
Computational Aesthetics in Graphics, Visualization, and Imaging (2010)
O. Deussen and P. Jepp (Editors)

Suggestive Hatching

Mayank Singh and Scott Schaefer

Texas A&M University

Abstract
We present a method for drawing lines on an object that depict both the shape and shading of the object. To do
so, we construct a gradient �eld of the diffuse intensity of the surface to guide a set of adaptively spaced lines.
The shape of these lines re�ect the lighting under which the object is being viewed and its shape. When the light
source is placed at the viewer's location, these lines emanate from silhouettes and naturally extend Suggestive
Contours. By using a hierarchical proximity grid, we can also improve thequality of these lines as well as control
their density over the image. We also provide a method for detecting and removing ridge lines in the intensity �eld,
which lead to artifacts in the line drawings.

Categories and Subject Descriptors(according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Line and curve generation

1. Introduction

The human visual system is adept at understanding the shape
of a three-dimensional object from its shaded representation
[Ram88]. Often artists depict this shading not only through
smooth color gradients, but by using line strokes (referred as
hatching[HZ00] or shading strokes[MKG� 97]).

There are two classes of lines that have been used to illus-
trate shape in Computer Graphics. The �rst class is a set of
sparse lines that are usually placed to highlight some natu-
ral discontinuity in the object or its appearance [CGL� 08].
Lines such as Suggestive Contours [DFRS03] or Apparent
Ridges [JDA07] fall into this category. These lines do not
represent the shading of the surface, yet they greatly aid in
conveying the shape of the object to the viewer.

The second class of lines are hatching lines that are not
designed to indicate natural discontinuities in the shape, but
serve a similar purpose. The density of these lines indicates
information about the intensity of light re�ected from the
surface and the path the lines take provides clues as to the
shape of the surface and create the illusion of volume by
wrapping around the object. Figure2 shows an example
drawing by Albrecht Dürer that demonstrate this effect.

Contributions
These two categories of lines have remained separate for
the most part. However, we aim to unify the construction of
curves from the �rst class (namely Suggestive Contours and

Figure 1: An example of illustrating shapes using adaptively
spaced shading strokes along with the silhouettes.

Suggestive/Principal Highlights) with hatching lines from
the second class. In particular, we present a method for draw-
ing lines on the surface to illustrate the intensity of shading
as well as the shape of the object. We show how to de�ne
a vector �eld that naturally approximates Suggestive Con-
tours and Suggestive/Principal Highlights. We also describe
a hierarchical proximity grid for not only generating long,
aesthetically pleasing lines, but also for controlling the den-
sity of the lines on the surface to match the intensity of the
surface. Finally, we show how to detect ridges in the inten-
sity �eld, which cause artifacts in the resulting image, and
how to eliminate these lines using the proximity grid. Fig-
ure1 shows an example of an abstract shape illustrated with

c The Eurographics Association 2010.



M. Singh & S. Schaefer / Suggestive Hatching

Figure 2: Example of a woodcut relief by Abrecht Dürer.

lines generated by our algorithm. The results closely resem-
ble wood engravings produced by Albrecht Dürer (Figure2).

2. Background

There have been numerous methods developed for illustrat-
ing surfaces with sparse sets of lines and Rusinkiewicz et
al. [RCDF08] provides a comprehensive survey. One notable
member of this family is Suggestive Contours [DFRS03,
DFR04], which has been shown to account for a large per-
centage of the lines that artists draw [CGL� 08]. These lines
correspond to minimums of diffuse intensity in the direction
of the projected view vector when the light is co-located with
the viewer's position. For some shapes, such as smooth con-
vex objects, these lines may fail to impart additional infor-
mation about the shape of the object [JDA07]. Our method
can illustrate the shape of these objects through our shading
strokes and we also approximate Suggestive Contours as a
subset of the total set of lines we generate.

The converse of Suggestive Contours are Sugges-
tive/Principal highlights [DR07]. As the authors note, these
curves only approximate intensity ridges. We provide a
method for detecting and removing these intensity ridges
from our line drawings using our proximity grid.

There have also been numerous methods developed to cre-
ate hatching lines on surfaces. Early work concentrated on
simply creating lines on surfaces. Winkenbach et al. [WS96]
uses parameter lines on parametric surfaces to create hatch
lines, but this technique is limited to parametric surfaces
and depends on the choice of parameterization. Deussen et
al. [DHR� 99] creates curves on surfaces by intersecting the
surface with a set of parallel planes. However, these lines
provide little information about the shape of the surface.

More recent work has concentrated on de�ning hatch
marks using the direction of Principal curvature [HZ00,
GIHL00, PHWF01, ZISS04]. These lines are solely depen-
dent on the surface geometry and independent of the viewing
direction and lighting under which an object is viewed. Since
robust curvature directions are dif�cult to compute and may
be noisy, Hertzmann and Zorin [HZ00] present a method for
optimizing the fairness of the curvature �eld. Though this
process is computationally expensive, the authors precom-
pute the result and generate hatch marks by integrating lines
over the surface using this fair vector �eld.

Praun et al. [PHWF01] describe a similar method to
Hertzmann and Zorin [HZ00] except the authors use lapped
textures [PFH00] to represent the surface parameterization.
The authors then precompute a nested set of hatch strokes,
which are stored in a matrix of textures. At runtime, based
upon lighting intensity, their method selects a subset of these
textures from the matrix and blends them together to create
a continuous level of intensity.

Zander et al. [ZISS04] present an algorithm for render-
ing high quality hatch lines. Like the previous techniques,
the authors also rely on precomputing an optimized vector
�eld for their model. Their method renders hatch lines by
evenly spacing the lines in model space with the width of
the lines modulated to avoid dark regions due to perspective
foreshortening. Depending on the size of the polygons, de-
tecting nearby shading strokes to avoid intersections in the
model space can be an expensive operation.

However, all of these hatching techniques generate lines
whose paths are independent of viewing direction or even
shading of the surface. None of these methods create hatch
marks that naturally correspond to any sparse line draw-
ing technique [CGL� 08]. Moreover, surface regions that are
�at or have constant curvature do not have unique principal
curvature directions and these curvature dependent hatching
methods may fail in these areas. In constrast, our method
does not have these ambiguities and extends line drawing
techniques [DFRS03,DR07] to draw a set of shading strokes
that contain many of these spares lines as a subset.

Our mechanism for generating shading strokes is in-
spired by techniques commonly used in scienti�c visualiza-
tion to visualize vector �elds. Jobard and Lefer [JL97] pro-
pose a technique that produces aesthetically appealing, long
streamlines. Their method creates a set of streamlines that
�ow up and down the vector �eld, emanating from a col-
lection of 2D seed points. The authors make the observation
that, in order to avoid creating many short streamlines, the
separating distance between the seed points and the existing
streamlines should be twice as much as the minimum dis-
tance between streamlines. Later, the same authors propose
an addition to their work by adding a nested property to these
streamlines [JL01]. Our hierarchical proximity grid extends
Jobard and Lefer's method to create lines; though our goal
is not to create evenly spaced lines but lines whose density
modulates with the intensity of the surface lighting.

Mebarki et al. [MAD05] present an improvement upon
Jobard's method in terms of the placement of streamlines.
Their method uses a greedy algorithm for placing succes-
sive streamlines in a 2D vector �eld. The authors construct
a constrained Delaunay triangulation of the currently drawn
streamlines and place new seeds at the circumcenter of the
triangle with the largest circumcircle. This method for seed-
ing points produces streamlines that are long, aesthetically
pleasing and farthest apart from each other.

Both the above mentioned techniques draw streamlines on

c The Eurographics Association 2010.



M. Singh & S. Schaefer / Suggestive Hatching

a 2D vector �eld. Recently, Spencer et al. [SLZC09] pro-
posed a technique for tracing streamlines over 3D surfaces.
Their algorithm essentially projects the surface vector �eld
into the image plane and performs 2D vector tracing with
special attention to discontinuities in the z-buffer. Their al-
gorithm is similar to ours in that we too use an image based
approach to determine if lines are too close to one another
except we use a hierarchical proximity grid instead of a scan-
line sweep to order seed placement and adaptively control
the density of lines over the surface. Our shading strokes are
also built on the surface of the 3D model guided by a vector
�eld that resides upon the surface so we need not be con-
cerned with depth discontinuities in the image or perspective
foreshortening of the vector �eld.

3. Shading Strokes

To draw lines on the surface illustrating the shading of the
surface, we begin by de�ning a vector �eld over the surface.
We trace this �eld by drawing shading strokes that follow the
vector �eld starting from a seed point. We also control the
density of lines over the surface by using a proximity check
dependent upon the local intensity value of the surface.

3.1. Shading Vector Field

Our vector �eld is based upon computation of Lambertian
re�ectance (i.e. diffuse shading) with the light co-located
with the viewer's position and follows the gradient construc-
tion given by Yu et al. [YZX � 04]. Let V be the direction to
the viewer from a vertex on the surface. The diffuse light in-
tensity at a vertex on the surface is given byV � Ni whereNi
is the unit normal at theith vertex. We use Gouroud shading
to extend these intensities over the triangles of the surface.
Given a pointx inside thejth triangle of the surface with ver-
tices p j ;0; p j ;1; p j ;2 and vertex normalsNj ;0;Nj ;1;Nj ;2 , the
intensityI (x) is given by

I(x) =
2

å
k= 0

(V � Nj ;k)
A(x; p j ;k+ 1; p j ;k+ 2)
A(p j ;0; p j ;1; p j ;2)

whereA(a;b;c) represents the signed area of the triangle
with verticesa;b;c. Now we de�ne a vector �eld over the
surface by computing the gradient of the intensity as

r I (x) =
2

å
k= 0

(V � Nj ;k)
r A(x; p j ;k+ 1; p j ;k+ 2)

A(p j ;0; p j ;1; p j ;2)
:

Sincer A(x; p j ;k+ 1; p j ;k+ 2) = ( p j ;k+ 2 � p j ;k+ 1) � Fj , where
Fj is the unit normal of trianglej, we can rewrite the above
equation as

r I (x) =
2

å
k= 0

V � Nj ;k

A(p j ;0; p j ;1; p j ;2)
(p j ;k+ 2 � p j ;k+ 1) � Fj : (1)

This vector �eld is coplanar with each triangle and piecewise
constant over the surface. Note that unlike curvature this is

Binary Ternary
p

2 Midpoint

Figure 3: Comparison of various seeding techniques. Bi-
nary subdivision concentrates samples along the diagonal.
Ternary subdivision re�nes space too quickly.

p
2 and mid-

point subdivision produce evenly spaced seeds.

not a view-independent attribute of the surface and needs to
be computed for each frame.

3.2. Building Shading Strokes

Drawing shading strokes that follow the vector �eld de-
scribed in Section3.1 is very similar to visualizing vector
�elds that arise in physical simulations, and many techniques
discussed in Section2 have been devised to do so. The basic
idea is to begin with a seed point somewhere in the domain
and follow the vector �eld in both the positive and negative
directions until we reach some predetermined threshold (in-
tensity in our case) or a local maximum/minimum. To do so,
we sample the vector �eld and move in discrete steps cor-
responding to the size of the triangle in the direction of the
vector �eld at that point. Since the vector �eld is piecewise
constant and lies in the tangent plane, numerical integration
of lines over the surface is a straightforward process. We do
so using a method similar to Dong et al. [DKG05].

3.3. Seeding and Spacing of Lines

To create shading strokes on the surface, we start with a seed
point on the surface and trace shading strokes according to
Section3.2. However, the placement of these seed points
can greatly affect the quality and appearance of the result-
ing strokes. Ideally we should be able to control the density
of the shading strokes over a region of the image guarantee-
ing both that there are no large gaps in the shading strokes
and that their density is proportional to the intensity of the
light to provide an intensity gradient over the surface.

Notice that we do not control the density of shading
strokes in model space. Instead, we control the density in
image space. While evenly spaced shading strokes on the
surface would provide cues about depth due to foreshorten-
ing of the lines under perspective projection, the density of
the lines would give the impression that objects farther away
are actually darker. Hence we use an image-based algorithm
to place shading strokes on the surface.

In the context of 2D vector �eld visualization, Mebarki
et al. [MAD05] showed that seeding the shading strokes at
a point farthest away from the existing shading strokes pro-
duces longer, more aesthetically pleasing lines. Their solu-
tion uses a constrained Delaunay triangulation over the 2D

c The Eurographics Association 2010.



M. Singh & S. Schaefer / Suggestive Hatching

0 1 2 3

4 5 6 7

Figure 4: For each line segment, we rasterize the segment
into each level of the proximity grid. Cells that are marked
will not generate further seed points.

image that is rebuilt after each line is drawn to estimate the
points furthest away from previously generated lines. Our
setting is more dif�cult as we have boundaries in our im-
age corresponding to the silhouettes of the object. Also, we
would like to adapt the density of the lines to the intensity of
the surface lighting.

Our solution is to use a hierarchical proximity grid to en-
code, in a multi-resolution fashion, information about where
shading strokes have been previously drawn. This proxim-
ity grid is simply a sequence of uniform grids of increas-
ingly smaller cells whose maximum depth is speci�ed by
the user. The center of each cell in this grid corresponds to a
seed point, which we project onto the surface via a ray inter-
section and initiate a shading stroke from that point. When
generating seed points, we traverse this hierarchy from the
coarsest level to the �nest level of the tree. For each level,
we generate seed points in scanline order for each cell that is
not marked. We also rasterize completed scanlines into each
level of the hierarchy and mark each cell that the lines cross.

This process also provides proximity information in a
multi-resolution fashion over the image. For each empty cell,
we know that a shading stroke is no closer than half the width
of that cell from its potential seed point. The cell width also
decreases by a constant scale factor at each level of the hier-
archy. Hence, this process tends to generate seed points as far
as possible from previously generated shading strokes. No-
tice that this process is not as exact as the method described
by Mebarki et al. [MAD05]. However, our method is faster
as a Delaunay triangulation does not have to be regenerated
over the image every time a shading stroke is drawn.

To build this hierarchy of grids, we consider several dif-
ferent types of quadrilateral re�nement patterns that have
been explored before in the context of surface subdivision (
[PR97] and [LMB04]). Figure3 shows four different re�ne-
ment patterns. Binary subdivision is perhaps the most ob-
vious re�nement method. However, binary subdivision does
not produce a uniform seeding pattern and concentrates sam-
ples along diagonals. On the other hand, ternary subdivision

Figure 5: Example of a torus rendered with strokes with uni-
form maximum depth (left) and adaptive depth (right).

does create uniform sampling but re�nes the grid quickly,
which will limit our ability to �nely control the density of
lines to provide a shading effect on the surface.

Ideally, we would like the size of the cells to re�ne as
slowly as possible to provide a better approximation to the
farthest shading stroke and provide �ner control over the lo-
cal density of these strokes. Both

p
2 and midpoint subdi-

vision re�ne the cells slower than binary subdivision. How-
ever, we prefer midpoint re�nement because, at every level
of the hierarchy, the grid corresponds to a voronoi diagram
of the previously generated seed points. Figure4 shows an
example of how lines are written into the hierarchical prox-
imity grid using midpoint subdivision. Cells that are marked
will not generate future seed points.

We also use the proximity grid to control the density of
shading strokes in a particular region. As we are tracing the
shading strokes using the method in Section3.2, we check
the proximity grid at a depth dependent on the value ofI (x)
at each point along the line to see if the line has entered a
marked cell. If so, we truncate that stroke at that point.

To convey the shading of the surface, we would like the
density of lines in a cell to match the intensity of the surface
over that cell. We can approximate this effect by computing
the ratio of the width of a line (1 pixel) to the width of a
cell. Assuming we use midpoint subdivision for the proxim-
ity grid, the density of a single line compared to a cell is

1=

 
w

p
2

d

!

=

p
2

d

w

wherew is the width of the image andd is the depth of the
grid cell. Since a line darkens the image, we set this equation
to 1� I (x) and solve for the depth.

d = 2log2(w(1� I (x))) (2)

Using this adaptive grid we can enable the lines to come
close to each other in darker regions, while increasing their
spacing in lighter regions of the surface. Notice that this
method produces discrete intensity levels corresponding to
each level of the grid. By using a grid that re�nes slowly

c The Eurographics Association 2010.



M. Singh & S. Schaefer / Suggestive Hatching

Figure 6: Portion of drawing by Albrecht Dürer showing
strokes terminated near an intensity ridge.

we obtain more intensity levels and fewer banding artifacts
associated with these discrete levels.

Figure5 shows an example of using a uniform maximum
depth (independent ofI (x)) versus adapting the depth of the
proximity check for truncating lines to the intensity of the
surface. While the shading strokes are much shorter using
an adaptive grid, the vast majority of these shorter strokes
occur in darker regions of the surface and are necessary to
provide the illusion of variable intensity along the surface.

4. Ridges and Valleys

Since we trace the gradient �eld to form the shading strokes
on the surface, ridges and valleys inI (x) attract shading
strokes. The valleys of the intensity �eld approximate Sug-
gestive Contours [DFRS03] as Suggestive Contours are min-
imums of the intensity �eld with respect to the projected
view vector. Therefore, the shading strokes will naturally
emanate from and extend Suggestive Contours.

Ridges ofI (x), like Suggestive Contours, attract shading
strokes as well. Unlike Suggestive Contours, these ridges do
not tend to correspond to feature lines that an artist would
draw since these ridges are high intensity regions of the sur-
face and lines darken the image. Therefore we consider these
ridges artifacts of our shading algorithm and would like re-
move them from the image. A similar effect can be observed
in drawings created by Albrecht Dürer (see �gure6). In the
pillow beneath the woman's head, the lines are terminated as
soon as a ridge in the intensity function is encountered.

Figure7 shows that we cannot remove these ridge artifacts
by simply lowering the intensity threshold at which we stop
tracing the lines. While lowering the intensity threshold can
remove the ridge artifacts, we also lose shading strokes over
large portions of the object, which leaves little visual cues as
to the shape of the object, as seen in the middle image. Re-
moving ridges allows us to create shading lines of the entire
surface while avoiding the artifacts caused by ridges.

To remove these ridge artifacts, we detect the intensity
ridges on the surface and rasterize them into the proximity

Figure 7: From top to bottom: no intensity threshold with-
out ridge removal, 0.65 intensity threshold without ridge re-
moval, and no intensity threshold with ridge removal. Right:
a zoomed portion to highlight the effect of intensity ridges.

grid from Section3.3 at each level before drawing shading
strokes effectively stopping our lines from getting too close
to the ridge. Note that these ridges are similar to the lines
produced by Suggestive/Principal Highlights, which are lo-
cal maximums of intensity in the direction of the projected
viewing vector and its orthogonal counterpart in the tangent
plane. The union of both sets of lines approximates intensity
ridges well over most of the surface (when the ridge direc-
tion roughly aligns with the projected viewing vector or its
complement). However, Suggestive/Principal Highlights do
not always align with intensity ridges.

We can detect ridges in the intensity functionI(x) by look-
ing for a set of points such that the �rst derivative in the di-
rection orthogonal to the ridge is zero (i.e. a maximum or
minimum) and the second derivative in the same direction is
negative [Ebe96]. Our solution is to �nd points on the edges
of the polygons that satisfy these tests

Since our underlying gradient functionr I (x) is de�ned
as piecewise constant over the faces of the mesh, we detect
if an edge has a zero �rst derivative by estimating gradient
vectors at the end-points of each edge. This gradient vector

c The Eurographics Association 2010.



M. Singh & S. Schaefer / Suggestive Hatching

Diffuse Shading Surface Ridges Surface Valleys Apparent Ridges

Suggestive Contours Suggestive Highlights Principal Highlights Intensity Ridges

Figure 8: Side-by-side comparison of ridges detected in the gradient �eld by our algorithm to other line drawing methods.

Gi can be estimated as

Gi =
å n

j= 0 wi; j � r I j

å n
j= 0 wi; j

where this sum is over then adjacent faces in 1-ring neigh-
borhood of theith vertex,r I j is the gradient inside thejth

face and the weightwi; j for each face is based upon the angle
subtended by the face as suggested by Max [Max99]. How-
ever, this computation for the vertex gradient vector becomes
numerically unstable when the face gradients point in op-
posite directions. Such cases occur very frequently near the
ridges where the face gradient vectors in the local neighbor-
hood point in opposite directions. Since these cases are pre-
cisely those we wish to test, we need a more stable method
for computing these gradient vectors.

In order to robustly compute a stable gradient direction for
a given vertex, we compute the dominant eigenvectorEi of
the covariance matrix built using the face gradients weighted
by wi; j in 1-ring neighborhood of the vertex. These eigen-
vectors provide a stable, unoriented direction vector for the
vertex gradient. However, this vector does not yet have a di-
rection or a magnitude. Therefore, we compute the �nal ver-
tex gradient at the vertexpi by projectingGi ontoEi .

r I ( pi) = ( Gi � Ei)Ei

Given an edge with end-pointsp1 andp2, we estimate a po-
tential ridge pointpr as suggested by Ohtake et al. [OBS04]

pr =
jr I (p2)j p1 + jr I (p1)j p2

jr I ( p2)j + jr I (p1)j
:

If the angle betweenr I (p1) andr I (p2) is less than 20 de-
grees, we exclude this point as a weak ridge point since the
gradient vectors at the end-points are nearly in the same di-
rection. For all other points, we must verify that these points

are indeed part of a ridge by estimating the direction per-
pendicular to the ridge and computing the �rst and second
derivatives ofI (x) in that direction.

Our solution is to check two different directions to see if
either direction satis�es the �rst and second derivative tests.
The �rst direction is given by the dominant eigenvector of
the covariance matrix constructed fromr I(p1) andr I (p2).
The second direction is given by the dominant eigenvector
of the covariance matrix constructed fromN1 � r I ( p1) and
N2 � r I ( p2). For each of these directions, we use a method
similar to that in Judd et al. [JDA07] to verify a ridge exists.

Given a direction vector, we project the vector into the
plane of each polygon containing the edge and intersect the
ray with the edges of the triangles. Letpf and pb be the
two intersected points. For each of these intersections, we
linearly interpolate the vertex gradients at the end-points
of the intersected edge to �nd the gradient at these points
r I (pf ) andr I (pb). We then numerically compute the sec-
ond derivative as

r I (pf ) � ( pf � pr ) � r I ( pb) � ( pr � pb)
j pf � pr j + j pr � pbj

:

If this quantity is negative, then we check whether a zero
crossing of the �rst derivative is possible in this direction by
verifying that

�
r I (pf ) � ( pf � pr )

�
(r I (pb) � ( pr � pb)) <

0. If either of the two direction vectors satisfy these deriva-
tive tests, thenpr is classi�ed as a ridge point. We then draw
ridges by processing each triangle and connecting the ridge
points (if any) on the edges together with lines. Figure8
shows an example of several types of lines commonly used
to illustrate the shape of an object. While none of the lines
match our intensity ridges, the union of Suggestive and Prin-
cipal highlights closely approximate these ridges.

c The Eurographics Association 2010.



M. Singh & S. Schaefer / Suggestive Hatching

Figure 9: Comparison of Suggestive Contours (left), Appar-
ent Ridges (middle) and our shading strokes (right).

5. Results

For convex, abstract shapes such as those in Figure9, line
drawing techniques such as Suggestive Contours [DFRS03]
or Apparent Ridges [JDA07] may not be suf�cient for the
viewer to infer the shape of the object. Shading gives strong
clues as to the objects shape and our method, through the
adaptive placement of lines and orientation of those lines,
helps impart this information to the viewer. For example, in
Figure 10 (left), it is dif�cult to perceive which folds are
convex or concave. Our shading strokes extends Suggestive
Contours and illuminates the distinct folds in the cloth. Val-
leys of I (x) closely approximate Suggestive Contours and,
in the absence of a proximity check, our line drawing algo-
rithm naturally creates these lines and emanate from them as
shown in Figures10. Figure11 shows two additional exam-
ples of our method and also demonstrates that our technique
can handle planar regions of the surface where principal cur-
vature directions are not unique and may cause curvature-
based methods to fail.

When the light is not colocated with the viewer,
ridges/valleys of our gradient �eld no longer correspond to
any sparse line drawing techniques. Moreover,I (x) repre-
sents diffuse intensity and is typically clamped to zero when
negative, which produces a gradient �eld of zero in shadow
regions. We can modify our method to handle these situa-
tions by allowingI(x) to be negative to de�ne a consistent
gradient �eld over the surface, even in shadow regions. For
the purposes of determining density of lines in Equation2,
we simply setI (x) = 0. This modi�cation allows us to move
the light to arbitrary positions, but our lines will have a con-
stant density in these shadow regions. This constant den-
sity may produce a noticeable banding effect and, hence, we
prefer to keep the light at the viewer's position. Figure12
demonstrates the effect of moving the light position.

Table1 shows the timing of our method in seconds on an
Intel Core 2 6700 and an Nvidia 8800 GTX using various
models. Each of these examples were rendered on an 800�
800 image with a maximum proximity depth of 20. Updating
and truncating the lines using the proximity grid accounts for

Figure 10: Two examples of a draped table cloth (top) and a
frog (bottom) emphasizing how shading strokes tend to em-
anate from suggestive contours.

Model Faces Shading Strokes Shading
w/o ridge detection Strokes

Torus 4800 0.72 0.81
Cubehole 6491 0.80 0.82
Table Cloth 44636 0.74 0.88
Frog 82880 1.25 2.52
Brain 294012 1.04 2.53
Heptoroid 573440 1.67 2.44
Foot bone 735424 1.17 2.52

Table 1: Timings for Shading Strokes measured in seconds.
The seeding depth is limited to 18 and the proximity grid
depth is 20. Intensity threshold is set to 1.0

a very small fraction of the total time needed to draw these
shading strokes since line rasterization is fast.

6. Future Work

Temporal coherence is an issue with our method that we
have not addressed. Like Suggestive Contours, intensity
ridges and valleys are relatively coherent as the object moves
around. Our line drawing algorithm draws lines in a nested
fashion with longer lines appearing �rst and shorter lines
later to �ll in darker regions of the object. We believe that by
tracking the seed points of these longer lines between frames
that we can maintain temporal coherence and would like to
explore this area in the future.

Also, the speed of our method does not produce inter-
active frame rates for large models. Rasterizing lines into
the proximity grid is fast. However, our ridge detection al-
gorithm is about twice as slow as detecting both Sugges-
tive/Principal Highlights and we may be able to modify the
method to increase its speed.

c The Eurographics Association 2010.



M. Singh & S. Schaefer / Suggestive Hatching

Figure 11: Examples of models rendered with our method.

Acknowledgments
We would like to thank Ergun Akleman and Forrester Cole
for the models used in the paper. This work was supported
in part by NSF grant CCF-07024099.

References

[CGL� 08] COLE F., GOLOVINSKIY A., L IMPAECHER A.,
BARROS H. S., FINKELSTEIN A., FUNKHOUSER T.,
RUSINKIEWICZ S.: Where do people draw lines?ACM
Trans. Graph. 27, 3 (2008).1, 2

[DFR04] DECARLO D., FINKELSTEIN A., RUSINKIEWICZ S.:
Interactive rendering of suggestive contours with temporalco-
herence. InProceedings of NPAR(2004), pp. 15–145.2

[DFRS03] DECARLO D., FINKELSTEIN A., RUSINKIEWICZ S.,
SANTELLA A.: Suggestive contours for conveying shape.ACM
Trans. Graph. 22, 3 (July 2003), 848–855.1, 2, 5, 7

[DHR� 99] DEUSSENO., HAMEL J., RAAB A., SCHLECHTWEG
S., STROTHOTTE T.: An illustration technique using hardware-
based intersections and skeletons. InProceedings Graphics in-
terface(1999), pp. 175–182.2

[DKG05] DONG S., KIRCHER S., GARLAND M.: Harmonic
functions for quadrilateral remeshing of arbitrary manifolds.
Comput. Aided Geom. Des. 22, 5 (2005), 392–423.3

[DR07] DECARLO D., RUSINKIEWICZ S.: Highlight lines for
conveying shape. InProceedings of NPAR(2007), pp. 63–70.2

[Ebe96] EBERLY D.: Ridges in Image and Data Analysis.
Springer, 1996.5

[GIHL00] GIRSHICK A., INTERRANTE V., HAKER S.,
LEMOINE T.: Line direction matters: an argument for the
use of principal directions in 3d line drawings. InProceedings
of NPAR(2000), pp. 43–52.2

[HZ00] HERTZMANN A., ZORIN D.: Illustrating smooth sur-
faces. InProceedings of SIGGRAPH(2000), pp. 517–526.1,
2

[JDA07] JUDD T., DURAND F., ADELSON E. H.: Apparent
ridges for line drawing.ACM Trans. Graph. 26, 3 (2007), 19.
1, 2, 6, 7

[JL97] JOBARD B., LEFERW.: Creating Evenly-Spaced Stream-
lines of Arbitrary Density. InProceedings of Eurographics Work-
shop on Vis. in Sci. Computing(1997), pp. 45–55.2

Figure 12: Model rendered with the light colocated with the
viewer (top left) and in arbitrary position (bottom right).

[JL01] JOBARD B., LEFER W.: Multiresolution �ow visualiza-
tion. In Proceedings of WSCG(2001), pp. 33–37.2

[LMB04] L I G., MA W., BAO H.:
p

2 subdivision for quadrilat-
eral meshes.The Visual Computer 20, 4 (2004), 180–198.4

[MAD05] M EBARKI A., ALLIEZ P., DEVILLERS O.: Farthest
point seeding for ef�cient placement of streamlines.Proceedings
of IEEE Vis.(Oct. 2005), 479–486.2, 3, 4

[Max99] MAX N.: Weights for computing vertex normals from
facet normals.J. Graph. Tools 4, 2 (1999), 1–6.6

[MKG � 97] MARKOSIAN L., KOWALSKI M. A., GOLDSTEIN
D., TRYCHIN S. J., HUGHES J. F., BOURDEV L. D.: Real-
time nonphotorealistic rendering. InProceedings of SIGGRAPH
(1997), pp. 415–420.1

[OBS04] OHTAKE Y., BELYAEV A., SEIDEL H.-P.: Ridge-valley
lines on meshes via implicit surface �tting.ACM Trans. Graph.
23, 3 (2004), 609–612.6

[PFH00] PRAUN E., FINKELSTEIN A., HOPPEH.: Lapped tex-
tures. InProceedings SIGGRAPH(2000), pp. 465–470.2

[PHWF01] PRAUN E., HOPPE H., WEBB M., FINKELSTEIN
A.: Real-time hatching. InProceedings of SIGGRAPH(2001),
pp. 581–586.2

[PR97] PETERS J., REIF U.: The simplest subdivision scheme
for smoothing polyhedra.ACM Trans. Graph. 16, 4 (1997), 420–
431. 4

[Ram88] RAMACHANDRAN V. S.: Perception of shape from
shading.Nature(1988), 163 – 166.1

[RCDF08] RUSINKIEWICZ S., COLE F., DECARLO D.,
FINKELSTEIN A.: Line drawings from 3d models. InACM
SIGGRAPH course notes(2008), pp. 1–356.2

[SLZC09] SPENCER B., LARAMEE R., ZHANG E., CHEN G.:
Evenly-spaced streamlines for surfaces: An image-based ap-
proach. InComputer Graphics Forum(2009).3

[WS96] WINKENBACH G., SALESIN D. H.: Rendering paramet-
ric surfaces in pen and ink. InProceedings of SIGGRAPH(1996),
pp. 469–476.2

[YZX � 04] YU Y., ZHOU K., XU D., SHI X., BAO H., GUO B.,
SHUM H.-Y.: Mesh editing with poisson-based gradient �eld
manipulation. InACM Trans. Graph.(2004), pp. 644–651.3

[ZISS04] ZANDER J., ISENBERG T., SCHLECHTWEG S.,
STROTHOTTET.: High quality hatching. InComputer Graphics
Forum(2004), vol. 23, pp. 421–430.2

c The Eurographics Association 2010.


