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Abstract
Subdivision schemes generate self-similar curves and surfaces. Therefore there is a close connection between
curves and surfaces generated by subdivision algorithms and self-similarfractals generated by Iterated Function
Systems (IFS). We demonstrate that this connection between subdivision schemes and fractals is even deeper by
showing that curves and surfaces generated by subdivision are also attractors, fixed points of IFS’s. To illustrate
this fractal nature of subdivision, we derive the associated IFS for many different subdivision curves and surfaces
without extraordinary vertices, including B-splines, piecewise Bezier, interpolatory four-point subdivision, bicubic
subdivision, three-direction quartic box-spline subdivision and Kobbelt’s

√
3-subdivision surfaces. Conversely, we

shall show how to build subdivision schemes to generate traditional fractals such as the Sierpinski gasket and the
Koch curve, and we demonstrate as well how to control the shape of these fractals by adjusting their control points.

Categories and Subject Descriptors(according to ACM CCS): I.3.7 [Computer Graphics]: Fractals

1. Introduction

The word fractal usually evokes images like the Koch
snowflake and Sierpinski gasket shown in figure1. Many
fractal shapes are either totally disconnected or, like the
Koch snowflake, continuous everywhere, but differentiable
nowhere. Two geometric properties commonly character-
ize fractals: fractals are self-similar and fractals are attrac-
tors. Subdivision schemes are known to generate self-similar
curves and surfaces. The purpose of this paper is to show that
curves and surfaces produced by subdivision algorithms are
also attractors. Thus, despite the fact that subdivision curves
and surfaces are commonly smooth, these shapes are also
fractals.

Recently, Goldman [Gol04] has shown that every Bezier
curve is an attractor. Goldman presents a constructive pro-
cedure based on the de Cateljau subdivision algorithm for
Bezier curves that builds an Iterated Function System (IFS)
whose attractor is exactly the given Bezier curve. Here we
shall extend his approach to curves and surfaces generated
by more general subdivision algorithms.

To explain what we mean by an IFS, we begin with the
definition of a contractive transformation. A transforma-
tion f is said to becontractiveif there exists a constants,
0 < s< 1, such that‖ f (x1)− f (x2)‖ ≤ s‖x1−x2‖ for every

Figure 1: Two examples of fractals. Koch snowflake (left)
and Sierpinski gasket (right).

pair of pointsx1, x2. An IFSF is a collection of contractive
transformationsF = { f1, f2, ..., fn}. We can apply a trans-
formation f to a setX by setting

f (X) = { f (x)|x∈ X}.
To apply an IFSF to a setX, we simply take the union of
each individual transformationfi applied toX:

F(X) = f1(X)
[

f2(X)
[

...
[

fn(X). (1)

A set X is said to be anattractor of an IFSF if X is a
fixed-point ofF ; that is,F(X) = X. For each IFSF com-
posed of contractive maps, there exists a unique attractor for
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Figure 2: A control polygon converging to a limit curve using uniform cubic B-spline subdivision with p0, p1, p2, p3 and p∞

shown (Top). Starting with an arbitrary point and iterating the B-spline IFS also converges to the same curve (Bottom).

F , which we denote byF∞ [Bar93]. To generateF∞, we
can start with any compact setX0 and iterateXi+1 = F(Xi).
Remarkably, any compact setX0 will converge toF∞ under
iteration. Both the Koch snowflake and the Sierpinski trian-
gle are attractors; that is, they are each fixed points of an
IFS. Therefore, attractors are often synonymous with frac-
tals [Bar93].

While Goldman concentrated on generating IFS’s for
Bezier curves, we are interested in curves generated by more
general subdivision procedures such as B-splines. B-splines
curves of degreen are curves specified over a set of knots
t0...tm, where the curve in betweenti and ti+1 is a Bezier
curve of degreen. If the knots are distinct, these curves
areCn−1 everywhere and contain a discontinuity in thenth

derivative at each of the knotsti .

Since B-splines are composed of piecewise Bezier curves,
each of which is an attractor, it is natural to wonder whether
B-splines are also attractors. However, constructing an IFS
whose attractor is the union of two or more attractors is
not so simple. Moreover, there exists arguments to suggest
that an IFS for B-splines does not exist. Fractals are self-
similar, composed of smaller copies of themselves. For ex-
ample, the Sierpinski gasket in figure1 is composed of
three smaller Sierpinski gaskets. A B-spline composed of
two Bezier curves is a piecewisenth degree polynomial that
contains a discontinuity in thenth derivative at the cen-
tral knot. The self-similarity of such a curve is not readily
apparent, since the discontinuity must vanish on the self-
similar pieces. Nevertheless, despite this apparent obstruc-
tion, in section2.1 we shall show how to construct an IFS
for uniform B-splines as well as for more general subdivi-
sion schemes.

Contributions

Inspired by Goldman’s work, we propose to bridge the
gap between subdivision curves and surfaces and the world
of fractals by showing that the shapes generated by subdi-
vision are themselves attractors of an IFS. For any spline
curve with uniform knots, we shall present a constructive
method for generating an IFS whose attractor is the given

spline. Furthermore, we will show how any curve generated
by an arbitrary stationary subdivision scheme can be repre-
sented by an IFS. We also examine subdivision surfaces in
the ordinary case (no extraordinary vertices) and show how
several surface subdivision schemes, including rectangular
methods like bicubic spline subdivision [CC78] and trian-
gle methods such as three-direction quartic box-spline sub-
division [Loo87] and

√
3-subdivision [Kob00], can also be

represented using an IFS. Finally, we also consider the con-
verse question: can traditional fractals be generated through
subdivision using a set of control points? We provide a gen-
eral paradigm for introducing control points and subdivision
rules for arbitrary fractals generated by an IFS consisting
of affine transformations. We then illustrate our approach
by introducing control points and subdivision rules for the
Sierpinski gasket and the Koch curve. We also show how to
adjust the shape of these fractals in an intuitive fashion by
moving their control points.

Previous Work

In addition to Goldman’s work on IFS’s for Bezier
curves [Gol04], Prautzsch and Micchelli [PM87] study
fractal-like curves generated by subdivision. However, the
curves they generate are not smooth. Kocić [Koc96] also
considers Bernstein polynomials as fractals.

Kocić and Simoncelli [KS98] introduce Affine Iterated
Function Systems, which use barycentric rather than rect-
angular or homogeneous coordinates to generate fractal
shapes. The purpose of their method is to extend the defi-
nition of an IFS to include control points in order to govern
the shape of the attractor. In contrast, we show how tradi-
tional fractals can be generated by subdivision rules. Kocić
and Simoncelli also anticipate some of our work on fractal
curves by constructing IFS matrices for uniform B-splines.
However, they provide no general insight to show that an ar-
bitrary binary subdivision scheme is necessarily an attractor;
nor do they consider subdivision surfaces.
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Figure 3: Subdivision of a cubic B-spline curve with tripled knots at the end points to force interpolation (Top). Starting with a
triangle and iterating the associated B-spline IFS generates the same curvedespite self-intersection (Bottom).

2. Curves

We begin by presenting a method for constructing an IFS
for any curve defined by an arbitrary, stationary subdivision
scheme. We show that the attractor of this IFS is exactly the
curve defined by the subdivision scheme and a given set of
control points, independent of the starting setX0 used for
the IFS. Next, we illustrate our construction by generating
IFS’s for uniform cubic B-spline curves. We then extend this
method to show that we can handle end-point conditions,
where the knot spacing is non-uniform. We also show that
this method can generate an IFS for other types of subdivi-
sion curves such as non-polynomial curves produced by the
four-point subdivision scheme [DGL87].

Subdivision schemes for curves are defined by a set of
rules that take in a set of control pointspk as input and pro-
duce a new, refined set of control pointspk+1 as output. Sub-
division is a recursive procedure and repeating this process
yields a limit curvep∞. For our purposes, we consider bi-
nary subdivision schemes for curves with two sets of rules
of the form

pk+1
2i = ∑ j α j p

k
j+i

pk+1
2i+1 = ∑ j β j p

k
j+i

where α j and β j are numerical coefficients and∑α j =

∑β j = 1. For instance, uniform cubic B-splines have an as-
sociated subdivision scheme with rules given in equation4.
Notice that these binary subdivision rules may also be writ-
ten in matrix form as

S=





























. . . . . . . . . . . . . . . . . . . . .

. . . β0 β1 β2 β3 β4 . . .

. . . α
−1 α0 α1 α2 α3 . . .

. . . β
−1 β0 β1 β2 β3 . . .

. . . α
−2 α

−1 α0 α1 α2 . . .

. . . β
−2 β

−1 β0 β1 β2 . . .

. . . α
−3 α

−2 α
−1 α0 α1 . . .

. . . β
−3 β

−2 β
−1 β0 β1 . . .

. . . . . . . . . . . . . . . . . . . . .





























.

Let P be a matrix of control points forp0, where theith

row of P contains the control pointp0
i . To build an IFS cor-

responding to the curve with control pointsp0 and subdi-
vision matrixS, we break the matrixS apart into multiple
square matricesS1,S2, ...,Sn such that applying all products
of Si of lengthk to the control pointsP converges top∞ as
k approaches∞. Note that, in order to form square matri-
ces, some of the rows of the matricesSi may overlap (for
example, see the B-spline matrices in section2.1). This de-
composition of the matrixS into the matricesSi is the same
as the decomposition used in the joint spectral radius cal-
culation introduced by Levin and Levin [LL03] to study the
smoothness properties of various subdivision schemes. Now
construct an IFS by letting

fi(X) = XP−1SiP. (2)

Notice thatP may not actually be invertible or even a
square matrix. To construct a form ofP suitable for equa-
tion 2, we shall lift the points inP to a higher dimension. To
make the matrixP square and invertible, we concatenate the
columns ofP with rows from an identity matrix to makeP
sizen× n− 1; then we change the coordinates into homo-
geneous form by adding a column of ones toP, makingP a
square matrix. This new square matrix is invertible as long
as the original control points form an affine basis (i.e., the
vertices do not all lie on a straight line).

Now if we choose our starting setX0 to beP, then apply-
ing equation1 simulates subdivision and generates exactly
the curvep∞. Since the fractal generated by an IFS is unique
if the fi are contractive maps, iteration on any compact set
X0 would yield the same fractal. Therefore, the attractor of
this IFS is exactly the limit curvep∞ as long as thefi are
contractive maps.

This independence of the starting setX0 is somewhat
counter-intuitive. Certainly if we begin with the control
pointsP, this process should converge to the limit curvep∞.
However, uniqueness asserts that iterating onany compact
starting set will converge to the exact same fractal. Figures2,
5 and3 show examples that start the iteration with a single
point, a line and even a triangle. In these examples, iteration
converges to the attractor regardless of the initial shape.
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Figure 4: Subdivision of two disjoint quadratic Bezier curves (Top). Starting with the point (2,
3
2 ,1,2,

3
2 ,1), and iterating the

IFS whose attractor is the union of the attractors of two individual IFS’s onefor each Bezier curve (Bottom).

To show that the mapsfi are contractive, we first note that
the matricesP−1SiP are always of the form

P−1SiP =











. . . . . 0

...
. . .

...
...

. . . . . 0

. . . . . 1











. (3)

This result holds because convergent subdivision schemes
always have a constant right eigenvector of ones correspond-
ing to the eigenvalue one. Therefore, the last column ofSiP
is a column of ones corresponding to the homogeneous com-
ponent ofP. Finally, P−1 multiplied by this vector of ones
will produce the desired column of the identity matrix be-
cause the last column ofP is a column of ones andP−1P= I .

For convergent subdivision schemes, theSi have eigen-
values of the form 1> λ1 ≥ λ2.... To build fi , we perform a
change of basis onSi by P−1SiP. This change of basis does
not alter the eigenvalues of the matrices. The eigenvector as-
sociated with eigenvalue 1 from the matrix in equation3
corresponds to the translational component of the transfor-
mation matrix. Since the remaining eigenvalues are less than
1, the mapsfi are contractive. Therefore, the IFS composed
of the fi has a unique attractor, which is exactly the curve
p∞ defined by recursive subdivision.

2.1. B-splines

Uniform cubic B-splines are piecewise cubic polynomials
that have a very simple subdivision scheme [LR80]. Given
an initial set of control pointsp0, the control points at level
pk+1 are given by the rules

pk+1
2i = 1

8 pk
i−1 + 3

4 pk
i + 1

8 pk
i+1

pk+1
2i+1 = 1

2 pk
i + 1

2 pk
i+1

. (4)

We now construct an IFS whose attractor is exactly a cubic
B-spline curve defined by five control points. The limit curve
in this case is two cubic polynomial segments that meet with
C2 smoothness. To start, we split the 8×5 subdivision matrix
Sinto two 5×5 subdivision matricesS1 andS2 that build the

left and right halves of the curve.

S1 =













1
2

1
2 0 0 0

1
8

3
4

1
8 0 0

0 1
2

1
2 0 0

0 1
8

3
4

1
8 0

0 0 1
2

1
2 0













S2 =













0 1
2

1
2 0 0

0 1
8

3
4

1
8 0

0 0 1
2

1
2 0

0 0 1
8

3
4

1
8

0 0 0 1
2

1
2













Note that the last 3 rows ofS1 are identical to the first 3
rows ofS2. Next, we construct a matrixP of control points
in homogeneous form and extend the coordinates to build a
square invertible matrix.

P =













x1 y1 1 0 1
x2 y2 0 1 1
x3 y3 0 0 1
x4 y4 0 0 1
x5 y5 0 0 1













Finally, we construct the functionsf1 and f2 using equa-
tion 2.

To display the attractor of our IFS, we can start with any
compact setX0. For our example, we choose a random ho-
mogeneous point in five dimensions. Next, we iterate equa-
tion 1, each time doubling the number of points. To render
these points, we simply drop the extra coordinates and dis-
play the points in the plane using only thex, y coordinates.
Figure2 shows an example of this process. Notice that we
can start with any set such as lines or polygons and iterating
this process will still converge to the same attractor. In con-
trast, normal subdivision cannot start with an arbitrary set as
input and converge to the correct curve. Instead, subdivision
requires that we start only with the control polygon for the
given curve.

Our strategy for constructing an IFS does not require that
the B-spline subdivision rules be uniform throughout the en-
tire curve as they are in the previous example. To illustrate
this point, we now build an IFS for a cubic B-spline that
interpolates its end-points. We begin with a non-uniform
knot spacing with knots{0,0,0,1,2,2,2}. Using blossom-
ing [Ram89], we then build the two subdivision matricesS1,
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Figure 5: Subdivision using the four-point rule (Top). Starting with a line and iterating theIFS also converges to the same
curve (Bottom).

S2 that correspond to inserting knots to form the knot se-
quence{0,0,0,

1
2 ,1,1,1,

3
2 ,2,2,2}.

S1 =













1 0 0 0 0
1
2

1
2 0 0 0

0 3
4

1
4 0 0

0 3
8

1
2

1
8 0

0 1
4

1
2

1
4 0













S2 =













0 1
4

1
2

1
4 0

0 1
8

1
2

3
8 0

0 0 1
4

3
4 0

0 0 0 1
2

1
2

0 0 0 0 1













Figure 3 shows a triangle converging under the action of
this IFS to a cubic B-spline with interpolating endpoint con-
ditions. Similar subdivision algorithms exist for any knot
sequence where knot insertion generates a self-similar se-
quence of knots.

2.2. Bezier Curves

Though Goldman showed how a single Bezier curve could
be generated from an IFS, he did not discuss how to build an
IFS for multiple Bezier curves that meet with various levels
of smoothness. Using our technique, we can construct a sin-
gle IFS whose attractor is two disjoint Bezier curves. Since
each Bezier curve can be represented by an IFS, our method
generates a single IFS whose attractor is the union of the
attractors from the two individual IFS’s.

For a single quadratic Bezier curve, the two subdivision
matrices for the corresponding IFS are

S1 =





1 0 0
1
2

1
2 0

1
4

1
2

1
4





S2 =





1
4

1
2

1
4

0 1
2

1
2

0 0 1



 .

Given two quadratic Bezier curves with control pointsP, Q
written as rows in homogeneous form, we construct the IFS

for the union of the two Bezier curves using block matrices
as

f1(X) = X

(

P−1S1P 0
0 Q−1S1Q

)

f2(X) = X

(

P−1S2P 0
0 Q−1S2Q

)

.

While similar to the curve matrices developed in sec-
tion 2.1, there is a complication that arises when using this
union technique. Each matrixS1, S2 contains an eigenvalue
of 1 that corresponds to the homogeneous component in the
control points. However, in block form, the new matrix con-
tains two eigenvalues of 1 because there are now two ho-
mogeneous components. Therefore, to make sure thefi are
still contractive maps, we require that the starting setX0 for
equation1 contain 1’s in each of the two homogeneous com-
ponents.

Figure 4 shows an attractor consisting of two Bezier
curves generated using this technique. For the starting set
X0, we used a single point of the form{x1,y1,1,x2,y2,1}. To
render the fractal, we draw the points{x1,y1} and{x2,y2}.

While this method generates an IFS whose attractor is the
union of two Bezier curves, a B-spline curve is composed of
multiple Bezier curves that meet withCn−1 continuity for a
degreen curve. Therefore, for Bezier curves meeting with
Cn−1 smoothness, we get similar results in a more compact
form using the B-spline matrices from section2.1. However,
the technique that we present here is general enough to con-
struct an IFS whose attractor is the union of the attractors of
any two IFS’s whose transformations consist of matrix mul-
tiplication.

2.3. Four-Point Subdivision

Until now, all of our examples using this IFS construction
have converged to curves that are piecewise polynomial.
However, there is nothing special about polynomials and our
method can operate on arbitrary subdivision schemes. For
instance, the four-point subdivision scheme is an interpola-

c© The Eurographics Association 2005.



S. Schaefer, D. Levin, R. Goldman / Subdivision Schemes and Attractors

Figure 6: Subdivision for a bicubic spline surface (Top). Generating the same surface using an IFS (Bottom).

Figure 7: Three-direction quartic box-spline subdivision for a hexagonal patch (Top). Starting with a single triangle and
iterating the IFS converges to the same surface (Bottom).

tory scheme whose rules are

pk+1
2i = pk

i

pk+1
2i+1 = −1

16 pk
i−1 + 9

16pk
i + 9

16pk
i+1− 1

16pk
i+2.

This subdivision scheme can reproduce cubic polynomials,
though in general the four-point method generates smooth
curves that are not polynomial. Nevertheless, we can still
construct an IFS that converges to these curves. Below are
the subdivision matricesS1 andS2 used to construct this IFS.

S1 =





















0 1 0 0 0 0 0
−1
16

9
16

9
16

−1
16 0 0 0

0 0 1 0 0 0 0
0 −1

16
9
16

9
16

−1
16 0 0

0 0 0 1 0 0 0
0 0 −1

16
9
16

9
16

−1
16 0

0 0 0 0 1 0 0





















S2 =





















0 0 1 0 0 0 0
0 −1

16
9
16

9
16

−1
16 0 0

0 0 0 1 0 0 0
0 0 −1

16
9
16

9
16

−1
16 0

0 0 0 0 1 0 0
0 0 0 −1

16
9
16

9
16

−1
16

0 0 0 0 0 1 0





















Figure5 depicts the fractal process starting with a line seg-
ment, which converges to the curve defined by this subdivi-
sion scheme.

3. Surfaces

While the IFS construction in section2 is specific to curves,
the concepts are general enough to apply as well to subdi-
vision surfaces. In this section, we show several examples
of IFS’s whose attractors are surfaces defined via uniform
subdivision. Though it is straightforward to extend the curve
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Figure 8: Kobbelt’s
√

3-subdivision for a hexagonal surface (Top). The same surface generated using an IFS (Bottom).

methods from section2 to tensor product surfaces, it may
not be immediately apparent that other subdivision schemes
such as Kobbelt’s

√
3-subdivision can also be generating

from an IFS.

Similar to the curve case, we begin by constructing a
subdivision matrixS that encodes the rules for subdivid-
ing a control polyhedron. Next, we separate this matrix into
square matricesSi such that taking all possible combination
of these matrices of lengthk converges to the subdivision
surface ask approaches∞. Unfortunately, the subdivision
matrices used to generate these surfaces are too large to in-
clude in the body of this paper. However, we have placed a
Mathematica notebook online at http://www.cs.rice.edu/ ss-
chaefe/splineifs.nb, which includes our implementation of
the IFS’s used for all the curves and surfaces in this paper.

3.1. Bicubic Spline Subdivision

In the uniform case, Catmull-Clark subdivision [CC78] op-
erates on quadrilateral polygons and generates a tensor prod-
uct scheme for uniform cubic B-splines. Since we can rep-
resent a cubic B-spline as an IFS, we can also represent this
surface subdivision scheme as an IFS. For the surface IFS,
we have four subdivision matrices instead of the two ma-
trices from the curve examples in section2.1. Figure6 il-
lustrates a bi-cubic patch constructed from a 4× 4 grid of
control points using this subdivision scheme. Starting with
a single triangle, we apply the fractal process using the IFS
we have constructed and generate the same bi-cubic patch.

3.2. Three-Direction Quartic Box-Splines

Three-direction quartic box-splines correspond to Loop sub-
division [Loo87] in the uniform case. The surfaces that this
scheme takes as input are composed of triangles. In contrast
to bicubic subdivision in section3.1, this scheme cannot be
written as a tensor product; however, this scheme may still

be used to generate an IFS. Figure7 shows a hexagonal sur-
face created from a hexagonal grid of control points.

Like many fractals, there is more than one way to write
down the transformations that generate this attractor. Even
though this subdivision scheme is triangle-based, we could
have splitS into four matrices instead of the six we used in
figure7. However, the attractor in that case would look rect-
angular and similar to that of figure [CC78]. We chose six
matrices in this case to create an attractor with a hexagonal
shape to distinguish this attractor from the tensor product
scheme in section3.1.

Figure 9: Three-direction quartic box-spline surface gen-
erated by an IFS with six transformations (Left). The same
IFS with two of the six transformations removed creates a
fractal-like surface, which is a subset of the original surface
(Right).

3.3. Kobbelt’s
√

3-subdivision

Finally, surfaces generated by Kobbelt’s
√

3-
subdivision [Kob00] can also be represented by an IFS. Like
quartic box-spline subdivision in section3.2, this scheme
operates on meshes of triangles. However, two rounds of
subdivision using this scheme correspond to a ternary split
of the triangle polygons (hence the name

√
3-subdivision),

whereas three-direction quartic box-spline subdivision
performs a binary split at each level of subdivision.

c© The Eurographics Association 2005.



S. Schaefer, D. Levin, R. Goldman / Subdivision Schemes and Attractors

Figure 10: Applying the standard IFS for the Koch curve to a control polygon produces the fractal (Top). Starting with a
different control polygon and applying the standard IFS still convergesto the same fractal (Middle). With subdivision, moving
a control point changes the shape of the Koch curve (Bottom).

Though
√

3-subdivision is a somewhat exotic subdivision
scheme, the rules as well as the structure of the control points
behave in a self-similar fashion, which allows us to construct
the subdivision matrices necessary to build an IFS for these
surfaces. Figure8 (top) contains a surface generated through
uniform

√
3-subdivision on polygons. On the bottom of the

figure, we use the associated IFS to recover the same surface
starting from a single triangle.

The surfaces generated in this section are developed
through an IFS; however, they certainly do not resemble
fractal shapes such as the Sierpinski gasket from figure1.
Nevertheless, we can observe their underlying fractal struc-
ture by the following device. IfF is an IFS andG ⊂ F , the
fractal generated byG is a subset of the fractal generated
by F - that is, if G ⊂ F , thenG∞ ⊆ F∞. Thus if we were
to omit some of the matrices from an IFS that generates a
subdivision surface, we would generate a fractal on the sur-
face. Figure9 shows a picture of the three-direction quartic
box-spline subdivision surface from figure7 and a subset of
the same surface generated by an IFS with two of the six
transformations omitted. The resulting fractal surface very
much resembles a Sierpinski gasket, but all of the points lie
on the subdivision surface. This figure illustrates the under-
lying fractal structure of these subdivision surfaces.

4. Fractals with Control Points

Subdivision schemes have advantages over more traditional
fractal methods because the user can control the shape of
a subdivision curve or surface by manipulating a set of
control points that govern the shape of the attractor. Since
many common subdivision schemes generate fractals, per-
haps many common fractals can also be generated by sub-
division. The purpose of this section is to show that this in-
sight is indeed correct – that many standard fractals can be
generated by subdivision rules applied to control points. We
shall present a general strategy for converting fractals into
subdivision schemes and we will provide several examples
to illustrate the method. As with subdivision schemes, our

strategy is to build the control points into the very fabric of
the iterated function system of the fractal. The advantage of
this control point representation for fractals is that control
points provide much finer control over the shape of a fractal
than standard IFS’s.

Given an IFS defined by a set of affine transformations
F = { f1, . . . fn}, we construct a subdivision scheme by
choosing a set of control pointsP = {P1 . . .Pm}. These con-
trol points may be any points in space. However, for many
fractals such as the Koch curve there are natural choices for
the control points (see figure10).

To build the subdivision rules for our fractal, we applyF
to P. For each vertexp j in fi(P), we representp j as an affine
combination of the original control pointsP:

p j = Σkα j,kPk. (5)

We construct the subdivision matrixSi corresponding to the
transformationfi by setting thej,k entry ofSi to α j,k. The
subdivision matrixS for this fractal is then simply the con-
catenation of theSi . Notice that the decomposition in equa-
tion 5 does not yield a unique set of weightsα j,k. In fact,
many different choices for the weights are possible because
the problem is underdetermined.

4.1. Koch curve

To construct the Koch curve, we begin by selecting five con-
trol points (see figure10). To generate the subdivision rules,
we note that the Koch curve is composed of four transfor-
mations. The first two transformations scale about the left
and right end-points of the curve by13 . The remaining two
transformations scale about the end-points by1

3 , rotate up-
wards by 60 degrees about the outside corners and translate
inwards by1

3 . Since there are four transformations, there will
be four subdivision matrices. We apply each transformation
to the control points and then build our subdivision rules us-
ing barycentric coordinates with respect to the three closest
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Figure 11: Applying the standard IFS for the Sierpinski gasket to a triangle as the starting set produces the gasket (Top).
Starting with a different polygon and applying the standard IFS convergesto the same fractal (Middle). With subdivision,
moving the control points changes the shape of the final fractal (Bottom).

control points. The four subdivision matrices are

S1 =













1 0 0 0 0
2
3

1
3 0 0 0

2
3 0 1

3 0 0
1
3

2
3 0 0 0

0 1 0 0 0













S2 =













0 1 0 0 0
0 2

3
1
3 0 0

1
3 0 2

3 0 0
0 1

3
2
3 0 0

0 0 1 0 0













S3 =













0 0 1 0 0
0 0 2

3
1
3 0

0 0 2
3 0 1

3
0 0 1

3
2
3 0

0 0 0 1 0













S4 =













0 0 0 1 0
0 0 0 2

3
1
3

0 0 1
3 0 2

3
0 0 0 1

3
2
3

0 0 0 0 1













Figure10 illustrates the difference between the ordinary IFS
for the Koch curve and the Koch curve built via subdivi-
sion. On top, we start with the control polygon and apply the

standard IFS to produce the Koch curve. The standard IFS
converges to the same shape even if we start with a different
control polygon. However, if we use the subdivision matri-
cesSi , the altered control points generate a deformed version
of the Koch curve. Notice that this deformation is local to the
left side of the curve.

4.2. Sierpinski gasket

To build the Sierpinski gasket using subdivision, we first
choose our control pointsP. One natural choice for these
control points are the three extremal vertices of the triangle.
However, using only three vertices will result in a set of con-
trol points that can generate only affine transformations of
the gasket. Therefore, in addition to the three corner points,
we choose the three edge vertices as well (see figure11) for
the control points of the fractal.

In contrast to the Koch curve where we use barycentric
coordinates, for the Sierpinski gasket we will choose a more
interesting set of subdivision rules. The Sierpinski gasket is
generated by three transformationsfi , each of which scales
by 1

2 about the corners of the outer triangle. If we treat each
of the outer edges of the gasket as quadratic curves, we can
define the new positions of the control points along each
edge using Lagrange interpolation. For the image of the con-
trol points on the interior of the gasket, we simply linearly
interpolate the vertices at the end of the interior edge. These
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rules create the three subdivision matrices

S1 =

















1 0 0 0 0 0
3
8

3
4

−1
8 0 0 0

0 1 0 0 0 0
0 1

2 0 0 0 1
2

0 0 0 0 0 1
3
8 0 0 0 −1

8
3
4

















S2 =

















0 1 0 0 0 0
−1
8

3
4

3
8 0 0 0

0 0 1 0 0 0
0 0 3

8
3
4

−1
8 0

0 0 0 1 0 0
0 1

2 0 1
2 0 0

















S3 =

















0 0 0 0 0 1
0 0 0 1

2 0 1
2

0 0 0 1 0 0
0 0 −1

8
3
4

3
8 0

0 0 0 0 1 0
−1
8 0 0 0 3

8
3
4

















.

Figure11 shows the difference between the standard IFS
and subdivision for the Sierpinski gasket. The fractal gen-
erated by the standard IFS is independent of the starting set
(Top and Middle). However, if the user changes the positions
of the control points, the subdivision scheme will converge
to a deformed version of the gasket (Bottom).

5. Conclusions

We have demonstrated that standard, stationary subdivision
schemes generate fractals - that is, subdivision curves and
surfaces are attractors of an IFS. In contrast to ordinary sub-
division, an IFS can generate these curves and surfaces by
starting with any compact set and not just their control poly-
gons. Also, subdivision requires not only the control ver-
tices, but the topology of those vertices as well. An IFS
generates these curves and surfaces without directly storing
the topology. We provided several examples of curves and
surfaces generated using this method, including B-splines,
piecewise Bezier curves and curves generated by the four-
point scheme as well as surfaces created by subdivision
schemes such as bicubic splines, three-direction quartic box-
splines and Kobbelt’s

√
3-subdivision. We ended by demon-

strating that many traditional fractals such as the Koch curve
and Sierpinski gasket can also be represented by subdivision
schemes, which allows the user control over the shape of the
fractal by adjusting a set of control points.

In section2.2, we noted that the method for constructing
an IFS consisting of two Bezier curves is a union operator. In
the future we would like to consider whether other operators
on attractors such as intersection have simple expressions as
well.

Finally, our surface examples consist only of ordinary
configurations of polygons and do not address issues asso-
ciated with extraordinary vertices. We believe that we can
construct an IFS whose attractor also includes extraordinary
vertices. However, to do so, we may need to add a conden-
sation set [Bar93] to the IFS.
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