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Figure 1: (a) As-rigid-as-possible (ARAP) polygon parameterization [Liu et al. 2008] applied to the control mesh of a subdivision surface,
(b) our subdivision parameterization method, (c) our method using extended charts and (d) ARAP polygon parameterization applied to the
control mesh subdivided 3 times. The control mesh of the chart and subdivided chart are shown next to each figure except for the last method,
which operates on the subdivided surface directly. The angle, area and stretch distortion for each method are shown below.

Abstract

We present a method for parameterizing subdivision surfaces in an
as-rigid-as-possible fashion. While much work has concentrated
on parameterizing polygon meshes, little if any work has focused
on subdivision surfaces despite their popularity. We show that poly-
gon parameterization methods produce suboptimal results when ap-
plied to subdivision surfaces and describe how these methods may
be modified to operate on subdivision surfaces. We also describe
a method for creating extended charts to further reduce the distor-
tion of the parameterization. Finally we demonstrate how to take
advantage of the multi-resolution structure of subdivision surfaces
to accelerate convergence of our optimization.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Boundary representations; Curve,
surface, solid, and object representations; Geometric algorithms,
languages, and systems

Keywords: subdivision, parameterization

1 Introduction

Subdivision surfaces [Catmull and Clark 1978] have become a stan-
dard for representing highly detailed, smooth shapes for non-real-
time applications such as movies. However, with the advent of
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hardware tessellation in DirectX 11 [Drone et al. 2008], smooth sur-
face representations or approximations thereof [Loop and Schaefer
2008] are now within the grasp of real-time applications such as
computer games. Therefore, subdivision surfaces are poised on the
threshold of wide adoption over traditional representations such as
polygon models.

One of the advantages of subdivision surfaces is that they can model
smooth surfaces of arbitrary topology, yet can be controlled by ma-
nipulating a polygonal surface called a control mesh. This control
mesh defines the subdivision surface through recursive refinement
using linear combinations of vertices. Hence, the subdivision sur-
face P∞ is defined as the limit of the process

P k+1 = SkP
k

where P 0 is an n×3 vector of control points from the control mesh
and Sk is a matrix whose entries depend solely on the local topol-
ogy of the surface. If the rules encoded by the matrix Sk are chosen
correctly, then the limit surface P∞ is guaranteed to be smooth re-
gardless of its connectivity/topology.

While the geometry of the subdivision surface is important, the
shape alone is not sufficient to create digital characters or other re-
alistic objects. Typically we annotate these shapes with additional
information such as color, normals or even displacements through
the use of a texture map. To create a texture map, the user breaks the
surface into a set of charts (regions of the surface that are discon-
nected in texture space) that can be flattened into the plane. This
process is typically referred to as parameterization of the surface.
Once flattened, the user may view the chart as a 2D image and paint
on the surface as if painting an image.

Given locations of the vertices of each chart in the texture, we can
map the data stored in the texture to the surface using standard tex-
ture mapping operations built into the graphics pipeline. However,
DeRose et al. [1998] showed that using standard linear or bilinear
coordinates for the vertices of the charts produces only continu-
ous mappings of the data from the texture to the surface and lacks
smoothness, which results in visual artifacts in the final surface. To
fix this lack of smoothness, DeRose et al. [1998] take advantage
of the parametric nature of subdivision surfaces and subdivide the
texture coordinates. Therefore, subdivision not only produces a 3D
position for each vertex, but subdivided texture coordinates as well.



Given that the control mesh of a subdivision surface resembles a
polygon mesh, it is tempting to apply polygon parameterization
methods directly to the control mesh of the subdivision surface.
However, this approach ignores the underlying structure of the sub-
division surface and leads to more distortion in the parameterization
than is necessary.

Contributions

In this paper, we provide a method for parameterizing subdivision
surfaces that directly accounts for the underlying parametric repre-
sentation of the shape. In particular,

• we show how to parameterize a subdivision surface through
iterative optimization of a non-linear functional that attempts
to make the mapping as rigid as possible;

• we demonstrate that the choice of subdivision rules applied to
the charts can affect the distortion of the parameterization and
show how to eliminate that distortion along chart boundaries
by creating extended charts;

• we also show how to take advantage of the natural, multi-
resolution structure of subdivision surfaces to build a multi-
resolution optimization that converges quickly to the parame-
terization with minimum distortion.

2 Related Work

The overall goal of surface parameterization is to find a mapping
between a given 3D model and a suitable 2D parameter domain
that minimizes the inevitable metric distortion. Recent research
has been almost entirely focused on the parameterization of triangle
meshes and the last decade has seen an abundance of methods for
computing ‘optimal’ piecewise linear mappings, with various defi-
nitions of optimality; see [Floater and Hormann 2005; Sheffer et al.
2006; Hormann et al. 2007] for a comprehensive overview.

Most approaches try to preserve angles, either directly [Sheffer
et al. 2005] or by minimizing some discrete measure of conformal-
ity [Hormann and Greiner 2000; Lévy et al. 2002; Desbrun et al.
2002], and the results can be further improved by an adequate han-
dling of cone singularities [Kharevich et al. 2006; Kälberer et al.
2007; Ben-Chen et al. 2008; Springborn et al. 2008]. But reducing
angle deformation usually comes at the cost of high area distortion,
which is undesired in many applications.

Therefore, other methods minimize the stretch of the mapping
[Sander et al. 2001; Sorkine et al. 2002] or balance between angle
and area distortion [Degener et al. 2003; Tarini et al. 2004; Do-
minitz and Tannenbaum 2010; Pietroni et al. 2010]. Alas, the re-
spective optimization problems are non-linear and tend to be com-
putationally expensive. Recently, Liu et al. [2008] presented a
clever way of efficiently minimizing a non-linear energy that is sim-
ilar to the Green-Lagrange deformation tensor [Maillot et al. 1993]
and measures how far the parameterization is from being isometric.
Hence, the resulting as-rigid-as-possible (ARAP) mappings tend to
balance the deformation of angles and areas very well.

Almost all these methods are based on discretizing some notion of
distortion that is valid for smooth surfaces, but very few works actu-
ally deal with computing parameterizations of the latter, despite this
problem being well understood in theory [Kreyszig 1991]. While
closed-form solutions are known only for simple shapes like the
sphere [Mercator 1569; Lambert 1772], a general surface is usually
approximated up to a desired accuracy by a triangle mesh to then
utilize one of the methods above. For very large meshes the com-
putation can be sped up by exploiting a mesh hierarchy [Hormann
et al. 1999; Ray and Lévy 2003; Aksoylu et al. 2005].
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Figure 2: The parameterization ϕ that locally maps the surface
tangents (p1, p2) at p to the texture tangents (t1, t2) at t is split into
an isometric mapping ψp and an affine mapping ϕ̂p : R

2 → R
2.

We are aware of only one related work for reparameterizing single
NURBS patches [Woo 1998]. However, this method does not find
texture coordinates for the control points of the NURBS patch, but
instead creates a simple, non-linear modification of the parametric
coordinates during evaluation. Unfortunately this approach is sim-
ply not practical for more complex parameterization energies.

Piponi and Borshukov [2000] provide a method for texturing subdi-
vision surfaces seamlessly. However, their technique still treats the
control mesh as a polygonal surface and parameterizes the shape
using a spring system. To create a seamless texture map on the sur-
face, the authors blend the texture in a small region around the chart
boundary.

In this paper, we do not propose yet another parameterization
method for triangle meshes, but rather show how the existing meth-
ods can be extended for parameterizing subdivision surfaces and
how to exploit the particular hierarchical structure of these surfaces.

3 Parameterization

Let us assume that the surface is already split into charts and each
chart is a subdivision surface P∞ with control points P 0. Our goal
now is to find a set of parameter points T 0, one for each control
point, such that the mapping ϕ between P∞ and the limit param-
eter domain T∞ has low distortion. We use the energy functional
proposed by Liu et al. [2008] for ARAP mappings as the method pe-
nalizes both stretching and angle distortion, but our method would
also work with any other deformation energy that can be expressed
as a function of the 2D parameter points.

For any surface point p ∈ P∞ let p1, p2 ∈ R
3 be the surface

tangent vectors and t = ϕ(p) be the corresponding parameter point
with tangents t1, t2 ∈ R

2 in T∞. We then map the local frame
at p isometrically into the plane to create and consider the affine
function ϕ̂p that maps the vectors

p̂1 = ‖p1‖

(

1
0

)

, p̂2 = ‖p2‖

(

cos θ
sin θ

)

,

where θ is the angle between p1 and p2, to the vectors t1, t2; see
Figure 2. We then wish to solve

min
T0

∫

P∞
‖∇ϕ̂p −Rp‖

2

F
dp, (1)

where Rp ∈ R
2×2 is the rotation that approximates

∇ϕ̂p = (t1, t2) · (p̂1, p̂2)
−1
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Figure 3: Tangent mask for a Catmull-Clark surface using the
weights in Equation (2).

best in the Frobenius norm ‖·‖
F

and a simple, closed-form solution
of Rp is given in the Appendix. As shown by Liu et al. [2008],
minimizing Equation (1) is equivalent to minimizing

min
T0

∫

P∞
(σ1 − 1)2 + (σ2 − 1)2 dp,

where σ1, σ2 are the singular values of ∇ϕp at any surface point
p ∈ P∞, which explains why the resulting parameterizations tend
to be close to isometric (isometric mappings satisfy σ1 = σ2 = 1).

3.1 Subdivision Surfaces

While many subdivision schemes exist, we concentrate on Catmull-
Clark subdivision [1978] due to its widespread adoption. However,
all of our results easily extend to other linear subdivision schemes.

For subdivision surfaces, tangents of the limit surface that corre-
spond to vertices of the control mesh are easy to find and can be
written as a weighted combination of vertices of the surface. Fig-
ure 3 shows the tangent mask for a valence n vertex of a Catmull-
Clark surface, which depends solely on the local topology of the
surface. The tangent pk

j,1 for the jth vertex pk
j ∈ P k at subdivision

level k can be found by applying the weights in Figure 3 to the 3D
positions of the vertices and summing, where

αi =

(

1

n
+

cos( π
n )

n

√

4+cos2( π
n )

)

cos
(

2πi

n

)

,

βi =

(

1

n

√

4+cos2( π
n )

)

cos
(

2πi+π

n

)

.

(2)

Likewise, pk
j,2 is given by simply rotating the vertices that the

weights are applied to once around the central vertex. Similarly,
tkj,1 and tkj,2 are given by applying the tangent mask to the texture

coordinates tkj ∈ T k of the vertices at level k.

Hence, we discretize Equation (1) by summing over the vertices at
level k to obtain

min
T0

∑

pk
j
∈P k

∥

∥(tkj,1, t
k
j,2)(p̂

k
j,1, p̂

k
j,2)

−1 −Rk
j

∥

∥

2

F
‖pk

j,1×p
k
j,2‖ (3)

with one optimal 2D rotationRk
j per vertex, and minimize this error

with the global/local algorithm described in Liu et al. [2008]. We
start with an initial guess for the parameterization by triangulating
the control mesh and applying a polygon parameterization method
such as [Lévy et al. 2002] or [Sheffer et al. 2005] to the polygons.
Next, we fix the vertices of the parameterized surface and determine
Rk

j for each vertex of the surface at subdivision level k as described

in the Appendix. Given the optimal rotations Rk
j , we then solve for

Figure 4: Parameterization near a valence 24 vertex. Top to bot-
tom: ARAP applied to the control mesh, our subdivision param-
eterization method and our method using extended charts. The
chart control mesh and subdivided chart are shown to the right
with the distortion metrics (angle, area, stretch) below. The dif-
ference between the surface and texture subdivision rules causes
large amounts of distortion near the extraordinary vertex.

the positions of the parameterized vertices in T 0 by noticing that
p̂k

j,1, p̂k
j,2, ‖pk

j,1×p
k
j,2‖ are fixed and tkj,1, tkj,2 are linear combi-

nations of the vertices of T 0. Therefore, Equation (3) becomes a
simple least squares problem, which can be efficiently solved using
a Cholesky decomposition; see [Liu et al. 2008] for details. We
then iterate this process starting with the estimation of the rotations
Rk

j until convergence.

While the subdivision level k used in Equation (3) is unspecified,
we would obviously like to find the limit as k tends toward infin-
ity. Notice that as k increases, the size of the linear system that we
solve remains constant as its size is equal to the number of vari-
ables in T 0. However, the number of rigid transformations Rk

j that
we must estimate increases exponentially with k. Hence, we can
take advantage of the multi-resolution structure of the subdivision
surface by first computing a solution with k = 0. Once the solution
has converged, we then subdivide the control mesh as well as the
vertex positions of the parameterized mesh. We repeat this process
by increasing the subdivision level until the solution converges. In
practice, we find that only a few levels of subdivision are necessary
to find good solutions and that the optimization converges quickly.



Figure 5: An example parameterization of a face. From left to
right: ARAP applied to the control mesh, our method using bound-
ary rules, our method with extended charts and ARAP applied to the
control mesh subdivided three times. Even though the chart control
mesh may fold back on itself with our method, the subdivided chart
does not. The red edges show the vertices of the extended chart.

3.2 Chart Boundaries

When parameterizing a polygon mesh, each polygon is assigned to
a single chart and its vertices have texture coordinates in the pa-
rameter space. This implies that a single vertex may have multi-
ple texture coordinates if its adjacent polygons belong to different
charts. The same process applies to subdivision surfaces with poly-
gons in the control mesh assigned to charts. However, each chart in
texture space has a boundary at its edge that may not geometrically
correspond to a boundary on the surface. For example, Figure 4
shows a surface without boundary even though the parameterized
chart contains a boundary. Given that the subdivision rules depend
on the topology of the shape, we cannot apply the same subdivi-
sion rules to the texture coordinates as to the surface coordinates
along the chart boundaries because the topology is different. The
natural solution is to apply boundary subdivision rules [Biermann
et al. 2000] to the chart while interior subdivision rules are applied
to the surface. This difference between subdivision rules does not
affect the optimization in Equation (3) except that the weights used
to compute tkj,1, tkj,2 change near the chart boundary.

Unfortunately, this seemingly natural decision produces unneces-
sary distortion along the boundary. Away from corners (valence 1
vertices), the boundary subdivision rules are designed to produce
smooth curves. However, the 3D image of the chart boundaries
on the surface will not be smooth at vertices of the control mesh
unless they pass through the opposite edge of an even valence ver-
tex. Figure 4 (top, middle) shows an example of the effect of using
boundary rules in this case. Unfortunately the chart vertices can
never be placed in a position to avoid this distortion.

Our solution is to extend each chart to create additional degrees of
freedom. For each chart, we find the set of vertices face-adjacent to
the chart boundary and give these vertices texture coordinates that
correspond to that adjacent chart. The implication of this process
is that vertices may have texture coordinates for charts whom their
adjacent polygons do not belong to.

The benefit of this chart extension is twofold. First, each chart is
given additional degrees of freedom to help minimize the distortion,
which results in better parameterizations. Since these vertices af-
fect the geometry of the subdivision surface, so too should they af-
fect the parameterization. Second, the same subdivision rules used
for the surface can be used on the charts, which means the same
weights are used to construct tkj,1, tkj,2 as pk

j,1, pk
j,2. Hence, the tex-

ture can match the shape of the boundary curve and angles formed
by edges on the surface. Figure 4 (bottom) shows the same exam-
ple as the middle except the vertices are optimized using extended
charts.

4 Results

To have some measure of parameterization quality, we use three
common metrics that measure the distortion of angles and area
[Hormann and Greiner 2000; Degener et al. 2003], and the average
L2 stretch [Sander et al. 2001]. Letting σk

j,1, σ
k
j,2 be the singular

values of the matrices

(

tkj,1, t
k
j,2

)

·
(

p̂k
j,1, p̂

k
j,2

)−1
,

and

Ak
j = ‖pk

j,1 × pk
j,2‖, Âk

j = ‖tkj,1 × tkj,2‖

be the area elements at pk
j and tkj , then these metrics are defined as

Eangle =

∑

j A
k
j (σk

j,1/σ
k
j,2 + σk

j,2/σ
k
j,1)

∑

j
Ak

j

,

Earea =

∑

j
Ak

j (1/(σk
j,1σ

k
j,2) + σk

j,1σ
k
j,2)

∑

j
Ak

j

,

Estretch =

√

√

√

√

∑

j
Ak

j

(

1/(σk
j,1)

2
+ 1/(σk

j,2)
2)

/2
∑

j
Ak

j

√

√

√

√

∑

j
Âk

j
∑

j
Ak

j

.

Notice that the minimum value for Eangle and Earea will be 2 assum-
ing no distortion in either quantity and thatEstretch will be 1. For the
level of subdivision k, we typically choose k = 5 to provide a fine
discretization of the subdivision surface.

Figures 1 and 5 show examples of our method compared with stan-
dard polygon parameterization. In each figure, we calculate an
ARAP parameterization of the control mesh using the method of
Liu et al. [2008] (left). We also show the result of using our subdi-
vision parameterization both without and with extended charts.

In all cases, our subdivision parameterization reduces both the an-
gle and area distortion as well as the average stretch dramatically
over standard polygon parameterization. Finally, we compare the
results with applying as-rigid-as-possible polygon parameterization
to the subdivided surface after k = 3 levels of subdivision. While
this comparison is not fair as the number of degrees of freedom has
increased by a factor of 64, we provide this comparison as a lower
bound to what we could possibly achieve with our method. Even
with far fewer degrees of freedom, our subdivision parameterization
with extended charts comes remarkably close to this lower bound.

As is evident in these examples, the use of extended charts improves
the parameterization as well. This phenomenon is especially ap-
parent in Figure 4 where we show a chart segmenting part of the
one-ring of a vertex of valence 24. In this situation, the boundary
curve of the chart on the surface is not smooth. However, the sub-
division rules applied to the texture create a smooth boundary. This
disconnection between the subdivision rules creates a large amount
of distortion in the parameterization near the extraordinary vertex.



Figure 6: The area distortion over a set of charts covering a sur-
face. Blue represents no distortion (2.0) and red high distortion
(≥ 2.5). We show the subdivision patch structure over the surface
and chart boundaries drawn in bold. Top: ARAP parameteriza-
tion of the control mesh with a total distortion of 2.048. Bottom:
our parameterization with extended charts with a total distortion of
2.008.

In contrast, extended charts have more degrees of freedom and can
match the shape of the boundary curve precisely.

Figure 6 shows the area distortion over different regions of an ex-
ample surface composed over several charts. When using polygon
parameterization methods (top), the error in the distortion tends
to be concentrated around chart boundaries. The error along the
boundaries is especially prominent when passing through an ex-
traordinary vertex, which Figure 4 demonstrates as well. However,
extraordinary vertices themselves are also sources of error in the pa-
rameterization as can be seen in the saddle configurations near the
top of the shape in Figure 6. Our method with extended charts (bot-
tom) drastically reduces the distortion to almost negligible amounts
over the vast majority of the surface.

Figure 7 shows the effect of the discretization level k in the result-
ing parameterization. As the level of subdivision increases, the er-
ror of the parameterization decreases. While the size of the system
of equations that we solve remains constant, the time taken to build
the system of equations depends on the subdivision level. SinceRk

j

changes at each iteration, we must construct this system of equa-
tions for each iteration. For Figure 7, iterations of our optimization
at k = 1 take only 0.11 seconds, 0.41 seconds at k = 2 and 1.77
seconds at k = 3 on an Intel Core i7 920. By starting our opti-
mization at a low level of subdivision, we can converge to a rough
solution quickly at very little cost. We gradually refine this solution
and optimize at increasing level of subdivision until our solution
converges.

Figure 7: Our parameterization with extended charts computed at
k = 1, 2, 3 (left to right) and the distortion (angle, area, stretch)
for each level.

5 Conclusions

We have provided a simple yet effective technique for parameter-
izing subdivision surfaces. Our method out-performs polygonal
parameterization methods and we have shown that using extended
charts improves the parameterization errors as well.
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Appendix

Liu et al. [2008] show that the best rotation Rp in Equation (1) is

Rp = UV T , where the orthogonal matrices U and V are taken

from the singular value decomposition of ∇ϕ̂p = UΣV T , and
additional care must be taken to guarantee that Rp has a positive
determinant and thus is a true rotation. However, we prefer the fol-
lowing strategy for computing Rp.

Theorem 1. The rotationR ∈ R
2×2 that approximatesA =

(

a b
c d

)

best in the Frobenius norm is

R =

(

a+ d b− c
c− b a+ d

)

/

√

(a+ d)2 + (b− c)2,

except in the special case a = −d and b = c, when all rotations
are equally good approximations to A.

Proof. Our goal is to find the rotation angle α that minimizes

f(α) = ‖R− A‖2

F
=

∥

∥

∥

∥

(

cosα − sinα
sinα cosα

)

−

(

a b
c d

)
∥

∥

∥

∥

2

F

= (cosα− a)2 + (sinα+ b)2 + (sinα− c)2 + (cosα− d)2.

With

vα =

(

cosα
sinα

)

and w =

(

b− c
a+ d

)

we can write the first derivative of f as

f ′(α) = 2 sinα(a+ d) + 2 cosα(b− c) = 2vT
αw,

which is zero if and only if vα is orthogonal to w, that is

vα = ±
w⊥

‖w‖
with w⊥ =

(

a+ d
c− b

)

.

The correct sign can be found be considering that the second deriva-
tive of f ,

f ′′(α) = 2 cosα(a+ d) − 2 sinα(b− c) = 2vT
αw

⊥,

is positive if and only if vα = +w⊥/‖w‖. Note that f ′(α) = 0
in the special case w =

(

0

0

)

, hence f is a constant function and all
rotations are equally good approximations to A.


