∗N2 ∗Ok ∗N1

= Nn+1 ∗O0 ∗ . . . ∗N2 ∗O0 ∗N1

= O1 = O0

Hence Op = O0 for all p > 0.

Now observe that in this case (O1 = O0) Mp
i is independent of p, so we can

use the conversion algorithm in section 3 based on equation (13) and draw the

following conclusion:

Corollary 4.2 If a classical (augmented) RTP introduces the same overall

change in the turtle state in the base case as in the first level of recursion, the

resulting geometry can be reproduced by an IAT using conformal (arbitrary)

affine transformations.

Furthermore, we can show that,
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Corollary 4.3 If O1 = O0 in (11) for an RTP P , then there exists a dif-

ferent RTP P ′ which produces the same geometry as P , yet no net change is

introduced in either the base case or any recursive call of P ′.

Proof: Due to Corollary 4.2, we can find an IAT equivalent to the RTP P .

Then, using the conversion algorithm presented in section 3, an RTP P ′ can

be constructed from this IAT that does not involve any net change in the

turtle state.

In fact, we can construct P ′ from a given P explicitly as follows: Let B denote

the sequence of commands in the base case of P , and let B−1 denote the turtle

commands that return the turtle to its initial state (without drawing) after

the commands in B are executed. We can modify P as follows:

(1) Append to the base case the commands B−1.

(2) Let B̂ be the sequence of commands in B with FORWARDs replaced by

MOVEs. In the recursion body, insert B̂ after each recursive call, and

append B−1 to the end.

Denote the modified turtle program by P ′, and let O′
p be the accumulated

change in the turtle state in P ′ with recursion depth p. By construction, we

have O′
0 = O−1

0 ∗O0 = I and

O′
1 = O−1

0 ∗Nn+1 ∗O0 ∗O′
0 ∗ . . . ∗N2 ∗O0 ∗O′

0 ∗N1

= O−1
0 ∗Nn+1 ∗O0 ∗ . . . ∗N2 ∗O0 ∗N1

= O−1
0 ∗O1 = I

Due to Proposition 4.1, P ′ introduces no net change in the base case or in

any recursive call. Hence the shape generated by P ′ satisfies the recurrence
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relation (7), in which the transformation matrices Mi are defined by:

M1 = N1,Mi = Ni ∗O0 ∗Mi−1(2 ≤ i ≤ n)

Since Op = O0 for all p > 0, Mi = Mp
i for all p > 0. Since P ′ does not alter

the geometry drawn in P by the drawing commands in the base case or in the

recursion body, and since P and P ′ satisfy the same recurrence relation, the

two programs generate the same shape.

As an example, the RTP on the right of figure 11 produces the same fractal

as the RTP to its left, while introducing no net change in the turtle state in

the base case or the recursion body. Observe that Proposition 4.1 holds for

both classical RTP and augmented RTP. From the previous discussion of the

conversion algorithms, we draw the following conclusion:

If O1 6= O0, complications arise. Generally, there is no corresponding IAT

that generates the same shape as the RTP at every depth p. However, if

Op converges to some fixed transformation O∞ in the limit, an IAT can be

constructed based on the recurrence relation (7) where M1 = N1 and Mi =

Ni ∗O∞ ∗Mi−1. This IAT defines the same fractal as the RTP in the limit.

If Op diverges, the geometry generated by the RTP may also diverge, so there

may not exist an IAT that is equivalent to the turtle program in the limit.

Therefore, we would like to be able to determine the convergence of Op from

(11). The answer to this question will lead to a fully automatic conversion

algorithm from an arbitrary RTP to an equivalent IAT.
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4.2 State stack in RTP

To interpret brackets in an L-System, we can augment an RTP with stack

commands such as PUSH and POP. Assuming that the stack commands are

well-behaved (i.e., each PUSH is paired with an POP in the same recursion

body), adding PUSH and POP does not increase the expressive power of the

RTP. These commands do, however, ease the conversion from an IAT because

no commands have to be generated to return the turtle to its initial state

at the end of the base case or the recursion body. Conversion from an RTP

with a state stack to an equivalent IAT proceeds in a similar manner to the

algorithm in section 3.3, the only exception is that in (5) and (6), the turtle

commands within paired PUSH and POP commands do not contribute to the

overall change in the turtle state.

5 Open Questions

5.1 Mutually Recursive Turtle Programs and LR-IAT

A turtle program may involve multiple recursion bodies and mutually recursive

calls, which enables the RTP to interpret a wider range of L-Systems that in-

corporate multiple production rules. Correspondingly, an IAT (or IFS) can be

extended so that different sets of transformations are applied in a well-defined

sequence. Culik [6] studied a mutually recursive version of IFS, which are

generalized still further by Prusinkiewicz [7] to language-restricted IFS. The

composition/decomposition of turtle transformation matrices presented here

is well suited for providing conversion algorithms between language-restricted
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IATs (LR-IAT) on conformal or arbitrary non-singular affine transformations

and mutually recursive turtle programs with classical or augmented turtle

states and commands.

5.2 Equivalence between IATs (RTPs)

One question to which we are still seeking an answer, is how to determine

the equivalence between two given IATs (or two RTPs). The same fractal can

often be generated using IATs with different sets of affine transformations or

RTPs with different turtle commands. For example, the Sierpenski Triangle

on the left of figure 12 can be generated using an IAT with the three conformal

maps:

A1 = AS(1
2
),

A2 = AS(1
2
) ∗ AT (1

2
, 0),

A3 = AS(1
2
) ∗ AT (1

4
,
√

3
4

).

Alternatively, these following transformations produce the same fractal:

A1 = AS(1
2
),

A2 = AS(1
2
) ∗ AR(2

3
π) ∗ AT (1, 0),

A3 = AS(1
2
) ∗ AR(4

3
π) ∗ AT (1

2
,
√

3
2

).

So far we can only determines the equivalence between two IATs or two RTPs

by rendering the shapes they generate, for example by running the two RTPs.

Is it possible to establish the equivalence between two IATs just from ex-

amining their affine transformations, or two RTPs by examining their turtle

commands?
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5.3 Minimal number of transformations (recursive calls)

Fractals can be generated using IATs with different numbers of transforma-

tions. For example, the Koch fractal on the right of figure 12 can be generated

either using the 4 transformations:

A1 = AS(1
3
), A2 = AS(1

3
) ∗ AR(1

3
π) ∗ AT (1, 0),

A3 = AS(1
3
) ∗ AT (2, 0), A4 = AS(1

3
) ∗ AR(−1

3
π) ∗ AT (3

2
,
√

3
2

).

or using the 2 transformations:

A1 = AS(
√

3
3

) ∗ AR(7
6
π) ∗ AT (3

2
,
√

3
2

),

A2 = AS(
√

3
3

) ∗ AR(5
6
π) ∗ AT (3, 0).

For a given fractal, how can we find the IAT with the minimum number of

transformations or equivalently the RTP with the minimal number of recursive

calls?

5.4 IFS and RTP

So far we have considered only IFS with affine transformations. Can we ex-

tend the turtle to express fractals generated by an IFS with non-linear complex

functions, such as the Julia sets? To accomplish this feat, the turtle program-

mer would need to know the turtle’s location in a global coordinate system to

compute the transformation to its next state. In the classical Logo environ-

ment, however, the programmer that controls the turtle does not have access

to the global position of the turtle. The same turtle commands transform the

turtle states in the same way regardless of the turtle’s location in the plane.
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6 Conclusion

This paper presents rigorous proofs of equivalence and constructs formal con-

version algorithms between RTPs composed of classical turtle commands and

IATs using oriented conformal maps, as well as between RTPs composed of

augmented turtle commands and IATs using arbitrary non-singular affine

transformations. The conversion algorithms are useful for the explicit con-

struction of RTPs from given fractal shapes, as well as for the study of the

limit shape of an RTP using an equivalent IAT. Our results can be extended

to explore equivalences between more complex RTPs (or L-Systems) and IATs

(or IFSs). This study also raises some interesting questions to which we are

still seeking answers, such as finding necessary and sufficient conditions for

the turtle state to converge, or for two IATs or RTPs to generate the same

fractal.
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Fig. 1. Self-similar fractals: a fractal tree (left) and two variations.
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Fig. 2. Applying TURN(1
2π,12π) to an augmented turtle with a non-orthogonal co-

ordinate system: before (left) and after (right).
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Fig. 3. A square drawn by the classical turtle by repeating the turtle commands

FORWARD(1) and TURN(1
2π) four times (left), and the shapes drawn by the aug-

mented turtle by executing the same sequence of commands after a TURN(0,−1
4π)

(middle) or a RESIZE(1, 1/2) (right).
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Classical Turtle Augmented Turtle

Base Case:

TURN(1
4π),

MOVE(
√

2),

TURN(3
4π),

FORWARD(2),

TURN(3
4π),

MOVE(
√

2),

TURN(1
4π).

Recursion Body:

TURN(1
2π),

FORWARD(1),

RESIZE(
√

2
2 ),

TURN(−1
4π),

Recur,

TURN(−1
2π),

Recur,

TURN(−1
4π),

RESIZE(
√

2)

MOVE(1),

TURN(1
2π).

Base Case:

TURN(1
4π),

MOVE(
√

2),

TURN(3
4π),

FORWARD(2),

TURN(3
4π),

MOVE(
√

2),

TURN(1
4π).

Recursion Body:

TURN(1
2π),

FORWARD(1),

RESIZE(α
√

2
2 , β

√
2

2 ),

TURN(−1
4π),

Recur,

TURN(−1
2π),

Recur,

TURN(−1
4π),

RESIZE(
√

2
α ,

√
2

β )

MOVE(1),

TURN(1
2π).

Fig. 4. RTPs that generate different tree-like fractals using the classical turtle (left)

and the augmented turtle (right).
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Fig. 5. Tree-like fractals: generated by classical turtle or conformal affine transforma-

tions (top), generated by augmented turtle or non-conformal affine transformations

with α = 0.75 (middle) and β = 0.75 (bottom).
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Fig. 6. Same IAT with different initial geometry F0: triangle (top) and quadrilateral

(bottom).
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Fig. 7. Reproduce an affine map that transforms the canonical coordinate system to

a new coordinate system (colored gray) with turtle commands: oriented conformal

map with four classical turtle commands (left) and arbitrary non-singular affine

map with four augmented turtle commands (right).
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Fig. 8. A quadratic Bezier curve generated by an RTP: recursion level 0 to 3(left),

recursion level 8(right).
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Base Case Recursion Body

FORWARD(1).

TURN(π),

MOVE(1),

TURN(π),

TURN(0.896055, −0.0855053),

RESIZE(0.640312,0.351283),

Recur,

MOVE(1),

TURN(−1.14794, −0.674741),

RESIZE(4.38634, 0.256125),

Recur,

TURN(−1.62075),

MOVE(4.005),

TURN(2.90009, 1.7369),

RESIZE(4.17612, 4.83256),

Fig. 9. RTP that generates a quadratic Bezier curve.
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Fig. 10. A fractal C-curve generated by an RTP: recursion level 0 to 3(left), recursion

level 8(right).
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With net change No net change

Base Case:

FORWARD(1).

Recursion Body:

TURN(1
4
π),

RESIZE(
√

2
2

),

Recur,

TURN(−1
4
π),

Recur,

TURN(1
4
π),

RESIZE(
√

2).

Base Case:

FORWARD(1),

TURN(π),

MOVE(1),

TURN(π).

Recursion Body:

TURN(1
4
π),

RESIZE(
√

2
2

),

Recur,

MOVE(1),

TURN(−1
4
π),

Recur,

MOVE(1),

TURN(1
4
π),

RESIZE(
√

2),

TURN(π),

MOVE(1),

TURN(π).

Fig. 11. RTP that generates the C-curve in figure 10 (left), and the equivalent RTP

introducing no net change in the turtle state (right).
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Fig. 12. Fractals with multiple IATs: the Sierpinski triangle(left) and the Koch

bump(right).
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FORWARD(d),

MOVE(d)

LT (d) =





1 0 0

0 1 0

d 0 1





TURN(α) LR(α) =





cos(α) sin(α) 0

−sin(α) cos(α) 0

0 0 1





RESIZE(s) LS(s) =





s 0 0

0 s 0

0 0 1





Table 1

Transformation matrices for classical turtle commands
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TURN(α1, α2) LNR(α1, α2) =





cos(α1) sin(α1) 0

−sin(α2) cos(α2) 0

0 0 1





RESIZE(s1, s2) LNS(s1, s2) =





s1 0 0

0 s2 0

0 0 1





Table 2

Augmented transformation matrices for augmented turtle commands
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Translation AT (dx, dy) =





1 0 0

0 1 0

dx dy 1





Rotation AR(α) =





cos(α) sin(α) 0

−sin(α) cos(α) 0

0 0 1





Uniform

Scaling

AS(s) =





s 0 0

0 s 0

0 0 1





Non-Uniform

Scaling

ANS(sx, sy) =





sx 0 0

0 sy 0

0 0 1





Shearing AH(hx, hy) =





1 hy 0

hx 1 0

0 0 1





Table 3

Transformation matrices for affine transformations.
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