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A Factored, Interpolatory Subdivision Scheme for
Surfaces of Revolution

Scott Schaefer

Abstract

We present a new non-stationary, interpolatory subdivision scheme capable of pro-
ducing circles and surfaces of revolution and in the limit is C*. First, we factor the
classical four point interpolatory scheme of Dyn et al. into linear subdivision plus
differencing. We then extend this method onto surfaces by performing bilinear sub-
division and a generalized differencing pass. This extension also provides the ability
to interpolate curve networks. On open nets this simple, yet efficient, scheme repro-
duces the curve rule, which allows C° creases by joining two patches together that
share the same boundary. Our subdivision scheme also contains a tension parameter
that changes with the level of subdivision and gives the scheme its non-stationary
property. This tension is updated using a simple recurrence and, chosen correctly,

can produce exact surfaces of revolution.
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Chapter 1

Introduction

Subdivision is an excellent tool for modeling due to its ability to construct smooth
surfaces with minimal effort. Typically, artists manipulate a coarse description of a
model representing a smooth surface. The computer then subdivides the model to
obtain a new, smooth version that somehow follows the original shape. Moving the
vertices on the coarse mesh, also referred to as “control points,” affects the shape of
the smooth surface and allows for a very intuitive modeling paradigm.

Interpolatory subdivision schemes are a special subset of all subdivision schemes
where there is the added requirement that the limit surface interpolates the original
control points. These methods can give artists an even more intuitive feel for the shape
of the final, smooth surface because the vertices that they position actually lie on the
limit surface. One example of an interpolatory scheme for curves is the classic four-
point scheme described in [3]. In that paper, Dyn et al. describe a stationary tension
parameter that is used to control the shape of the curve. Dyn et al. further extended
this interpolatory scheme to triangular surfaces using a butterfly subdivision scheme
in [6]. Kobbelt [9] took the same curve scheme and extended the method to arbitrary
quadrilateral surfaces. Zorin [14] later proved that Kobbelt’s method produces C*
surfaces for all valences of vertices. We propose a method similar to the curve scheme
[3] except our tension parameter changes with the level of subdivision, which results
in a non-stationary scheme. Our extension to surfaces also differs from Kobbelt’s and
gives our method the ability to interpolate curve networks.

Recently, there has also been an interest in subdivision schemes that are com-

binations of simple steps or factored schemes that break apart a single subdivision



scheme into simpler passes. These factored methods can be simpler to implement
because large, complex subdivision masks can be calculated by performing several
small, locally supported passes over the mesh. Lounsbery et al. [10] present a subdi-
vision scheme factored into separate passes over the mesh. The authors describe an
approximating subdivision method in two passes: linear subdivision and averaging.
First, a temporary mesh is generated by performing linear subdivision on the input
mesh and then an averaging pass where vertices are replaced by the average of the
centroids of the adjacent faces.

In [12], Stam generalized B-spline surfaces to meshes of arbitrary topology. The
even/odd schemes described in the paper are performed by linearly subdividing the
mesh and either applying a special mask for the odd scheme or taking the dual and
then averaging repeatedly for the even scheme. The surfaces produced by this method
are C%1 everywhere (where d is the degree of the surface) except at extraordinary
vertices where the surface is only C*.

Zorin and Schréder [15] extended the ideas of Lounsbery et al. and developed an
approximating scheme similar to Stam’s. In that paper the authors factor B-spline
subdivision into linear subdivision plus repeated dualing of the mesh where vertices
are positioned at the barycenter of polygons. In this way the authors generalize B-
splines of bidegree up to nine and prove the scheme to be C! at extraordinary vertices.
The subdivision scheme that we propose will also be presented as factoring an existing
scheme into two simpler steps: linear subdivision and differencing.

However, these subdivision schemes have a disadvantage as well. These methods
are unable to model many widely used shapes such as spheres and tori because these
surfaces possess no polynomial parameterization. A notable exception is the method
of Morin et al. [11]. The authors show how to produce an approximating method
that generalizes B-splines to surfaces of revolution by adding a non-stationary ten-
sion parameter. This generalization was accomplished by factoring the subdivision

scheme into linear subdivision plus a generalized averaging pass that includes the



tension parameter. By choosing this tension parameter correctly, exact surfaces of
revolution can be produced. Bajaj et al. [1] took this work further and extended the
scheme topologically to volume meshes and d-dimensional hypercubes. Factoring the
subdivision mask is important in both of these schemes and this strategy allows for
an intuitive way to extend the subdivision masks to arbitrary valence vertices.

We develop a new subdivision scheme for surfaces similar to [11] in that we factor
our subdivision scheme into two different steps: linear subdivision and differencing.
Our method differs in that it is an interpolatory subdivision scheme as opposed to an
approximating method. First, we derive a stationary, interpolatory scheme for curves
that appears in [3] and show how our method factors into linear subdivision followed
by differencing. Next we extend this scheme to quadrilateral surfaces and generalize
the different passes to vertices of arbitrary valence. This surface subdivision scheme is
then shown to be a subdivision scheme for curve networks. Finally, we derive a non-
stationary, interpolatory scheme for curves capable of generating circles and extend
that scheme to arbitrary quadrilateral surfaces. Using this non-stationary scheme, we
show that by choosing the tension parameter correctly exact surfaces of revolution

can be produced.



Chapter 2

Stationary Subdivision

We will first construct a stationary, interpolatory subdivision scheme for curves and
surfaces. Our ultimate goal is to develop a non-stationary scheme capable of modeling
a much wider range of shapes; however, the stationary scheme is clearer both in terms
of its explanation and notation. Later, we show how the non-stationary case is a

simple extension of the stationary method described next.

2.1 Curve Subdivision

We begin by constructing an interpolatory scheme for curves. A subdivision scheme
for curves is interpolatory if the method is of the form pkt! = pf and p’ZC;Srll =
Y Sa(j—i)+1P; Where pf is the i” vertex at the &' level of subdivision and s; is the ;'
coefficient of the subdivision mask. When considering an interpolatory subdivision
scheme for curves, we will assume that all of these control points are spaced uniformly
in a parametric space (see figure 2.1, left). Our subdivision scheme will then take this
set of vertices and produce a new set of vertices on an interval that is twice as fine as
the original. Then all that is required is to develop a rule to insert new vertices, p’gjjl,
between each of the given control points because the old vertices are interpolated and,
therefore, not modified.

Now we derive the well-known four point scheme of [3] as an example of such
a subdivision scheme. Consider four consecutive control points that have uniformly
spaced parametric components associated with them. These points define a unique

cubic polynomial that interpolates them. The new point inserted into the curve

should be positioned in the middle of the four points such that the new point lies
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Figure 2.1 : The coefficients used to generate the point in the middle on the cubic
polynomial interpolating those four points (left). The coefficients to generate the
same point after performing one round of linear subdivision (right).

on the cubic function defined by those points. Positioning the point on this cubic
function will give the subdivision scheme the property that if all of the control points
are uniformly sampled off a cubic function, then this scheme will reproduce that cubic
function. The new point’s position can be solved for in terms of the four control points
(see figure 2.1, left). Since the points are spaced uniformly in the parametric space,
the coefficients will not depend on the spacing of the control points and yields the
subdivision scheme in equation 2.1. This is exactly the well-known four point scheme

of [2] and [3] with the tension parameter set to 1.

k+1 k

Dy, = b;

k+1 1,k 9 .k 9k 1,k (2'1)
DPoiv1 = TePi1 T 160 T 16Pi+1 — 1Pite

We can introduce a tension parameter w that blends between this subdivision
mask and linear subdivision. The resulting subdivision scheme is then equation 2.2.
When w is zero, the subdivision scheme is linear subdivision; when w is one, this
scheme is exactly the four-point scheme in equation 2.1. Dyn et al. [3] show that this
new, tensioned subdivision scheme produces a curve that is C° for |w| < 4 and C* for

D<w<?2.

k+1  _ k
Do = b;

k41 +w .k 84w, k

B (2.2)
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Representing a subdivision mask as a generating function can often be useful when
analyzing subdivision schemes [13]. We define a generating function s|z] for curves
to be s[x] = ¥, zs:x' where s; is the i'* coefficient of the subdivision mask or zero
when that coefficient does not exist. We will also represent the control points as a
generating function where p*[z] = 3 pfa’. Then one step of subdivision is represented

F1z] = s[z] * p*[2?]. One advantage that generating functions provide is that

as p
breaking apart a subdivision scheme into separate passes over the mesh is simple (such
as linear subdivision and repeated averaging as in [15]); just factoring the generating
function provides the necessary tool to split a subdivision step into separate passes
over the mesh. We call this subdivision method with multiple passes a factored
subdivision scheme. These factored subdivision schemes can be easier to implement
because each pass can be typically represented on the one-ring of a vertex, which does
not require complicated mesh traversal algorithms and data-structures to be built.
Accumulating these local passes together can allow very large, complex passes to be
calculated in a simple manner.

Representing our subdivision mask as a generating function, s[x] for equation 2.1

is slz] = T5a® + Ja 7t + 1+ Jx — s-a®. If we divide this mask with the generating

function for linear subdivision %, we obtain the subdivision mask % +
1+ %M. The right-hand side of figure 2.1 shows the set of control points after
linear subdivision and the weights of the points that result in the same subdivision
schemes as on the left-hand side of figure 2.1.

One round of subdivision is now: apply linear subdivision and then apply the mask
% +1+ %ﬁ”_ﬁ to the resulting curve. We can interpret the second mask
as taking each point and adding to that point the average of the second differences
of the vertices on the adjacent edges. Figure 2.2 shows an example of this process.
First, we take the initial curve representing the cross-section of a pawn and perform
linear subdivision to produce a new curve. The old vertices from the previous curve

are highlighted for clarity. Next, we apply the differencing pass to this new curve, and



Figure 2.2 : Subdividing a curve by performing linear subdivision and then differenc-
ing.

the resulting curve corresponds to one round of subdivision. We can then continue
this process to subdivide the curve further if desired.

In this framework linear subdivision isolates the change in topology (adding new
vertices) and the differencing mask isolates the positioning of that geometry. Gener-
alization of linear subdivision to surfaces is trivial so we need to concentrate only on
generalizing the difference mask. Also notice that before we factored the subdivision
scheme, the original vertices were left alone but new vertices had the four-point mask
applied to them (see equation 2.1). Now the rule for all of the vertices after linear
subdivision has become uniform; the differencing pass is applied to all of the vertices
regardless of whether the vertices were originally on the curve or inserted during linear
subdivision. The original vertices, p¥, are interpolated because the second difference

mask, —z~! +2 — 1z, is zero for the adjacent vertices since these vertices are the result

ko pk
P tPia

of linear subdivision (i.e. —p¥ + 2(==

) — p¥, = 0). While the fact that this rule
is uniform is trivial for curve schemes, this factorization will become more important
with surfaces as there will not only be original vertices and edge vertices, but face

vertices as well.



Figure 2.3 : Different types of points that need to be considered when subdividing
the mesh. They are (from left to right) vertex, edge, and face points.

2.2 Subdivision for Closed Surfaces

Next we generalize the curve subdivision scheme to surfaces by first taking the tensor
product of the derived curve scheme’s masks. This operation allows us to produce a
method for quadrilateral surfaces that works in the regular case where the valence of a
vertex is four (we define the valence of a vertex to be the number of quads incident to
the vertex). The challenge is to derive a generalization of the masks to extraordinary
vertices (valence # 4) that reproduces the regular case and is smooth in the limit.

Kobbelt [9] took a different approach when he generalized this same mask for
curves to quadrilateral surfaces. He considered the three different types of points
generated in one round of subdivision: vertex points, edge points, and face points
(see figure 2.3). Vertex points were left alone because they were the original control
points and don’t change in this interpolatory scheme. Edge points were generated
by applying the curve rule to the edges of the mesh to produce a new vertex in the
middle of an edge. Face points were then an application of the curve scheme to four
edge points. Therefore, the only generalization that Kobbelt needed to extend this
scheme to quadrilateral meshes was to generalize the curve rule to the case of an edge
vertex that is adjacent to an extraordinary vertex. The rule that he derives in the
extraordinary case is shown in figure 2.4.

We define a curve network to be a set of vertices and edges that connect those

vertices. We can define a curve network on a surface by choosing a subset of vertices
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Figure 2.4 : Kobbelt’s rule for positioning an edge point near an extraordinary vertex.

and edges on the coarse control polygon to be part of that curve. If subdivision rules
are defined for the curve network, then the curve can be subdivided as well. As long
as the surface subdivision scheme produces a surface that interpolates the subdivided
curve network, then the shape of the surface can be controlled by manipulating the
control points of the original curve network. Specifying the position of the curve
network gives a very intuitive feel for the shape of the final subdivided surface.

Note that Kobbelt’s subdivision scheme cannot be viewed as a subdivision scheme
for curve networks because the rule for positioning a new vertex on an edge relies not
only on edge adjacent vertices, but face adjacent vertices as well (see figure 2.4). The
subdivision method that we present will have the property that the position of new
edge points is determined only by edge adjacent vertices and, hence, can be viewed
as a subdivision scheme for curve networks.

In contrast to the way Kobbelt extended his subdivision scheme to surfaces, we
have factored the subdivision mask into linear subdivision and differencing. We only
need to generalize those two masks to surfaces. Generalizing linear subdivision is
trivial and just becomes bilinear subdivision. Now all that is left is to generalize the

difference mask. Note that this rule is uniform for all vertices: vertex, edge, and face.
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Figure 2.5 : Positioning of a vertex by adding in face differences and edge differences.

This property makes the method easier to implement due to the two uniform masks
that are applied to the surface.

To compute the tensor product of the difference mask, we again appeal to gen-
erating functions. We can represent this operation as the product of two generating
functions by multiplying s[x] * s[y]. Therefore, the subdivision mask for surfaces in
the regular case is then s[z,y] = s[z] * s[y] = Ys;s;2'y?. These coefficients can be

easily viewed as a 2D matrix.

1 -2 -6 -2 1 1 -2 1 0 O 0o o0 1 -2 1
1 -2 4 12 4 -2 1 -2 4 -2 0 O o 0 -2 4 =2
o1 —6 12 36 12 —6 = o1 1 -2 1 0 O + 0o o0 1 -2 1 +

-2 4 12 4 -2 0 0 0o 0 O 0o 0 0 0 0

1 -2 -6 -2 1 0 O o o0 0 0 0
0 0 0 0 o0 0 0 0 0 0 —8 0 0o o 0O 0
0 0 0 0 0 0 0 0 0 16 0 0 O 0 0
1 -2 0 0 + 0 0 -2 1 + —8 16 —32 16 -8 + 0O 0 64 0 O
-2 4 -2 0 O 0o 0 -2 4 -2 0 0 16 0 0 o 0 0
1 -2 1 0 O 0 0 1 -2 1 0 0 -8 0 0 O 0 0

This scheme is then interpreted as: linearly subdivide the mesh and then for each
point add in the average of the face differences (the tensor of the second difference
mask shown above) from each of the face-adjacent vertices and the edge differences
from the edge-adjacent vertices. Figure 2.5 illustrates this process. After linear
subdivision we add in the face differences (represented as gray regions) to reposition
the point as shown in the top of the figure. Next we add in the edge differences
(highlighted in the bottom of the figure), which produces the final position of the

point after one round of subdivision.
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Figure 2.6 : Face differences and edge differences that need to be computed in the
extraordinary vertex case.

In the curve case, the original vertices are interpolated because the edge differences
are necessarily zero, since the adjacent vertices are the result of linear subdivision.
The same is true here; the edge differences are still zero and the face differences are
as well. Vertices that are added on the edges of quads during linear subdivision are
only affected by the edge differences because the face differences will be zero. Face
points are the only points that are affected by both the face differences and the edge

differences.

2.2.1 Extraordinary Vertices

Unfortunately, this scheme in its current incarnation does not handle extraordinary
vertices, that is, vertices with valence other than 4. Figure 2.6 shows the masks that
need to be computed in the extraordinary case. The top row shows the face masks
that need to be calculated for the different types of points (vertex, edge, and face) and
the bottom row shows the corresponding edge masks. As seen on the far right of the
figure, we need to generalize the difference operator for faces to extraordinary vertices.
The edge difference mask also needs work since it is unclear how the difference mask
should behave when centered on an extraordinary vertex (see middle of bottom row).

To calculate the face difference at an arbitrary valence vertex, we process each



e
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Figure 2.7 : Face difference mask for an arbitrary valence vertex.

Figure 2.8 : Edge difference rule at an extraordinary vertex across the highlighted
edge (left). Edge difference rule at a valence three vertex (right).

polygon containing the specified vertex and accumulate the mask 1 —x —y+zy. This
process will result in the mask shown in figure 2.7. This mask is then divided by 4n
where n is the valence of the vertex.

Extending the edge rule —z ! + 2 — z to extraordinary vertices requires more
work. This rule needs to have the property that, at a vertex of valence four, the rule
is —z~! 42 — z to maintain the tensor product structure. Figure 2.8 (left) shows the
edge rule at an extraordinary vertex. The rule is essentially symmetric except that
the differences on edges adjacent to the highlighted edge are zero so that the tensor
product case is reproduced. Note that this ordering of the edges is implicitly stored
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Figure 2.9 : Subdivision of an “A” containing vertices of valence three to five. Far
right also shows the curve network interpolated by the surface.

in the polygons containing these vertices. Using this resulting difference, we divide
the difference by 2n and add the quantity to the vertex to be repositioned.

However, there is a problem with the mask shown in figure 2.8 (left). The mask
fails to produce a surface that is C! in the case of a vertex of valence 3. To overcome
this continuity issue, we provide a different rule to use in the case where the valence is
3. Instead of using the difference mask of figure 2.8 (left), we use the mask in figure 2.8
(right). Essentially only half of the difference along the other edges is subtracted out.

Notice that the edge rules that we have described only require other edge vertices.
The face differences for edge vertices are necessarily zero and none of the edge dif-
ferences require face-adjacent vertices. Therefore, the subdivision rules that we have
described so far can be viewed as a subdivision scheme for curve networks as well.
Specifically, the edges of the original control surface define a curve network that, when
subdivided, the surface made up of that network will pass through.

Figure 2.9 shows an example mesh subdivided using these rules for extraordinary
vertices. The “A” depicted in the figure contains vertices of valence three on the
“feet” and also of valence five where the “feet” connect to the rest of the “A.” The
mesh on the far right also shows the curve network defined by the edges of the original

mesh that the surface interpolates.
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2.3 Implementation

This subdivision scheme is surprisingly simple to implement. Previously, we factored a
single subdivision step into two passes: linear subdivision and differencing. Therefore,
we will implement a single round of subdivision as two separate passes. Although
several different masks need to be computed for each pass, each mask will require only
the one-ring around each vertex. This local structure of the masks allows us to define
a simple mask for each quad that is accumulated for the vertices in the mesh. We
will also assume that the geometry being subdivided will be in a topology/geometry
format represented as {T', G} where T is a list of quads, each of which is a list of four
indices, and G is a list of vertices.

The first step in the subdivision process is to perform linear subdivision. This
phase can be computed using a linear pass over all of the quads in the mesh. For each
quad in the given mesh we divide the quad into four quads. Vertices at the corners
of the quad stay the same, but new vertices on the midpoints of the edges and at the
centroid of the quad need to be added to the mesh. To avoid adding the same vertex
twice to the list of vertices, we use a hash table. Before the four new vertices at the
midpoints of the edges are added into the new mesh, each vertex is checked to see
if that vertex has already been added to the hash table with its key formed by the
indices of the two vertices at either end of that line segment. If the key is already in
the hash table, the index associated with that key is used instead of adding a new
vertex to the mesh. If the vertex is not found, then a new vertex is inserted both into
the mesh and into the hash table. Once all of the quads have been processed, the
mesh is complete and is passed on to the next pass in the subdivision process.

The next part of the subdivision process is the differencing pass. Because linear
subdivision isolates the change in topology, no alterations are necessary in the topol-
ogy list during this pass. During the differencing pass we also add various differences
into each of the vertices. Therefore, we will initialize our output mesh to be the same

as the input mesh and accumulate the various differences into each of the vertices.
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Figure 2.10 : The symmetric mask that is accumulated in edgediff]:].

This pass requires that several different quantities be computed for each vertex. First,
the valence of each vertex needs to be calculated. This quantity, val[i| is found by
performing a pass over all of the quads and incrementing val(i] for each index, 4, in
the quad’s list of indices. Next, the face difference, facediff]i], and edge difference,
edgedift[i], need to be calculated for each vertex.

The face difference (figure 2.7) is relatively simple to compute using a linear pass
over all of the quads. Let face be the list of vertex indices for the quad that we're

currently processing. For each quad in the mesh and for all indices in that quad, we’ll

clfacefj-aiface)j—1)]-ag[face}j+1]]+Gface[j+2]]
avaliface[;

into facediff[face[j]]. After all of the quads have been processed, facedift[i] will contain

compute the mask and add that quantity
the face difference mask for the i** vertex as shown in figure 2.7.

The edge difference mask (figure 2.8) is slightly more difficult because the differ-
ence mask is not symmetric. However, the mask that we’ll compute during this
step will be symmetric, but when the difference is added into the vertex to be
positioned, edges will be subtracted out to give the difference its final form. For

each quad in the mesh and for all indices in that quad, we’ll accumulate the mask
axG[face[j])—c[facej—1]-g[face[j+1]
2

into edgediff[face[j]]. This process will form the
mask shown in figure 2.10 for all of the vertices.

The final step in this pass is to accumulate all of these passes for the various
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differences together to reposition the vertices resulting from linear subdivision. Again,
this step can be computed using a linear pass over all of the quads in the mesh. For
each quad and for each index, we’ll add into the vertex the face difference associated
with the face-adjacent point on the quad divided by the valence of this vertex. The
edge differences associated with the two edge adjacent points on the quad will also
be added in except that the orthogonal edge on the quad will be subtracted out to
produce the mask shown in figure 2.8 (left). The resulting edge differences will then
be divided by four times the valence of the edge-adjacent vertex and added into the
vertex to be positioned. The extra factor of two in the denominator for the edge-
adjacent vertices is because each edge-adjacent vertex will be processed exactly twice
since the surface is a manifold. This process can be summarized in the following

update equation:

_ _ facediffifface[j+2])
Glface[j]] += valfface[;]]
' _edgediffiface[j—1)]—2¢[face[j—1]+2a[face[j—2]]
Glface[j]] += . aval[face[j—1]] 23)
Glface[j] += ¢dsediffifacelj+uscifacej+u+aciface]j+2)

aval[face[j+1])
The only special case that needs to be considered is in the case of a valence three

vertex. In the case where an edge-adjacent vertex is of valence three, only half of
the orthogonal edge is subtracted out removing the coefficient of two in the update

equation.
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Chapter 3

Non-Stationary Subdivision

Previously, we developed a stationary subdivision scheme for curves and surfaces,
which means that the subdivision rules did not change as a function of the level
of subdivision. We now turn to developing a non-stationary algorithm capable of
modeling a much wider variety of shapes. This non-stationary algorithm will turn
out to be a simple extension of the stationary method presented earlier. We will also
see that, by using this new method, we will be able to generate circles and, therefore,

surfaces of revolution as well.

3.1 Curves

In the stationary case for curves we developed a subdivision scheme by considering the
unique cubic polynomial that interpolates four consecutive points spaced uniformly
in a parametric space. We will proceed in a similar fashion for our non-stationary
subdivision scheme. However, now we use a different set of functions to determine the
interpolating curve. Instead of developing an interpolating curve with the functions
{1,t,12,43}, we use the functions {1,¢,cos(t),sin(#)}. This will give the subdivision
scheme the property that if the points are sampled uniformly off a function that can
be represented as a linear combination of {1,¢,cos(t),sin(¢)}, then this subdivision
scheme will reproduce that function. Unlike the cubic case, these coefficients will
be dependent on the spacing between the points due to the use of cos(t) and sin(?).

Solving for the weights gives the subdivision scheme

k+1 k
Do; = b;

k4l —wy k 8+twy k| Stwy k _ wp k
Prit1 = g Piat T Pi T 16 Pit1 — 16Pi2
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. 1
wk - Uk+10k+22 (3 2)

o = \/Hﬁ%, —1<oy<1

At first glance, equation 3.1 looks surprisingly similar to equation 2.2 from the
stationary case. The difference here is that wy, changes as a function of the subdivision
level k, which gives this method its non-stationary property. Also note that the
recursive definition of oy is exactly that of the half-angle identity for sin(¢) and cos().
Dyn derives this same subdivision method in [5]. However, the resulting scheme is
more complicated as the method is in terms of cos(¢) and the half-angle identity is
not used.

Ivrissimtzis et al. [8] also develop this same subdivision scheme by assuming that
four consecutive control points lie on a circle with uniformly spaced theta values asso-
ciated with them. The authors then solve for the new point on the circle, whose angle
is defined by the centroid of the angular components associated with the other four
vertices, in terms of the position of the four control points on the circle. Their rep-
resentation is simpler than that of Dyn’s [5]; however, their method is still expressed
in terms of cos(t).

The parameter, 0y, can be viewed as a tension that controls the shape of the curve.
For oy > —1 the sequence wy converges and has a limit of 1. If we set 0y = 1, then
wg = 1 for all k and the subdivision scheme becomes stationary and is exactly that
of equation 2.1. Developing an interpolating curve with the functions {1,¢,e", e}
yields the same subdivision scheme again but with gy > 1. Therefore, the range of the
tension has been relaxed to be gy > —1. Using the techniques described by Dyn and
Levin in [4], we can analyze the magnitude of the difference between the coefficients
of equation 3.1 and equation 2.1 to show that this subdivision scheme will produce a
curve that is C! in the limit.

We can also analyze the effect that different tension values have on the shape
of the curve. Figure 3.1 shows the subdivision of the same control polygon with

different tension values. As the tension becomes more positive, the limit curve tends
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Figure 3.1 : Subdivision of the same square with tensions —0.9, 0.0, 1.0, and 5.0 from
left to right.

to pull closer to the edges of the original control polygon. Conversely, as the tension
becomes more negative the limit curve pulls farther away from the edges of the original
polygon. In the case where the tension is set to 1, the curve produced is the same as
the stationary method shown earlier. However, when the tension is 0 the curve in this
example is exactly a circle. The fact that a circle can be produced is not surprising
though because circles can be represented using sin(¢) and cos(t), which are functions
this subdivision scheme is designed to reproduce.

Using generating functions again, s[z] for equation 3.1 is s[z] = Z%kg~ 34540kl

1+ 8%y — 2eg3 This subdivision mask can then be factored by dividing s[z] with
the generating function for linear subdivision % We then obtain the subdivision
mask wk% + 1+ wk%w’ﬁ. Notice that this scheme is the same subdi-
vision scheme for curves as described in section 2.1 except that the differences at
adjacent vertices are weighted by wg. One step of subdivision is then to perform
linear subdivision and add in the differences at adjacent vertices weighted by wy.
We can further generalize this scheme to assign different tensions to the different
edges as is done in [11]. Each edge in the curve will be associated with a different
tension. During linear subdivision, each edge inherits the tension, updated via the
recurrence in equation 3.2, from the previous edge that generated the current edge.
Given a point whose adjacent segments have tensions o and &y, the subdivision mask
for that point is then wk%—i—l—i—wkw where wy, and 1, are the weights

from equation 3.2 and oy and &, are the initial tensions associated with those edges.
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Figure 3.2 : Subdivision of a closed curve starting out as a square with tension 0.0
that converges to a circle.

In figure 3.1 when the initial tension is 0, a circle is produced. In general we can
make a regular n-gon converge to a circle by choosing the initial tension correctly. By
assigning the tension cos(%’r) to each edge, we can prove that the curve converges to a

circle. At every round of subdivision, a regular 2n-gon is produced from the previous

regular n-gon whose updated tensions are cos(g). Taking this process of producing
regular n-gons to the limit yields a circle. Figure 3.2 shows the subdivision process

for a square converging to a circle.

3.2 Swurfaces

Our next step is to extend this non-stationary curve scheme to surfaces. In section 3.1,
we showed that the non-stationary curve method is a weighted generalization of the
stationary curve scheme; the same will be true for our non-stationary surface scheme.
Like before, we begin with the tensor product of the differencing mask to extend this
subdivision scheme to regular meshes and later generalize the regular vertex case to
extraordinary valence vertices.

In the non-stationary curve scheme we provided a generalization to curve segments
each having different tension values. We will keep with this generalization when
extending to surfaces. Suppose that our surface has tensions o,, 6, in the x-direction
and o,, 0, in the y-direction on the edges incident to a vertex to be repositioned

(see figure 3.3). The generating functions for the two curves would then be s[z] =

—2 -1 2 -2 -1 2
—x 2r—1_ ~ —1420—2x —y 242y 1 A —142y—y
wwig L + 1 + wxil A alld S[y] = wy 3 1 + ] + T,Uy L 8 . Ihe
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Figure 3.3 : Tensions on edges incident to a vertex to be repositioned in the non-
stationary case.

subscript “k” has been dropped from the weights, but it should be understood that
the weights depend on the level of subdivision. We can visualize the results of the

tensor product operation, s[z] * s[y], as a matrix.

1 -2 1 0 0 0 0 1 -2 1 0 0 0 0 o
. —2 4 -2 0 o0 0 0 -2 4 -2 0 0 0 0 o
o1 | wewy 1 -2 1 0 0 |+dwewy | 0 0 1 -2 1| +wewy 1 -2 1 0 o |+
0 0 0 o 0 0 0 0 0 -2 4 -2 0 0
0 0 0 o0 0 0 0 0 1 -2 1 0 0
0 0 0 0 0 0 o 0 0 0 0 o0 0 0 0
0 0 0 0 0 0 o 0 0 o 0 o 0 o 0
Wedy | O 0 —2 1 | +wz]| -8 16 -8 0 0 |+w]|0 0o -8 16 -8 |+
0 0 -2 4 -2 0 0 0 0 0o o 0 o 0
0o o 1 -2 1 0 0 0 0 0 o0 0 0 0
0 0 0 0 0 0 0 -8 0 0 0 0 0 0 0
0 o0 0 0 o0 0 0 16 0 0 0 0 0 o
wy o 0o -8 0 o0 |+wy |0 0o -8 0o o |[+] 0o o 64 0 0O
0 0 16 0 0 0 o 0 o0 0 0 0 0 0
0 0 -8 0 0 0 o0 0 0 0 0 0 0 O

This subdivision scheme has a particularly simple interpretation in terms of the
edge differences and face differences formulated for the stationary, surface method.
For each vertex after linear subdivision, add into the vertex the edge differences times
the weight on that edge plus the face differences times the product of the weights on
the two edges of that face incident to that vertex. Tension assignment for the new
edges after linear subdivision is the same as in the curve case. However, we need to
define what the tensions are for the edges created interior to a quad during linear
subdivision. If a quad has tensions o, and &, on two of its parallel edges, then we

define the tensions of the new interior edges of that quad parallel to those edges
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Figure 3.4 : Subdivision of a torus with tensions —0.5, 0.0, 1.0, and 5.0.

to be the average of those two tensions. Notice that, like the non-stationary curve
method before, this surface method is just a weighted version of the stationary surface
scheme presented earlier. In fact, all of the mechanics developed previously to extend
the stationary scheme to extraordinary valences work for the non-stationary scheme as
well. Figure 3.4 shows an example of this non-stationary subdivision scheme applied

to a torus with different tension values.

3.3 Surfaces of Revolution

In the non-stationary curve case (section 3.1) we could reproduce a circle with the
correct choice of tensions. Since we constructed the surface scheme by taking the
tensor product of the curve scheme, we should be able to produce exact surfaces of
revolution, that is, surfaces whose cross-section is exactly a circle. In the curve case
the tensions were chosen to be cos(2%) to produce a circle from a regular n-gon. The
same will be true with surfaces. If all of the weights are chosen along the cross-section
to be cos(%”) and the object’s cross-section is a regular n-gon, then that cross-section
will converge to a circle and will produce a surface of revolution.

Figure 3.5 shows the subdivision of an object that converges to an exact sphere.
At first the object may seem to consist only of triangles. That is not the case. The
quadrilaterals that make up the object have been collapsed. Two vertices of each quad

are identified to be the same point in the topological sense. Furthermore, we alter
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Figure 3.5 : Subdivision of a sphere. All tensions are set to zero and points at the
poles are identified so that a sphere is reproduced.

linear subdivision to return the same point topologically when interpolating between
two topologically identical vertices. The two poles on the sphere are located where

the identified points are on the original mesh.

iy Yy

Figure 3.6 : Creating a surface of revolution using our tool. The final surface produced
has the same profile as the specified curve.

We have also implemented a program using these results that allows the user to
create surfaces of revolution very easily. The entire process is shown for a queen
chess piece in figure 3.6 and uses the subdivision rules defined in section 4.2 to create
the normal discontinuities seen. First the user specifies control points for a curve

that represents the profile of the object (figure 3.6, left). The program then reflects
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these control points over the axis of revolution and subdivides the curve using the
method described in section 2.1 to generate a complete profile of the surface. Next,
the program constructs a base surface by revolving the curve around the axis of
revolution to form a surface. Finally, this surface is subdivided using the techniques
in section 3.2 to produce the final surface. This surface will have the same profile as
the curve specified by the user and the cross section of the surface will be exactly a

circle.

3.4 Weighted, Stationary Surfaces

When Kobbelt [9] generalized equation 2.2 to surfaces, the result was a weighted,
stationary surface scheme. Previously, we presented a non-stationary, weighted sub-
division scheme for surfaces. The subdivision scheme was just a simple weighted
version of the non-weighted subdivision scheme in section 2.2. We can produce a
weighted, stationary subdivision scheme for surfaces by weighting the differences by a
stationary weight, w. This generates an equivalent subdivision scheme to the method
in [9] except for the generalization to extraordinary valence vertices. However, our
generalization has the added advantage that our subdivision scheme can be viewed

as a subdivision scheme for curve networks as well.
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Chapter 4

Normal Discontinuties

So far the surfaces that we have discussed have been surfaces that are C* everywhere.
Occasionally the artist may desire to construct surfaces that have normal disconti-
nuities. For instance, an artist may want a normal discontinuity to follow a line on
the surface to construct an edge in the model. Other discontinuities include point
discontinuities. These are areas where the normals diverge on the surface only at a
single point.

There are a variety of techniques available that give subdivision the ability to
construct such creases in the resulting limit surface. One such method is by defining
what happens to the surface on open surfaces, that is, surfaces that are not closed.
Then a curve discontinuity in the normals can be constructed by making two open
surfaces with identical boundaries. If the subdivision rules along the open edge are
chosen correctly, then the surface will appear closed except that the normals on
either side of the boundary will not converge and a crease will be produced in the
surface. Kobbelt took a similar approach when constructing normal discontinuities
in his subdivision scheme [9].

Another method for developing normal discontinuities in subdivision surfaces is
by using a tagged mesh format as was done in [7]. In this method an arbitrary surface
is taken as input and is annotated with a set of curves and points that describe where
the normals on the surface should diverge (i.e., where creases should appear). The
subdivision rules are then altered to take these creases into account when constructing
a new surface to generate these desired features.

This method of tagging discontinuities has a number of advantages over using
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open surfaces to represent creases. Creases are much easier to construct using the
tagged mesh format instead of breaking the mesh apart to form two open surfaces.
Point discontinuities are handled much easier as well, since it is not immediately clear
how to even construct a point discontinuity using open surfaces.

This chapter will discuss the creation of these normal discontinuities in the surface.
Although the method of constructing creases using open surfaces is less desirable than
using a tagged mesh format, open surfaces do arise in practice and are not always
used to construct creases. Therefore, we will show how this method extends to open
quadrilateral nets. Then we will move on to building creases using a tagged mesh

format. Finally, we will end with a method for subdividing non-manifold surfaces.

4.1 Open Quadrilateral Nets

As of yet we have not discussed what happens on the boundary of the surfaces de-
fined by this method. If the subdivided boundary edges follow the curve subdivision
scheme defined in section 2.1, then C° creases could be formed in the surface by
constructing two open patches that share the same boundary. We’ll generate this
property by altering the edge differences that are accumulated into the vertices dur-
ing the differencing pass in the surface subdivision scheme. The guiding principle
of this generalization will be to try to reproduce the curve rule along the edges of
the mesh. This approach will preserve the ability of this subdivision scheme to be
interpreted as a subdivision scheme for curve networks even in the presence of an
open mesh.

In section 2.3 we calculated a symmetric edge difference for each vertex (see fig-
ure 2.10). When that edge difference is added into the vertex to be repositioned, the
edges orthogonal to the edge in the curve are subtracted out to produce the edge
difference mask in figure 2.8. We’ll proceed in the same way making sure that dif-
ferences along orthogonal edges are zero. In order to do generate these differences,

we’ll introduce the concept of an edge valence. The valence of an edge in the mesh is
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Figure 4.1 : Repositioning an edge vertex on the boundary, which is highlighted by the
arrow. Gray lines are boundary edge. Weights are the accumulated edge difference,
edgedift[s], for an adjacent vertex.

defined to be the number of quads that contain that edge. Notice that the valence of
every edge is two in the case of a manifold surface and that boundary edges have a
valence of one.

The way that we will accumulate the edge differences, edgediff[i], is the same as
in section 2.3 by walking over each polygon containing the vertex and accumulating
the mask 1 — %x — %y. For closed meshes each edge is counted twice and we obtain
the original mask. However, on a open mesh we obtain the mask shown in figure 4.1.
In this figure the gray lines depict the boundary edges of the net.

In section 2.2 we designed the edge difference mask to reproduce the curve rule
along the edges of the mesh in the tensor product case. We’ll do the same thing here
to produce the curve rule along the boundary edges by accounting for the fact that
edges in the edgediff]s] quantity have different weights associated with them according
to the valence of that edge (see figure 4.1). In the update equation of equation 2.3,
the edge difference along the orthogonal edge is subtracted out of edgediff[i]. To
account for the differing weights on the edges, we’ll subtract off the edges weighted
by the valence of that edge divided by two. Because this edge difference will be
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Figure 4.2 : An open, circular cylinder subdivided with all tensions set to 0.0.

added into the vertex to be repositioned once for each quad containing that edge, we
will also divide the edge difference by the valence of that edge. This process can be

summarized in the modified update equation:

_ _ facediffiface[j+2])
Glfacelj]] + = valfface[j]

: _2«edgediffifacej-1jj+valface[j-1],face[j—2]j«(G[face[j—2]-c[face[; -1]))
Glfacelj]] + = axval[face[j—1]«valface[j],face[j—1]]

: _ 2-edgediffifacefj+1))+valifacefj+1).facefj+2))«(c[face]j+2))-cifacefj+1])
Glfacelj]] + = axval[face[j+1]«valface[j],face[j+1]]

With the generalization of the edge difference mask complete, there is still the
question of how the face difference mask behaves on boundaries. Remember that
the face difference mask is necessarily zero for all vertices except for face vertices
that are inserted into the mesh (see figure 2.3). The only thing that we’ll do for
the face differences is to truncate them if the mesh is absent in those areas. This
truncated mask has the advantage of having a very simple implementation in terms
of the method described in section 2.3 as the method does not need to be modified
at all.

Figure 4.2 illustrates the subdivision of an open cylinder as an example of the
behavior of this method on the boundary of the mesh. The tensions in the mesh are
set uniformly to zero so that the cross-section of the surfaces approaches a circle and a

surface of revolution is produced as discussed in section 3.3. Because the subdivision
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Figure 4.3 : Umbilic torus-like surface modeled as an open surface using tensions.

rules reproduce the curve case along the open edges of the mesh, the boundary of the
surfaces converges to a circle as well.

Figure 4.3 illustrates subdivision of an umbilic torus-like surface. Although not a
surface of revolution, the surface utilizes tensions to achieve its shape. Despite the
appearance of the surface, the shape is not modeled as a closed surface. Instead, the
torus is a single strip of polygons that winds around three times rotating % of a rotation
each revolution. The boundary edges match up perfectly to give the appearance of
a closed surface. The tensions are chosen to be uniformly cos(3") because there are
six sectors in one revolution. Since we chose the boundary rules to reproduce the
curve case, no cracks appear on the edges. This figure also illustrates the use of open
surfaces to form creases in the mesh as is seen by the C° line that appears where the

edges of the surface meet.

4.2 Tagged Discontinuities

Tagged discontinuities provide a superior method for introducing creases into a mesh
over using open meshes to describe creases. Usually these meshes are represented
in a topology/geometry format as discussed in section 2.3. The topology here is
represented as a list of quadrilaterals. To introduce a crease point or line all that

is needed is to insert a point or a line into the list of quadrilaterals. These lower
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dimensional faces are the “tags” that identify where normal discontinuities should
appear in the surface.

The rules for subdivision need to be modified in order to accommodate these tags
that appear in the topology. Factoring the subdivision scheme into linear subdivision
plus differencing makes these modifications quite easy as the changes can be described
in terms of the edge and face differences from section 2.2. Furthermore, the crease
lines introduced into the mesh will follow the same curve subdivision rules described
in section 2.1.

In order to make these modifications we will need the concept of the dimension
of a vertex. The dimension of a vertex is defined to be the dimension of the lowest
dimensional face containing that vertex. Quadrilaterals are of dimension two, lines
of dimension one, and points are of dimension zero. For example, if a vertex has five
quadrilaterals touching it as well as two lines, then the vertex is of dimension one.
The dimension of all of the vertices on a mesh can be calculated using a simple linear
pass over all of the faces in the topology list.

Now all of the concepts introduced previously need to be redefined in terms of
the dimension of the vertices. The valence of a vertex is now defined as the number
of faces containing the vertex of the same dimension as that vertex. The valence of
an edge is defined to be the number of faces containing that edge that are of the
same dimension as the lowest dimensional vertex on either end of that edge. Also,
when calculating the various differences (edge and face) for each vertex, the masks are
restricted to faces that are of the same dimension as the vertex that the differences
are being calculated at.

The rules for subdivision of a mesh are now very simple in terms of these modified
definitions. Linear subdivision is not changed at all. However, the differencing pass
is changed in one small way. When processing a vertex of dimension two, only add
the edge and face differences into the vertex if the vertex centered at the respective

difference is of the same dimension as the vertex to be repositioned. However, when
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Figure 4.4 : Example of subdividing a mesh with normal discontinuities described
using a tagged mesh format. Tagged edges and vertices are highlighted on the coarse
model for clarity.

processing a vertex of dimension one, only add the edge differences into that vertex of
the vertices edge adjacent to that vertex that are of dimension one as well. Dimension
zero vertices are not modified at all because this is an interpolatory subdivision scheme
and no new dimension zero vertices are added during the course of subdividing the
mesh.

Figure 4.4 (left) shows an example of a mesh before subdivision with the crease
edges and points highlighted. On the right of the figure is the same surface after
several rounds of subdivision. Notice that the normals of the surface diverge in the
specified areas.

Finally, figure 4.5 contains an example that merges the tagged discontinuity
method with the surfaces of revolution presented in section 3.3. This model of a
king chess piece is modeled almost completely as a surface of revolution with several
tagged edges producing circular creases in the model. However, the top of the model
contains a six-point cross that does not have a circular cross-section. In fact, the
cross contains crease edges along all of the edges of the cross and crease points at its

vertices to force linear interpolation of this portion of the mesh.
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Figure 4.5 : A model with several creases (point and edge) that generate the final
shape.

4.3 Non-Manifold Subdivision

A manifold point on a surface is a point where there exists a small neighborhood
around the point such that the surface is topologically a disk. Non-manifold points
may exist on some surfaces as well as non-manifold lines where an edge in the mesh
is shared by more than two polygons. Although it is not immediately obvious how
non-manifold surfaces fit into a chapter on normal discontinuities, the normals of the
surface typically will diverge around the non-manifold point or line.

The subdivision rules for non-manifold surfaces turn out to be very simple to
construct. The theme here is the same as before: reproduce the curve rule along the
edges of the surface. In section 4.1 this technique was used to construct rules for open
surfaces. In fact, the same rules developed in section 4.1 work for non-manifold edges
as well. The case of a non-manifold point, however, is not handled, but it is very rare
that any arise in practice.

Figure 4.6 shows an example of subdivision of an acorn that is represented as a
non-manifold surface where the initial weights are set uniformly to zero to reproduce

a surface of revolution. The bottom portion of the figure shows a cross-section of the
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Figure 4.6 : Subdivision of an acorn modeled as a non-manifold surface.

surface for several different levels of subdivision to illustrate the non-manifold edges
present in the surface. Notice that the surface is only C° along the non-manifold

edges.
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Chapter 5

Conclusion

We have derived a non-stationary, interpolatory subdivision scheme for curves and
arbitrary quadrilateral nets capable of reproducing circles and surfaces of revolution.
The curve method was extended to surfaces and extraordinary vertices by factoring
the subdivision scheme into linear subdivision and differencing. This extension re-
vealed that this subdivision scheme could also be thought of as a subdivision scheme
for curve networks. The non-stationary property of this subdivision scheme was given
by a tension parameter that changed with the level of subdivision and was updated
using a simple recurrence. We also generalized the range of this tension parame-
ter, which allowed for a wide range of shapes to be produced. Next, we showed
that the non-stationary subdivision scheme presented was just a weighted version of
the stationary subdivision scheme. Finally, we ended with two different techniques
based on open meshes and tagged meshes to introduce normal discontinuities into the

subdivided models.
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