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Abstract

We present a new algorithm for compressing surfaces createdfrom oriented points, sampled using a laser range
scanner or created from polygonal surfaces. We first use the input data to build an octree whose nodes contain planes
that are constructed as the least square fit of the data withinthat node. Then, given an error threshold, we prune this
octree to remove redundant data while avoiding topologicalchanges created by merging disjoint linear pieces. From
this octree representation, we provide a progressive encoding technique that encodes the octree structure as well as
the plane equations. We encode the planes using distances tothree points and a single bit. To decode these planes,
we solve a constrained optimization problem that has closed-form solution. We then reconstruct the surface from
this representation by implicitizing the discontinuous linear pieces at the leaves of the octree and take a level set of
this implicit representation. Our tests show that the proposed method compresses surfaces with higher accuracy and
smaller file sizes than other methods.

1. Introduction

Many recent advances in 3D scanner technology
bring new opportunities and possibilities for creating
digital models of real world objects. These digital mod-
els have many applications ranging from visualization
and preservation of artistic works, to navigation and re-
construction of large environments. To acquire these
models, one typically uses a laser range scanner that
generates 3D point samples on the surface of the object.
These point samples need to be processed further since
almost all applications require polygonal models with
explicit connectivity. Most methods for creating polyg-
onal models are implicit, that is, they build from a set of
(possibly oriented) point samples an implicit function
whose level set is the reconstructed surface. Applying
a polygonalization method such as Marching Cubes [1]
to that function creates the desired polygonal model.

One of the main difficulties that has hampered the
performance of surface reconstruction methods in re-
cent years is the sheer quantity of data. For exam-
ple, researchers in the Digital Michelangelo project [2]
scanned statues for the purpose of digital preservation
of these works of art to millimeter or sub-millimeter ac-
curacy, which resulted in data sets for each statue in the
range of hundreds of millions to billions of point sam-
ples. Light Detection And Ranging (LIDAR) data col-

lected from an aircraft could be of the order of billions
to tens of billions of samples. While several out-of-core
reconstruction methods have been built [3, 4] to han-
dle this massive amount of data, simply storing and/or
transmitting the data is a challenge. Therefore, new in-
novative approaches for addressing storage and trans-
mission issues via data compression are needed.

There are many opportunities for compression in the
surface reconstruction process. One solution is to sim-
ply compress the input points. Another is to generate
and compress an intermediate data structure that repre-
sents these points. One could also compress either the
implicit function generated from the point cloud or the
polygonal model that is the result of the surface recon-
struction process (see Figure 1).

Contributions
We propose an algorithm that performs compression

on an intermediate data structure that we build from the
oriented input points (see the second image from Fig-
ure 1). This data structure is an adaptive octree with
planes at every node containing input data points. From
this representation, using [5], we can easily compute an
implicit function and extract its level set to produce the
final, reconstructed surface. More precisely, we

• provide a method for creating an adaptive octree
that removes redundant geometric information and
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Figure 1: Reconstruction pipeline for the Bishop model fromleft to
right: oriented point cloud generated from surface samples, tree data
structure whose nodes contain planes, implicit function representing
the reconstructed surface, and the final polygonal model.

at the same time avoids extrapolation and merging
of different regions of the surface,

• compress the octree structure together with the
planes at each of its nodes. To encode a plane at
a node, we use the distances from three points as-
sociated with that node to the plane and a single
bit.

• decode the planes by providing a closed-form so-
lution for a constrained optimization problem.

2. Related Work

Data compression is an extensively studied area. To
narrow our discussion of previous works, we will only
examine progressive compression algorithms for sur-
faces. Unlike single rate encoders, progressive encoders
embed a low resolution representation of the surface in-
side of a higher resolution representation. While gener-
ally having less potential for compression, progressive
encoders are ideal for streaming data in low bandwidth
environments or when transmissions may be truncated
prematurely.

Based on the reconstruction pipeline in Figure 1,
the first opportunity for compression is to compress
the input points. Progressive point cloud compression
methods rely on inserting points into a deep octree
and encoding the connectivity of the resulting struc-
ture [6, 7, 8]. More precisely, a point is simply repre-
sented by the center of its leaf node (at high depths, this
encoding is almost lossless). Note that if the point set is
oriented, normals will also have to be compressed [9].

Many surface reconstruction algorithms [10, 11, 4]
use the input points to create an implicit function rep-
resented as values over a uniform or adaptive grid, as

shown in the third image in Figure 1. Another com-
pression strategy is to compress this function instead of
the input points. For example, Laney et al. [12] use
wavelet compressed signed distance volumes and en-
code the wavelet coefficients using a zero tree encoder,
while Chandrasekaran et al. [13] use a multiscale surflet
representation to compress the implicit function.

The final opportunity for compression is to com-
press the polygonal model that represents the recon-
structed surface (see Figure 1, right). While it is
possible to treat the surface as an unstructured mesh
and apply compression algorithms developed for such
meshes [14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25],
Lee et al. [26] showed that significant gain is possi-
ble if we specialize the compression to take advantage
of how the surface was generated, namely as a level
set extracted from a uniform/adaptive grid. The au-
thors achieve significant compression results by using
a uniform octree and an entropy encoder to encode in-
side/outside information as well as detail vectors at the
leaves of that tree. Lewiner et al. [27] encode surfaces
extracted from hierarchical tetrahedral grids. Saupe and
Kuska [28] compress the extracted iso-surface by ex-
ploiting a grid based extraction method to predict inter-
section values.

We achieve our compression results by creating, en-
coding and decoding an intermediate data structure,
which is an adaptive octree with a plane inside each
node (see the second image of Figure 1) that represents
the original point cloud, and is used to produce the un-
derlying surface. A similar approach has also been ex-
plored by Park and Lee [29], where the authors build
an octree refined to a uniform depth wherever points
intersect the tree. Each node (interior or leaf) stores
a plane constructed using principal component analy-
sis (PCA) on the points within that node. They encode
these planes by storing the signed distance along the
normal direction of the parent’s plane from three points
(in the parent plane) to the child’s plane and perform a
zero-tree encoding [30] of these coefficients. The au-
thors essentially view every child’s plane as a function
over the domain of the parent’s plane. However, this
approach has two serious flaws. The first is that the
signed distance is infinite when the child’s plane is per-
pendicular to the parent’s plane. In this case the encod-
ing fails. If the distance to all three points is infinite,
the child’s plane will contain the normal of the parent
and can be rotated in any way about this normal. There-
fore, the child’s plane will be impossible to reconstruct
without additional information. Given the progressive
nature of the encoding, all further data in the file will be
corrupted. The second disadvantage of this approach is
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Figure 2: 2D explanation of pruning. From left to right: the plane
in the child nodes (blue), the parent’s plane (red), the pruned tree.
The bottom two nodes have parents whose planes can representtheir
children within the collapse tolerance while the top right node cannot.

the fact that the distances to these three points cannot be
bounded. In practice, the distances will be small if the
parent’s plane is a good prediction of the child’s plane,
but in general the distance can be unbounded (even infi-
nite as just stated), which makes quantization impossi-
ble and leads to poor compression.

We also encode planes using signed distances to three
points; however, we use minimum Euclidean distance
instead of distance along the parent normal. The ad-
vantage of doing so is that we can bound these dis-
tances with respect to the depth of each node, which
improves compression performance and eliminates the
failure case from [29]. The disadvantage is that we
cannot reconstruct the child plane by solving a linear
system of equations. Instead, during reconstruction,
we solve a constrained optimization problem that has
a computationally efficient closed-form solution.

3. Octree Generation

Our input is a set of oriented pointspi, i = 1, . . . ,N,
represented as column vectors with associated outward
facing unit normalsni. Without loss of generality, we
assume thatpi ∈ [0, 1)3. We form an octree, associated
to this point cloud, by refining octree nodes that con-
tain a point sample down to some maximum depthd,
specified by the user. This maximum depth is typically
chosen based on the number and sampling frequency of
the input points. For each octree node, we build a plane
restricted to the node that best fits the points contained
within that node in the sense that it minimizes the error
function

m
∑

k=1

∣

∣

∣n · (pik − o)
∣

∣

∣

2
, (1)

wheren is the unit normal of the plane,o is a fixed point
on the plane, andm is the number of points contained
within this node. We minimize this error function with

Figure 3: 2D depiction of common problems that arise in quadtree
collapse. The bounding box formed by the points in the node isshown
in yellow. The top row shows the merging of two disjoint pieces of
surface. The bottom row shows extrapolation of a piece of thesurface.

respect to the variablesn, o, with the constraintn ·n = 1.
The solution is given by a simple PCA, where

o =
1
m

m
∑

k=1

pik , (2)

andn is the unit eigenvector corresponding to the small-
est eigenvalue of the matrix

m
∑

k=1

(pik − o)(pik − o)T .

We choose the orientation ofn such thatn best aligns
with the average normal1m

∑m
k=1 nik of the points within

that node. In the unlikely event that the average normal
is 0, the point normals provide no useful information
about orientation. In this case we choose the orienta-
tion of the eigenvector randomly. In the cases where the
node contains fewer than three points, we use Equation
2 and the average of the point normals as the normal
of the plane. Note that we can compute the best fit-
ting plane by only storing 13 numbers (

∑

k pik pT
ik
,
∑

k pik ,
∑

k nik , m) regardless of the number of points within the
node. This constant space representation is clearly ben-
eficial when processing very large point sets.

3.1. Surface Reconstruction

Given adaptive octree with nodes containing a plane,
we can easily compute an implicit function to represent
the reconstructed surface. First, we extract the portion
of the plane that intersects the corresponding node by
applying Marching Cubes [1]. Then, using the resulting
polygons, we compute the wavelet coefficients of the

3



Figure 4: Left: example of merging two disjoint regions of the surface.
Right: the same region after enforcing our bounding box condition.

indicator function of the body enclosed by the recon-
structed surface with the 3D wavelet rasterization algo-
rithm of Manson et al. [5]. Finally, we extract a polyg-
onal mesh using a variation of Marching Cubes that op-
erates on octrees [31]. We apply this reconstruction al-
gorithm to the adaptive tree structure that we create in
Section 4.1.

Note that it may be possible to use other reconstruc-
tion methods that can reconstruct surfaces from discon-
nected polygons for this step. In particular, techniques
such as Poisson reconstruction [11] adapted to polygons
instead of oriented points may be better for noisy or
missing data. Our choice was motivated by choosing
a fast rasterization algorithm for volumes bounded by
polygons.

4. Compression

We compress our octree data structure in two sepa-
rate phases: pruning and encoding. During the pruning
phase, we perform a collapse of the octree to remove
geometrically redundant nodes of the tree. After con-
structing our adaptive octree, we encode both its struc-
ture and the planes in its nodes.

4.1. Pruning

Our pruning phase removes redundant geometric in-
formation from the octree and thus reduces the amount
of data to be encoded. In flat or even low curvature re-
gions of the surface, refinement of the octree is unneces-
sary since we store planes inside our nodes and a single
plane can represent the reconstructed surface well over
this region. Given an error toleranceǫ, specified by the
user, we start at the leaves and prune all children of a
node if the parent’s error, as defined by Equation 1, is
belowǫ. Our error function is monotonically increasing
as we prune nodes, so the pruning process will termi-
nate when all of the parent nodes of the current leaves

Figure 5: Left: example of extrapolation. Right: the same region after
our two-phase pruning pass.

have error greater than or equal toǫ. Figure 2 shows a
2D example of the pruning phase of the algorithm.

While this simple pruning phase works well, prob-
lems can occur even for point sets without noise. We
identify two common issues that may happen during
pruning, which are presented in Figure 3. The top of
the figure shows an example, where pruning produces
a single plane merging two disjoint regions of the sur-
face. The bottom row also illustrates a problem where
there are no points around an isolated region of the sur-
face and pruning produces a plane that extrapolates the
data in an undesired fashion. In all of these cases, the
pruning was possible because the error defined by Equa-
tion 1 was below the toleranceǫ specified by the user.
Nevertheless, these are artifacts we wish to avoid. Next,
we present two simple strategies that overcome these
problems in common situations.

Let us assume there is some minimum sampling den-
sity δ, associated with the point set. Then the Haus-
dorff distance between the final linear fits and the point
set should be less than or equal toδ, and the pruned
data structure should maintain this Hausdorff constraint.
Since computing Hausdorff distance between surfaces
and very large point sets is expensive, we approximate
this distance using bounding boxes. Our solution uses
constant space, independent of the number of points
inside each node, and requires that we only store the
bounding box of the points within each node.

To prevent merging of disjoint regions of the surface,
we compute the minimal distance between all pairs of
bounding boxes of the children nodes and prevent col-
lapse to the parent node if this distance is greater than
2δ. If the bounding boxes have distance greater than
2δ, then the Hausdorff distance between the plane in the
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Figure 6: A 2D example demonstrating the octree connectivity predic-
tion. Left: prediction by the parent plane. Center: actual connectivity.
Right: overlay of both plane sets and the output bits for the connec-
tivity.

parent node and the points within the children could be
greater thanδ. The check prevents disjoint regions of
the surface from merging even if the geometric error is
low. Figure 4 shows the effect both before (left) and
after (right) enforcing this condition in 3D.

To combat the extrapolation problem, we perform a
two phase pruning process. In the first phase, we prune
nodes as before but do not actually remove them. In-
stead, we mark these nodes for later deletion. During
the second phase, we start at the nodes that will become
leaves of the pruned octree. For each such node, we
compute the Hausdorff distance between the polygon,
generated by restricting the node’s plane to the node,
and the polygon, generated by restricting the same plane
to the bounding box of the points within this node. Since
the polygons are convex, coplanar and one is contained
within the other, this computation is not difficult. If this
distance is greater thanδ, we then unmark this node
and perform the same procedure to each of its children.
When all of the nodes have been processed, we delete all
marked nodes. Figure 5 shows the extrapolation prob-
lems before (left) and after (right) we apply this proce-
dure to a 3D surface.

Note that these heuristics do not enforce any strict
bound on the Hausdorff distance between the recon-
structed surface and the point cloud, and there will be
cases where the topology of the surface could change
during pruning. However, we have found that the pro-
posed techniques work well in practice and resolve
many common cases when the error in Equation 1 is
low but further pruning is undesirable.

4.2. Encoding

The second phase of our compression algorithm is
a breadth first traversal of the octree to progressively
encode both its structure and the planes inside its
nodes. For this compression, we utilize an arithmetic
encoder [32] (a form of variable-length entropy encod-
ing), which can generate fractional bit compression us-
ing the probability distribution of the output symbols.

Figure 7: 2D explanation of plane encoding. From left to right: the
parent’s plane (red) encoded as distances from two points, the chil-
dren’s planes (blue) and the transformed points we measure distance
from (black) for the bottom left child, the encoded distances for the
bottom left child.

The more skewed the distribution, the higher the com-
pression. Hence, we use a predictive encoding of both
the octree structure and the planes. Furthermore, we
typically achieve higher compression rates by build-
ing conditional probability distributions using a context.
For all of the different types of symbols we output, we
build different distributions for each type and use the
current depth of the octree as the context.

4.2.1. Encoding the octree structure
The result of the pruning algorithm from Section 4.1

is an adaptive octree whose nodes are one of the follow-
ing three types: empty nodes, leaves with data, or inte-
rior nodes with data, with only two symbols possible at
the maximum depth.

Given a parent node and its encoded plane, we predict
if a child contains data by intersecting the parent’s plane
with the child’s node. We predict that nodes intersecting
this plane contain data and that there is no data in the re-
maining children nodes. We then encode the difference
between our prediction and the actual structure by using
a simple XOR operation on the bits.

The prediction is based on the observation that, if the
geometry of the parent is a good approximation to the
geometry of the children, we will only encode a value of
zero. This operation will create an output with a skewed
distribution that will compress well with an arithmetic
encoder. Figure 6 shows a 2D example of this predic-
tion. The left image shows the parent’s plane in red and
the predicted connectivity. The center image shows the
actual children and the desired connectivity. The right
image shows the two datasets overlaid and the symbols
for the octree connectivity that are output during encod-
ing. For children nodes that contain data, we also output
a single bit specifying whether or not the node is a leaf.

4.2.2. Encoding the planes
To encode the planes of each node, we measure the

signed distance from three points on an equilateral tri-
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Figure 8: Reconstructing lines from two distance values in 2D yields
multiple solutions (left) or no exact solutions (right).

angle with center of massc, verticesqℓ, ℓ = 0, 1, 2, and
sides of length 2−( j+1) with j being the depth of the node.
We first position these points by computing a minimal
rotation that aligns the normal of the triangle used to
compute the parent node with the encoded normal of
the parent’s plane and rotate the triangle aboutc. Next,
we scale the triangle by a factor of 2−1 about its center
(thus the length of its sides becomes 2−( j+1) where j is
the level of the child node). Now, to encode the plane
of a child, we intersect the plane of the parent node with
the child node and translate the triangle such thatc co-
incides with the center of that intersection. If there is
no intersection, then we translate the triangle so thatc
coincides with the closest corner of the child node to
the parent’s plane. The 2D version of this process is
depicted in Figure 7. The left image shows the parent
node’s plane in red, encoded as a distances from two
points. The center image shows the children’s planes
in blue and the translated, rotated and scaled line seg-
ment (corresponding to our equilateral triangle in 3D) in
black for the bottom left child. The right image shows
the plane of the bottom left child encoded as distances
to our estimated points.

We then simply compute the signed distancevℓ from
the verticesqℓ of the resulting triangle to the child’s
plane by evaluating the child’s plane equation atqℓ. The
translation/rotation of the triangle is designed to per-
form an educated guess of where the child’s plane will
be. If our guess is a good one, then the magnitude of
these distances will be close to zero on average and will
compress well.

Since our construction ensures that the plane in each
node passes through that node and the size of the nodes
decreases by a factor of 2 at each level, the number of
bits necessary to representvℓ decreases linearly with the
depth of the octree. Given a node at levelj (with side
lengths 2− j), the distance fromc to any plane intersect-
ing the node is less than or equal to 2− j

√
3 becausec

is contained within the node by construction. Note that

Figure 9: From left to right: original surface reconstructed without
pruning, the surface reconstructed using an adaptive octree with 80
percent of nodes pruned, the surface reconstructed using anadaptive
octree with 98 percent of nodes pruned. The final compressed sizes of
each model are 1179.18KB, 282.47KB, and 46.18KB respectively.

the qℓ’s can actually lie outside the node. Our equilat-
eral triangle has sides of length 2−( j+1). Therefore, the
distance fromc to qℓ is 2−( j+1)/

√
3. By the triangle in-

equality, the distancevℓ from qℓ to a plane within the
node is bounded by

vℓ ≤ 2− j 7

2
√

3
,

which implies the magnitude ofvℓ decreases by a factor
of 2 each level of the octree. Using this property, we

quantizevℓ by multiplying by (2s− j −1)2j+1
√

3
7 , rounding

to the nearest integer, and storing the resultings− j bits.
Note that the signed distances from three points to a

plane are not sufficient to uniquely determine that plane.
There are at most two planes that have the same signed
distances to three non-collinear points and we need an
additional bit to select the correct one. The 2D illus-
tration of this problem is depicted on the left image in
Figure 8. If we consider the two circles with centers
qℓ and radii |vℓ|, there are two lines that are at signed
distancevℓ from the pointsqℓ, and these are the com-
mon tangent lines to the two circles. Moreover, since
we quantize our values (and therefore do not use exact
values) sometimes it is possible that no such line exists
as shown in the right image in Figure 8.

Next, we describe how we reconstruct the planes in
each node from theqℓ and the quantized datavℓ. Given
the verticesqℓ and valuesvℓ, the plane with normaln
and offsetb, compatible with these values, is given by





















qT
0 −1

qT
1 −1

qT
2 −1





















(

n
b

)

=





















v0

v1

v2





















,

wheren · n = 1. Note that we can directly findb as a
function ofn

b = n · q0 + q1 + q2

3
− v0 + v1 + v2

3
= n · c − v̄, (3)
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Data Set Num Points Park and Lee Ours
African Statue 220,318 47.93 38.61
Bunny 362,272 154.37 53.14
David Head 4,520,803 405.33 282.47
Atlas 8,195,996 1269.63 309.99
Awakening 7,621,482 722.65 235.86
Barbuto 6,577,132 1030.25 331.03

Figure 10: From let to right: model, number of points in the input, the
size in kilobytes of Park and Lee’s results and our results.

wherev̄ is the average of thevℓ’s. Substituting this value
into the equation yields
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The matrix on the left of this equation does not have
full rank and, in fact, has a nullspace spanned by the
unit normalnq to the triangle with verticesqℓ. We can
exactly write down the line that represents the solution
space of the system by finding a point ˆn,

n̂ =
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(q2 − c)T
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,

from the solution space using the pseudo-inverse of the
matrix. The entire space of solutions is then given by
n = n̂+nqt, andb is found by substituting this value into
Equation 3. The nonlinear constraintn · n = 1 yields a
quadratic equation int with roots

t1,2 = −n̂ · nq ±
√

(n̂ · nq)2 − n̂ · n̂ + 1. (4)

Therefore, we also output a single bit that determines
which of the two rootst1 or t2 of the quadratic repre-
sents our plane equation. Moreover, we can even avoid
writing this extra bit in some cases, since we know that
the plane of the child must intersect the child node. If
one of the two planes corresponding to the roots of the
quadratic equation does not intersect the node, we sim-
ply omit this extra bit.

Because we quantize the valuesvℓ, it is possible that
the roots in Equation 4 may not be real. Therefore,
rather than using the above steps for findingt, we mini-
mize the function (n · n − 1)2. This quartic function has
three critical points, two of which are identical to the
roots of the quadratic equation. If these roots exist, then
an exact solution exists, and we use this solution. How-
ever, in the case where these roots do not exist, we use

Figure 11: The RMS error from compressing a polygonal model of the
Stanford Bunny shown in Fig.14 using various compression methods.

the third critical point

t3 = −n̂ · nq,

to generate the plane. Note that if we use this point, we
do not have to output an extra bit to distinguish between
the solutions because only one real solution exists.

5. Results

Our compression technique has two main compo-
nents: building the adaptive octree structure that rep-
resents the surface and encoding this structure and the
planes in its nodes. One important step of the first com-
ponent is the pruning phase, described in Section 4.1.
We have found that pruning around 80% of the origi-
nal octree nodes results in a lossy compression without
any noticeable changes in visual quality. This effect is
mainly due to the fact that we can prune regions with
low curvature without much loss to the visual appear-
ance of the shape since we use planes to represent the
geometry. Figure 9 shows an example where using a
very small value for the toleranceǫ removes about 80%
of the nodes without much, if any, loss in visual fidelity.
Since the pruning phase acts like smoothing in the pres-
ence of noise, pruning can even improve the quality of
the reconstructed surface for noisy input data. Figure 9
also illustrates the dependence of the quality of the sur-
face on the values of the toleranceǫ. If we continue
to increaseǫ, the piecewise linear nature of the recon-
structed surface becomes apparent and the surface qual-
ity degrades. However, even if we keep only 2% of the
nodes from the original octree, the shape is still recog-
nizable (Figure 9, right).
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Figure 12: A compressed model of Atlas generated using our method
at 291KB (left) and Park and Lee at 332KB (right).

Next, we compare the results of our algorithm with
other known compression techniques. Note, that this is
not an easy task since different compression methods
use various types of input data or produce different out-
put. For example, Park and Lee [29] use point cloud as
input and output an octree whose leaves contain planes
(as we do), but only use this structure for visualization
and do not create a surface. Lee et al. [26] take a grid of
values from an implicit function as input and produce
a compressed structure that can be used to generate a
polygonal model of the surface. Note that in order to
perform a fair comparison between the different com-
pression approaches, we also need a notion of a ground
truth to compute the error of the compressed results.

First, we compare our method to the compression al-
gorithm described in Park and Lee [29]. Since their
output is a compressed tree structure, we need to post
process this tree (using wavelet rasterization and polyg-
onal extraction, as described in Section 3.1) and gener-
ate a polygonal model of the surface. Using Metro [33],
we then compute the RMS error between the surfaces
generated from the uncompressed and compressed oc-
trees, respectively, obtained from both our method and
Park and Lee [29]. In each case, we choose settings
for both algorithms such that the RMS error reported
by Metro is approximately the same for both methods.
For all examples in the paper we use a maximum oc-
tree depthd = 10 for all examples in the paper except
the African statue in Figure 13 and the bunny in Fig-
ure 14, whered = 8. The maximum octree depth should
be proportional to the minimum sampling density, and
both the African statue and bunny have far fewer sam-
ples than the other models. All of our examples were
created from real scanner data (laser range scanners for
Figures 9, 12, 14, 15, 16 and a structured light scanner
for Figure 13) and contain noise.

Figure 10 shows that our method out-performs Park
and Lee in all examples and, on average, provides about
a factor of three better compression rates. Depending on
the model, the improvement is between 20% and 400%.

Figure 13: African Statue progressively decoded. 133,694 polygons
in final mesh.

For example, the African statue does not compress as
well because of the high amount of noise from the struc-
tured light scanner, but other models, such as Awaken-
ing, compress well because the surface has large, nearly
planar faces. Figure 12 shows an example reconstruc-
tion of Atlas with both techniques at approximately the
same file size. Since Park and Lee’s method is not as
efficient, there is significant loss of details in the model.

Second, we compare our method to compres-
sion schemes at different stages of the reconstruction
pipeline (see Figure 1). Note that we cannot use real
scanner data to perform a quality comparison versus
a ground-truth model, since the models the data was
obtained from are not available. Therefore, we use a
polygonal model as input and modify our octree con-
struction in Section 2 (and that of Park and Lee) to
build centroids and covariance matrices by integrating
over the polygons clipped to the current nodes. We then
compress this octree with each of the respective tech-
niques, perform wavelet rasterization [5] to create an
implicit function and extract polygons. We also perform
wavelet rasterization on the uncompressed octree to cre-
ate an implicit function and provide this function to Lee
et al [26] for their implicit surface encoder. For each
of these methods, we use the compressed representation
to construct polygons and compare the output surface
to the original polygon model using the RMS error re-
ported by Metro [33].

Figure 11 displays the results obtained from these
methods when applied to the model of the Stanford
bunny. Similar to our previous tests, our method out-
performs Park and Lee, especially at lower error values.
Our compression results for the same amount of error
are also better than the results, obtained using the algo-
rithm from Lee et al.

Finally, we would like to point out that our method
encodes a progressive representation of the surface that

8



Figure 14: Bunny progressively decoded. 247,064 polygons in final
mesh.

can be decoded and displayed during transmission. Fig-
ures 13, 14, 15, and 16, depict examples of decoded
surfaces with the size of the data transmitted up to that
point as well as the final surface generated from the fully
transmitted data stream ( far right images).

A potential limitation of our algorithm is the fact
that the pruning phase could perform undesirable col-
lapses or prevent collapses in regions that should col-
lapse. We heuristically estimate the Hausdorff distance
during the pruning phase, and while our approach per-
forms well in practice, we have no theoretical guaran-
tees that the reconstructed surface will have the same
geometry or topology as the real model. Another draw-
back comes from the progressive nature of our com-
pression/decoding. While this type of encoding stores
multiple resolutions that can provide a view of the re-
constructed surface without receiving all of the encoded
data, it does not allow for random access to arbitrary
data in the model.

6. Future Work

Our main contribution is the development of a new
method for surface compression that builds and encodes
an adaptive octree representation of this surface. We
decode the octree by solving a constrained optimiza-
tion problem that has closed-form solution. To display
the surface, we use wavelet rasterization [5] to compute
an approximation to the indicator function of the solid
body whose boundary is the surface and reconstruct the
shape by extracting a level set of this function using
Marching Cubes. The proposed algorithm is fast (small
examples like the African statue take less than 0.7s for
encoding and about 0.2s for decoding, while larger ex-
amples like Atlas take about 15s for encoding and 2s for
decoding on an Intel Core i7 960 processor), resilient to
noise, and outperforms the state of the art compression
algorithms.

In the future, we would like to study the advantages
and disadvantages of using functions other than lin-

Figure 15: Awakening Statue progressively decoded. 2,283,540 poly-
gons in final mesh.

ear polynomial fits at the octree nodes. Higher order
polynomials should allow better approximation, further
pruning of the octree and hopefully better compression
rates. However, their use comes with more complicated
decoding strategies and dangers of overfitting.

While we performed a comparison of the accuracy
of the reconstructed surfaces according to RMS error,
we mainly see surfaces through the variation of lighting
(and hence normals) on the surface. Therefore, good
normal reproduction is also important, especially in the
presence of sharp features [34]. We have not inves-
tigated the quality of normal approximation using our
method. Clearly the choice of reconstruction method
in Section 3.1 will have a significant effect on normal
quality. It would be interesting to compare the different
techniques to determine if one compression method has
better normal reproduction, but potentially worse posi-
tional error, than others.

Another avenue we would like to pursue is the de-
velopment of out-of-core compression algorithm simi-
lar in style to the out-of-core surface reconstruction al-
gorithms from [3, 4]. Currently, the input datasets we
use from the Digital Michelangelo project are randomly
sub-sampled by a factor of 50 from the full point dis-
tribution. While our method could handle the full point
distribution, the extra detail would be lost at the recon-
struction step since we currently limit the maximum oc-
tree depth to 10 (10243 grid). Our current method is
limited by the size of the octree in memory and not the
size of the input data, and a streaming, out-of-core com-
pression algorithm would allow us to create deeper trees
and use larger datasets.
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Figure 16: Barbados Statue progressively decoded. 1,990,811 poly-
gons in final mesh.
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