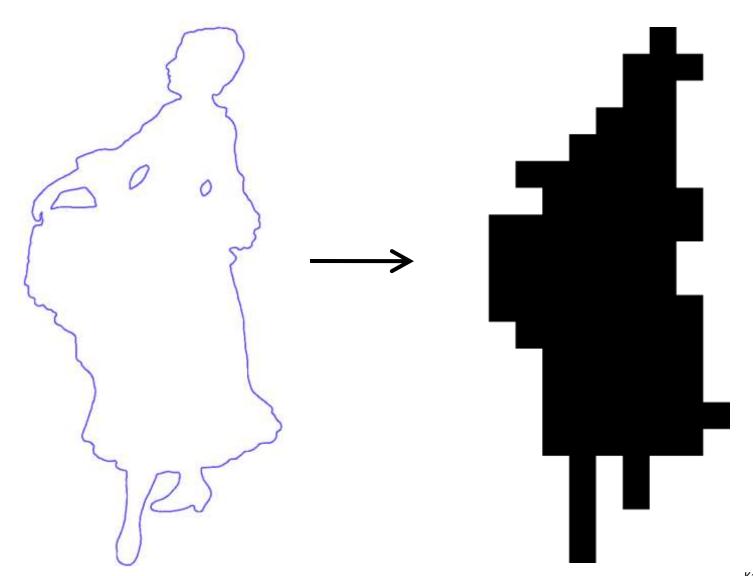
Wavelet Rasterization

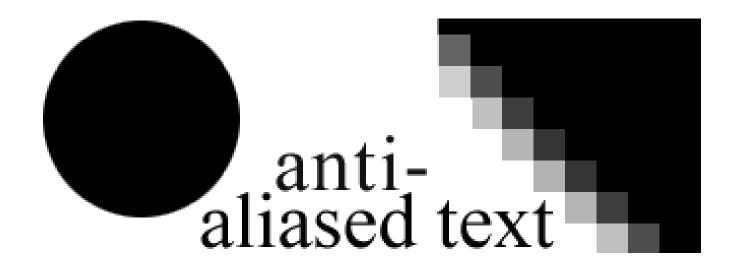
Josiah Manson and Scott Schaefer

Rasterization in 2D

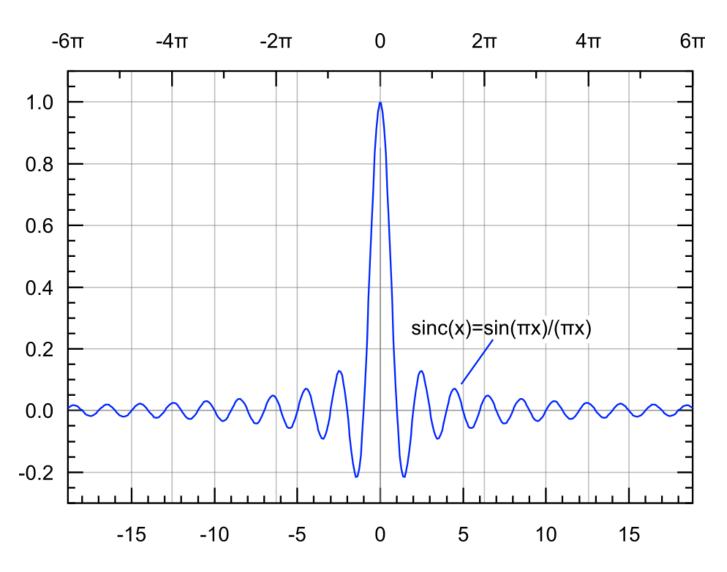


Rasterization in 3D

The aliasing problem

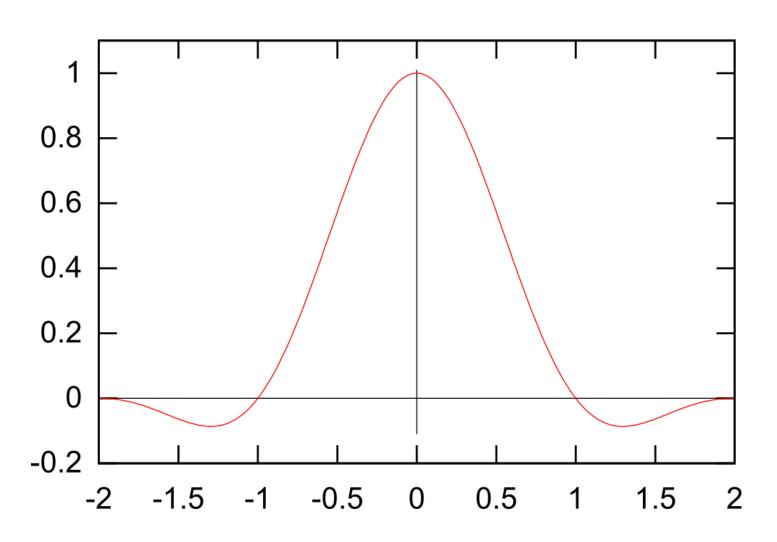


Anti-aliasing



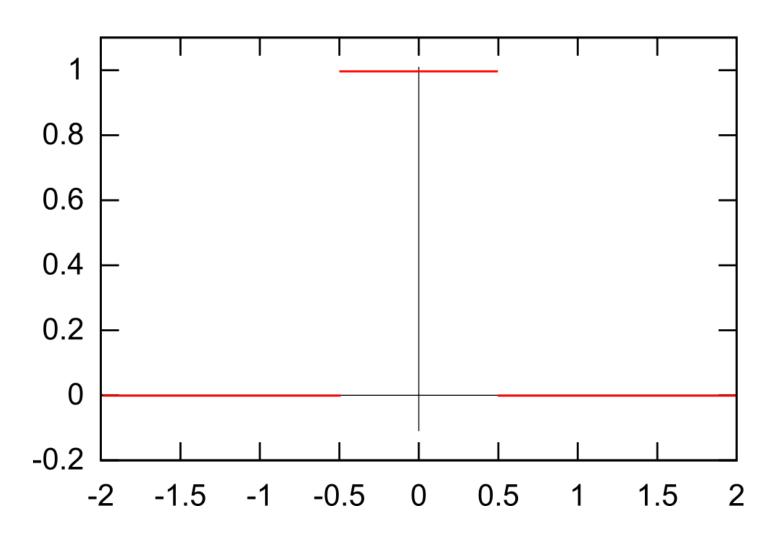
Anti-aliasing

Lanczos kernel for a=2

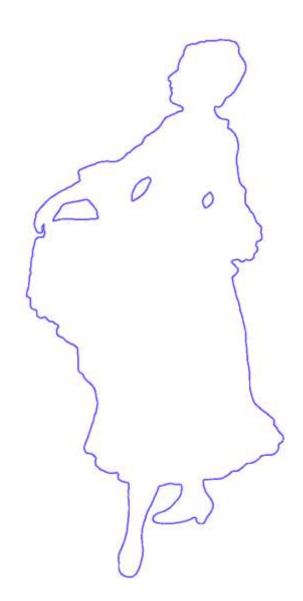


Anti-aliasing

Box filter

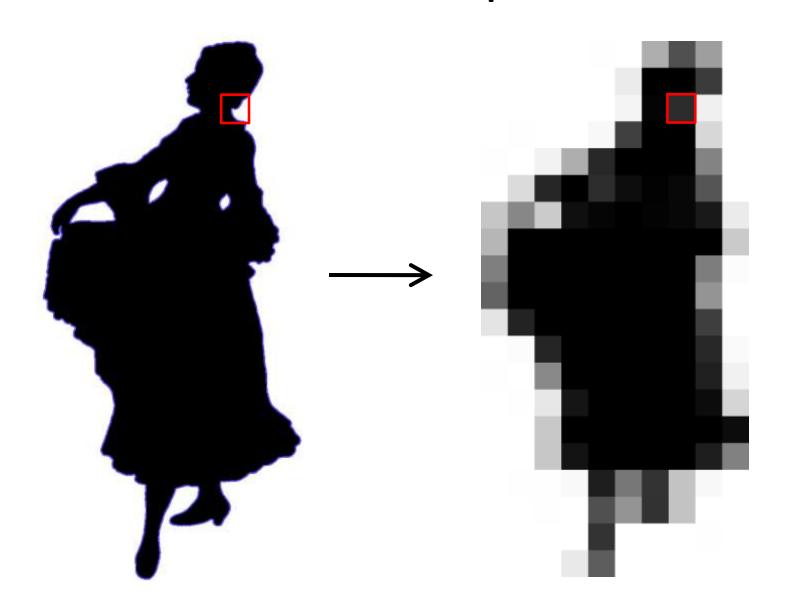


Pixel Raster Equation



Pixel Raster Equation

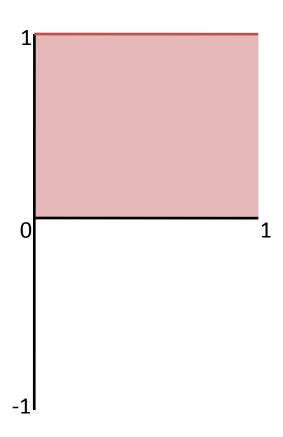
Pixel Raster Equation

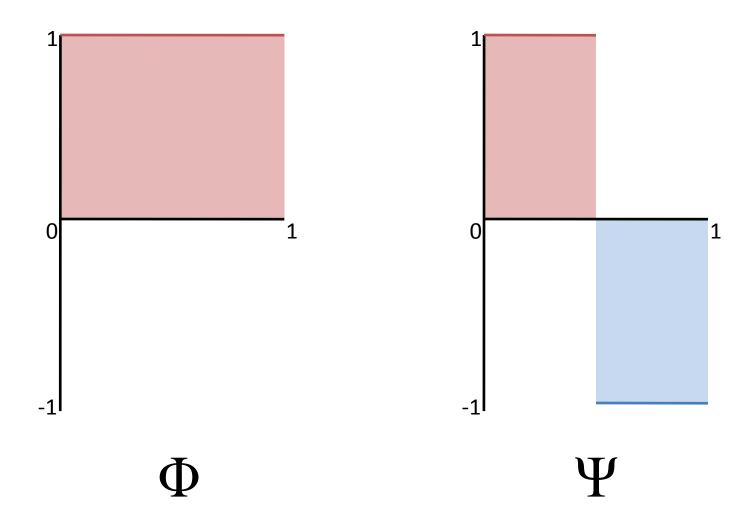


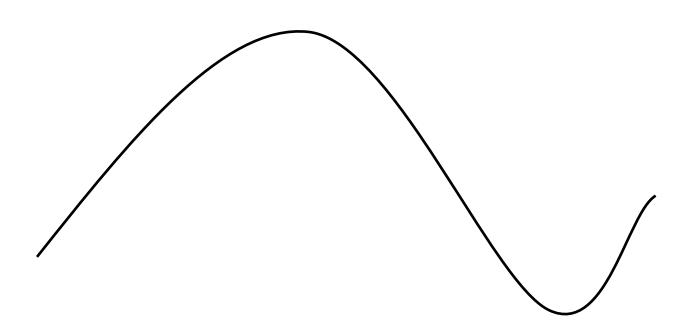
Applications

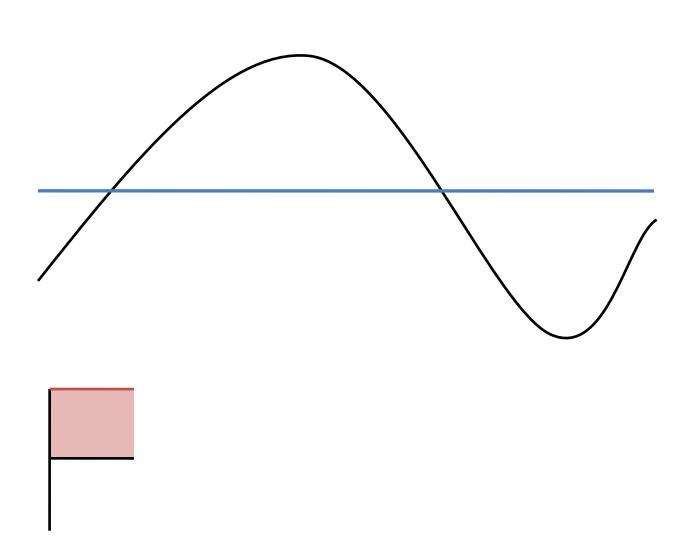
Applications

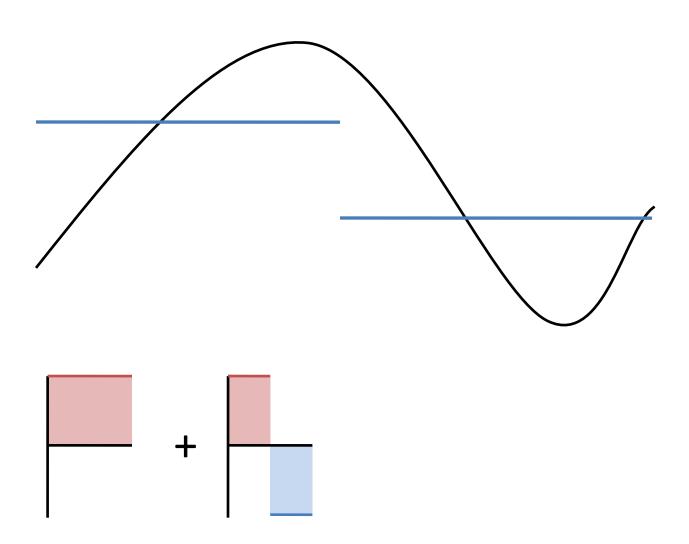
"A Multiscale Approach to Mesh-based Surface Tension Flows" Nils Thuerey, Chris Wojtan, Markus Gross, and Greg Turk

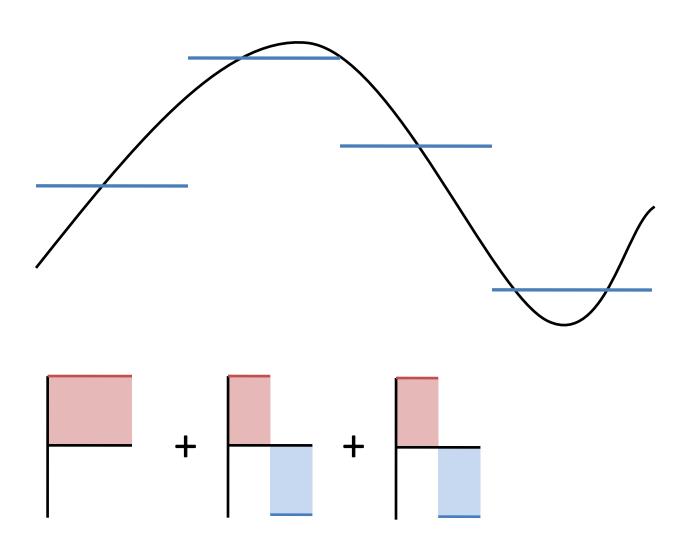


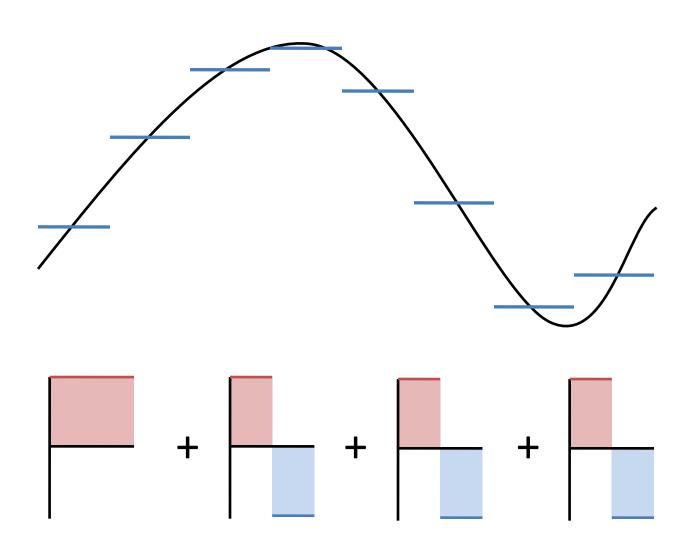




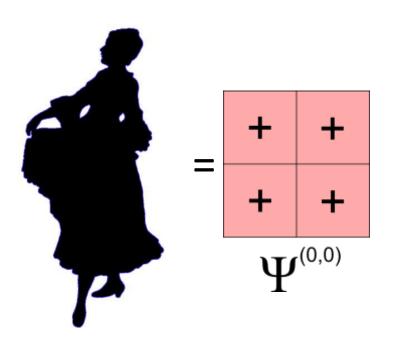








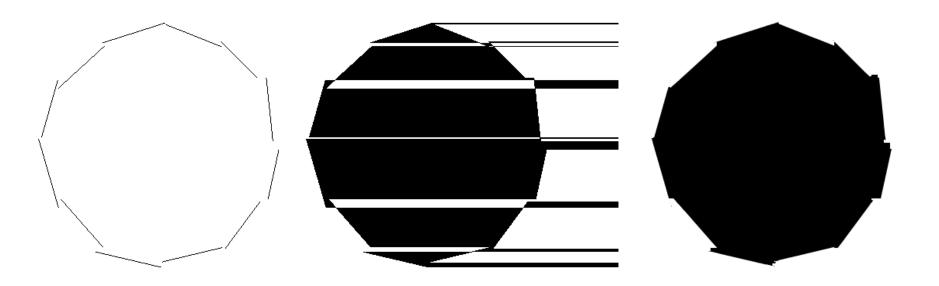
 $\chi_M(p)$



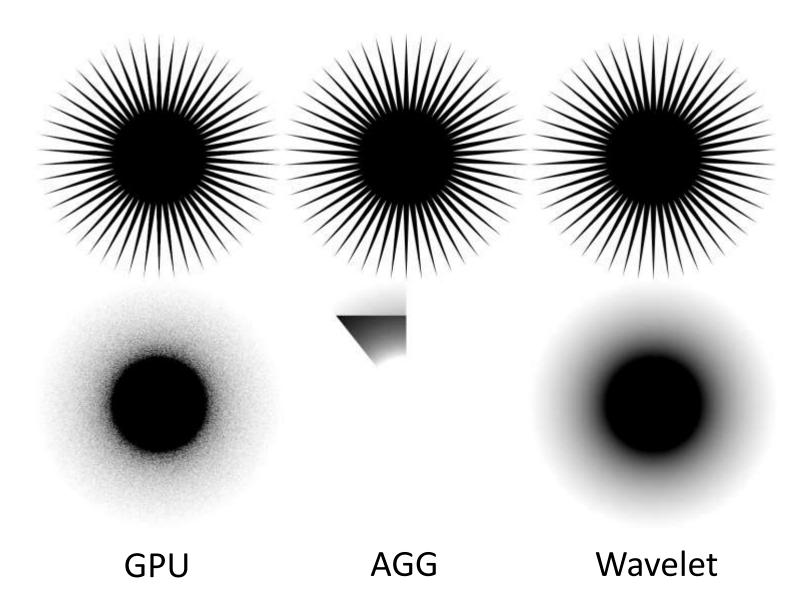
$$\chi_M(p) = \sum_{k \in \mathbb{Z}^2} c_{0,k}^{(0,0)} \psi_{0,k}^{(0,0)}(p)$$

$$\chi_{M}(p) = \sum_{k \in \mathbb{Z}^{2}} c_{0,k}^{(0,0)} \psi_{0,k}^{(0,0)}(p) + \sum_{j \in \mathbb{N}} \sum_{k \in \mathbb{Z}^{2}} \sum_{e \in E} c_{j,k}^{e} \psi_{j,k}^{e}(p)$$

Why Wavelets?



Why Wavelets?



$$c_{j,k}^e = \iint_{\mathbb{R}^2} \chi_M(p) \psi_{j,k}^e(p) dp$$

$$c_{j,k}^{e} = \iint_{\mathbb{R}^{2}} \chi_{M}(p) \psi_{j,k}^{e}(p) dp$$
$$= \iint_{M} \psi_{j,k}^{e}(p) dp$$

$$c_{j,k}^{e} = \iint_{\mathbb{R}^{2}} \chi_{M}(p) \psi_{j,k}^{e}(p) dp$$
$$= \iint_{M} \psi_{j,k}^{e}(p) dp$$

$$\iint\limits_{M} \nabla \cdot F_{j,k}^{e}(p) \, dp = \oint\limits_{p \in \partial M} F_{j,k}^{e}(p) \cdot n(p) \, d\sigma$$

$$c_{j,k}^e = \iint_{\mathbb{R}^2} \chi_M(p) \psi_{j,k}^e(p) dp$$

$$= \iint_{M} (\Psi_{j,k}^{e}(p)) dp$$

$$\iint\limits_{M} (\nabla \cdot F_{j,k}^{e}(p)) dp = \oint\limits_{p \in \partial M} F_{j,k}^{e}(p) \cdot n(p) \ d\sigma$$

$$c_{j,k}^{e} = \iint_{\mathbb{R}^{2}} \chi_{M}(p) \psi_{j,k}^{e}(p) dp$$

$$= \iint_{M} \psi_{j,k}^{e}(p) dp$$

$$= \sum_{i} \int_{0}^{1} F_{j,k}^{e}(P_{i}(t)) \cdot n(P_{i}(t)) ||P'_{i}(t)|| dt$$

$$\nabla \cdot F^e(p) = \Psi^e(p)$$

$$\nabla \cdot F^e(p) = \Psi^e(p)$$

$$\bar{\Phi}(t) = \int_0^t \phi(s) \ ds \qquad \bar{\Psi}(t) = \int_0^t \psi(s) \ ds$$

$$\nabla \cdot F^e(p) = \Psi^e(p)$$

$$\phi(s) = \boxed{ \bar{\Phi}(t) = }$$

$$\psi(s) = \boxed{ \bar{\Psi}(t) = }$$

$$\nabla \cdot F^e(p) = \Psi^e(p)$$

$$F^{e}(p) = \left(\alpha \bar{\Psi}^{e_x}(p_x) \psi^{e_y}(p_y), \beta \psi^{e_x}(p_x) \bar{\Psi}^{e_y}(p_y)\right)$$

$$\phi(s) = \boxed{\bar{\Phi}(t) = }$$

$$\psi(s) = \boxed{\bar{\Psi}(t) = }$$

$$\nabla \cdot F^e(p) = \Psi^e(p)$$

$$F^{e}(p) = \left(\alpha \bar{\Psi}^{e_x}(p_x) \psi^{e_y}(p_y), \beta \psi^{e_x}(p_x) \bar{\Psi}^{e_y}(p_y)\right)$$

$$\phi(s) = \boxed{\begin{array}{c} \bar{\Phi}(t) = \\ \alpha + \beta = 1 \\ \bar{\Psi}(t) = \end{array}}$$

$$\psi(s) = \boxed{\begin{array}{c} \bar{\Psi}(t) = \\ \bar{\Psi}(t) =$$

$$F^{(0,0)}(p) = \frac{1}{2}(\bar{\Phi}(p_x)\phi(p_y),\phi(p_x)\bar{\Phi}(p_y))$$

$$\alpha = \beta = \frac{1}{2}$$

$$F^{(0,0)}(p) = \frac{1}{2}(\bar{\Phi}(p_x)\phi(p_y),\phi(p_x)\bar{\Phi}(p_y))$$

 $F^{(1,0)}(p) = (\bar{\Psi}(p_x),0)$

$$\alpha = 1$$
 $\beta = 0$

Choosing F

$$F^{(0,0)}(p) = \frac{1}{2}(\bar{\Phi}(p_x)\phi(p_y),\phi(p_x)\bar{\Phi}(p_y))$$

 $F^{(1,0)}(p) = (\bar{\Psi}(p_x),0)$
 $F^{(0,1)}(p) = (0,\bar{\Psi}(p_y))$

$$\alpha = 0$$
 $\beta = 1$

Choosing F

$$F^{(0,0)}(p) = \frac{1}{2}(\bar{\Phi}(p_x)\phi(p_y), \phi(p_x)\bar{\Phi}(p_y))$$

$$F^{(1,0)}(p) = (\bar{\Psi}(p_x), 0)$$

$$F^{(0,1)}(p) = (0, \bar{\Psi}(p_y))$$

$$F^{(1,1)}(p) = (\bar{\Psi}(p_x)\psi(p_y), 0)$$

$$\alpha = 1$$
 $\beta = 0$

Line Segments

$$F^{(0,0)}(p) = \frac{1}{2}(\bar{\Phi}(p_x)\phi(p_y),\phi(p_x)\bar{\Phi}(p_y))$$

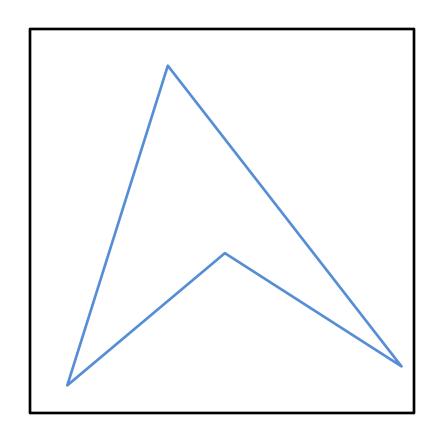
$$\int_0^1 F^{(0,0)}(P(t)) \cdot n(P(t)) ||P'(t)|| dt = \frac{1}{2} det \left(v_0, v_1\right)$$

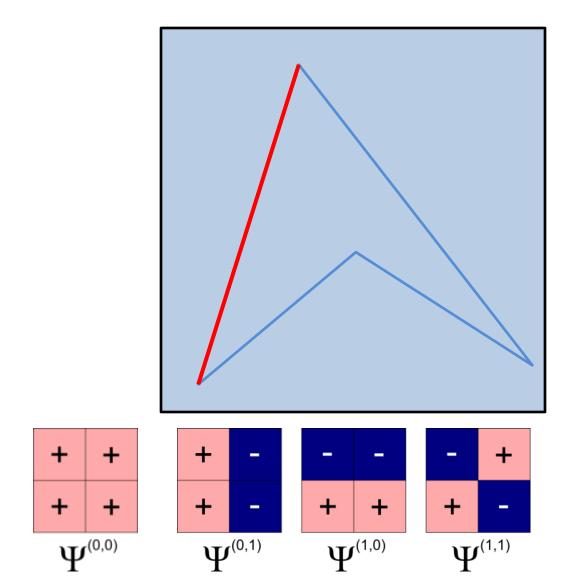
Line Segments

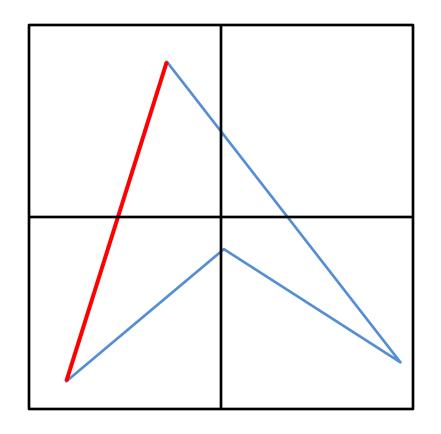
$$F^{(0,0)}(p) = \frac{1}{2}(\bar{\Phi}(p_x)\phi(p_y),\phi(p_x)\bar{\Phi}(p_y))$$

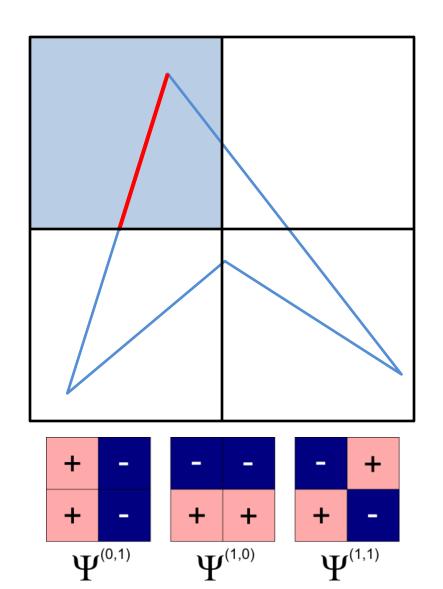
$$\int_0^1 F^{(0,0)}(P(t)) \cdot n(P(t)) ||P'(t)|| dt = \frac{1}{2} det \left(v_0, v_1\right)$$

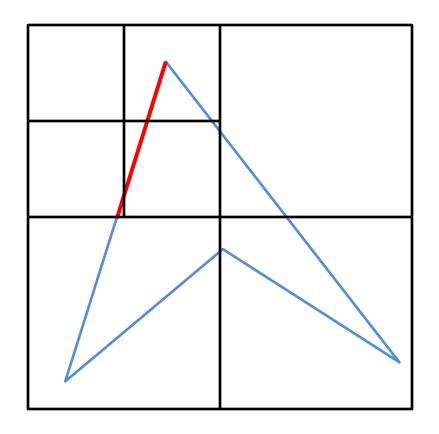
Details in paper

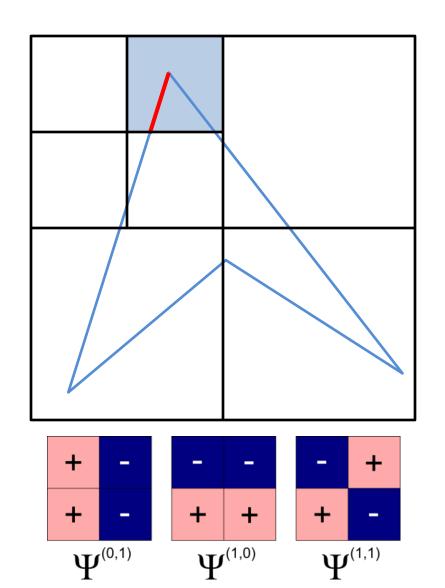


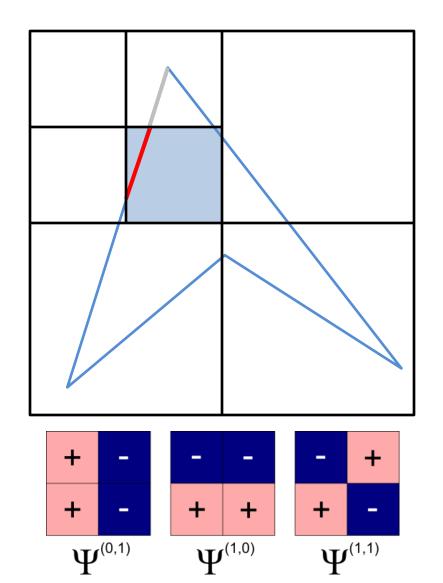


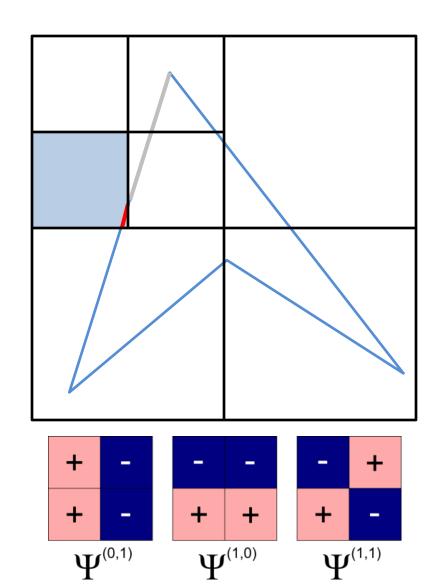


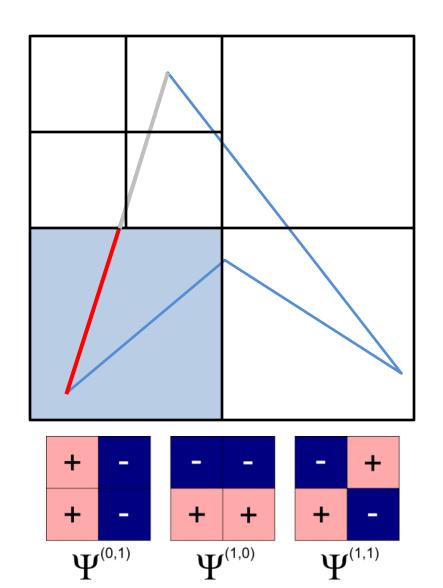


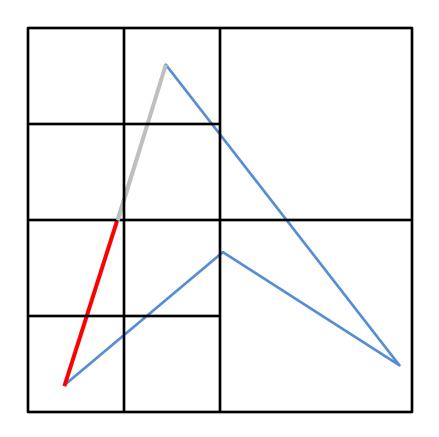


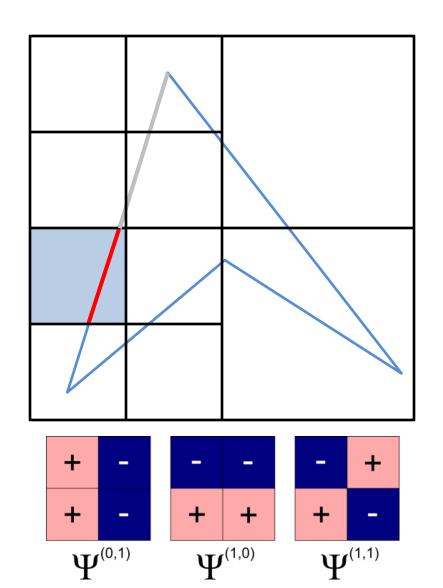


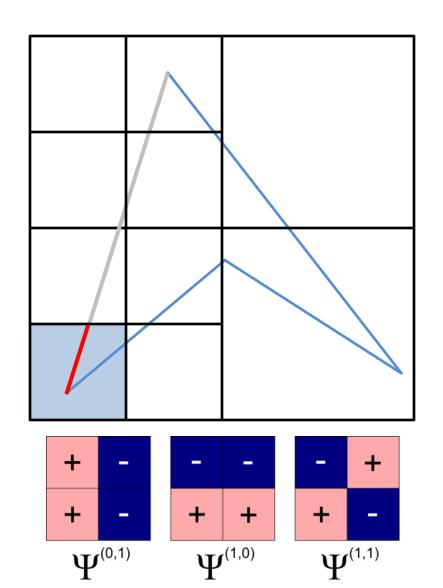


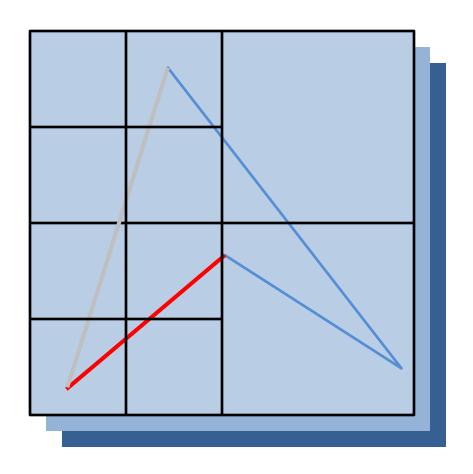


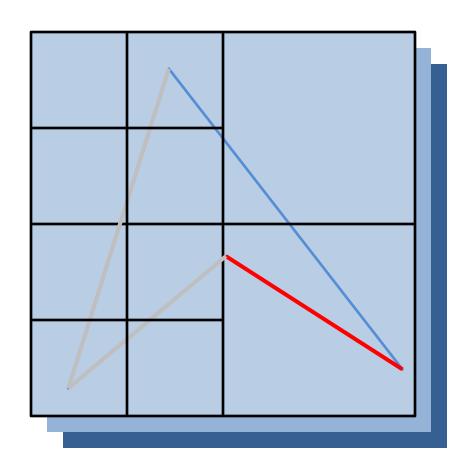


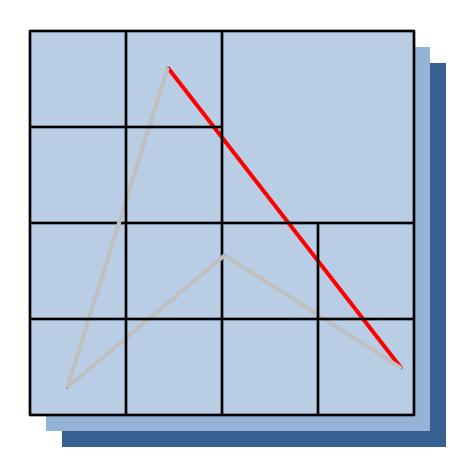


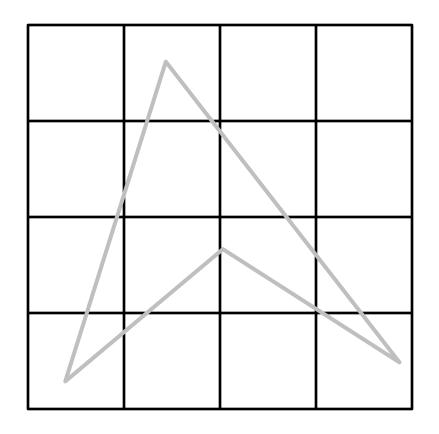


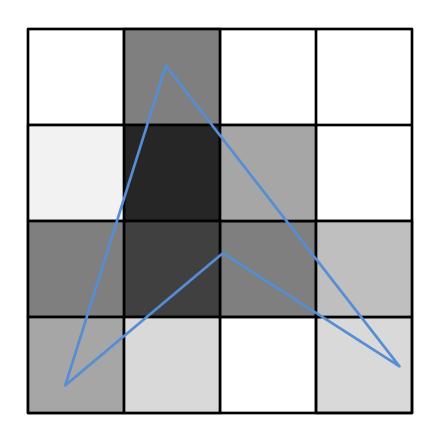


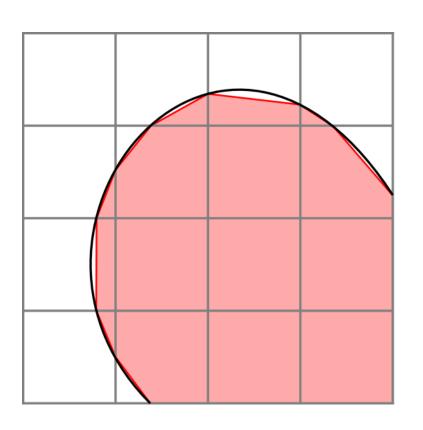


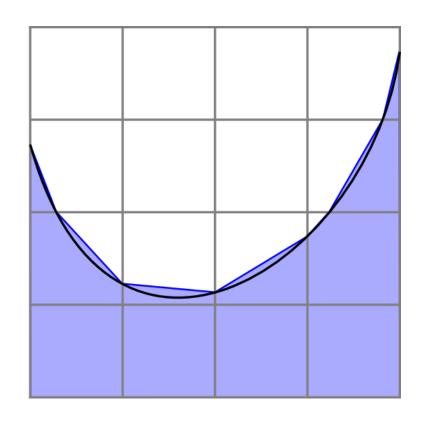












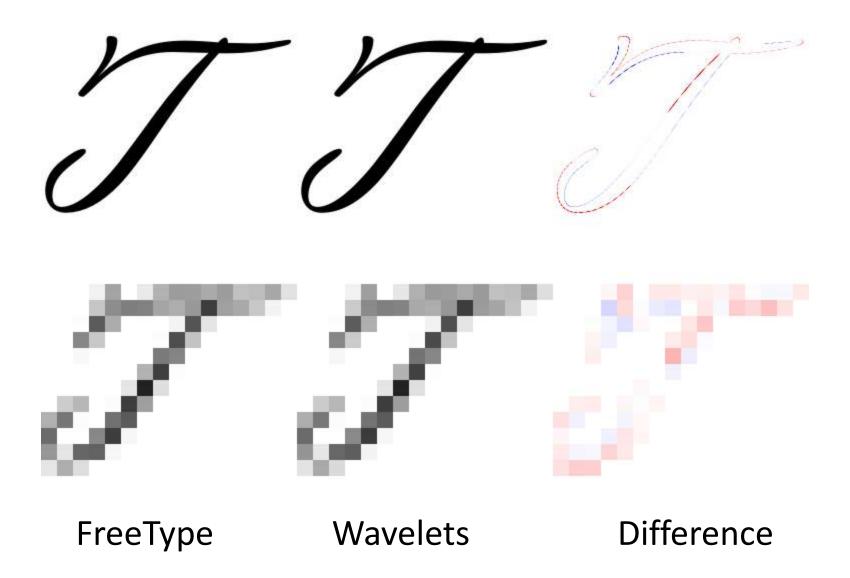
$$c^e = \sum_{i} \int_0^1 F^e(P_i(t)) \cdot n(P_i(t)) d\sigma$$

$$c^e = \sum_{i} \int_0^1 F^e(P_i(t)) \cdot n(P_i(t)) d\sigma$$

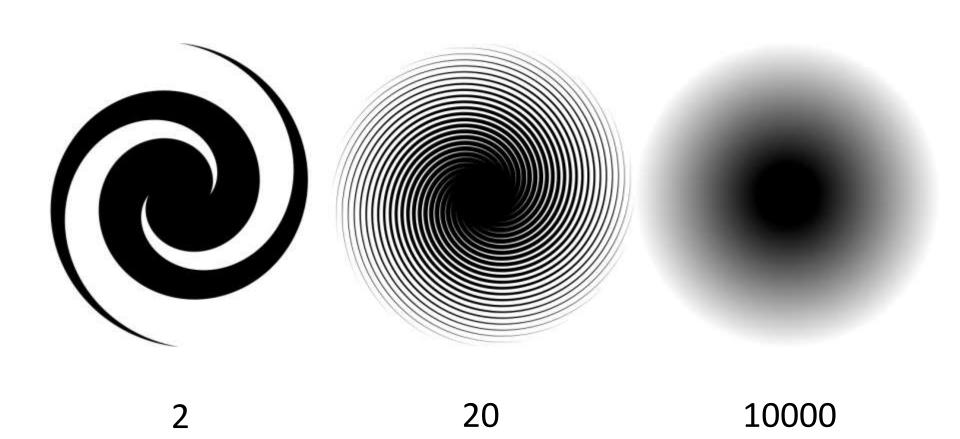
$$d\sigma = ||P'(t)||dt$$

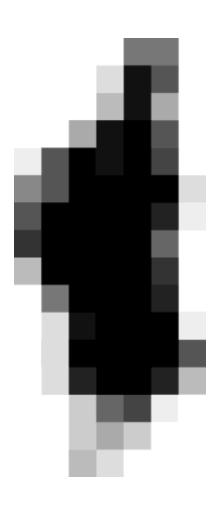
$$n(P(t)) = P^{\perp}(t)/||P'(t)||$$

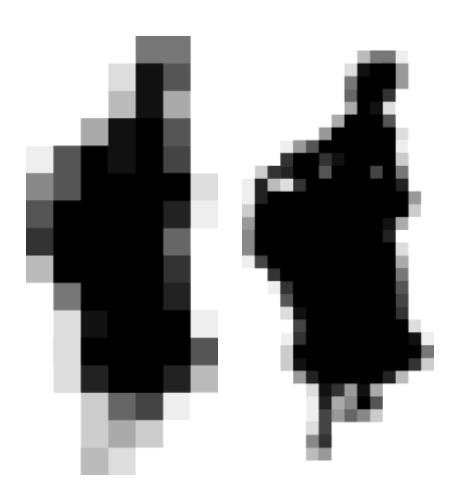
Results

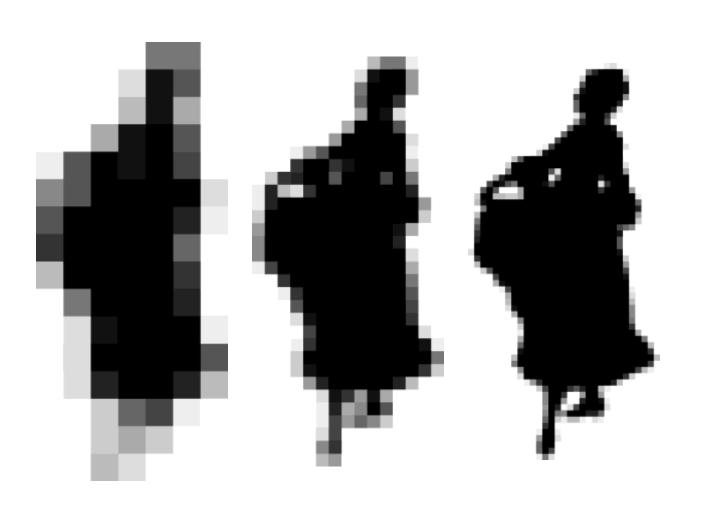


Results









Results

Speed

		256^{3}		4096^{3}	
	polys	coeff	synth	coeff	synth
Armadilloman	30.0k	.113	.022	7.31	3.99
Head	477k	.393	.023	12.0	4.74
Buddha	1.09M	.557	.021	10.7	3.34
David 2mm	7.23M	2.25	.019	14.8	1.79

The Future

- Use higher order wavelets
- Implement on GPU
- Progressive rasterization

$$c^{e} = \sum_{i} \int_{0}^{1} F^{e}(P_{i}(t)) \cdot n(P_{i}(t)) d\sigma$$
$$= \sum_{i} \int_{0}^{1} F^{e}(P_{i}(t)) \cdot P_{i}^{\perp}(t) dt$$

$$c^{e} = \sum_{i} \int_{0}^{1} F^{e}(P_{i}(t)) \cdot n(P_{i}(t)) d\sigma$$
$$= \sum_{i} \int_{0}^{1} F^{e}(P_{i}(t)) \cdot P_{i}^{\perp}(t) dt$$

$$c^{(0,0)} = \frac{1}{3}det(v_0, v_1) + \frac{1}{3}det(v_1, v_2) + \frac{1}{6}det(v_0, v_2)$$

$$c^{e} = \sum_{i} \int_{0}^{1} F^{e}(P_{i}(t)) \cdot n(P_{i}(t)) d\sigma$$
$$= \sum_{i} \int_{0}^{1} F^{e}(P_{i}(t)) \cdot P_{i}^{\perp}(t) dt$$

$$c^{(0,0)} = \frac{1}{3}det(v_0, v_1) + \frac{1}{3}det(v_1, v_2) + \frac{1}{6}det(v_0, v_2)$$

Details in paper

3D Formulation

$$F^{(0,0,0)}(p) = \frac{1}{3}(\bar{\Phi}(p_x), \bar{\Phi}(p_y), \bar{\Phi}(p_z))$$

$$F^{(1,0,0)}(p) = (\bar{\Psi}(p_x), 0, 0)$$

$$F^{(0,1,0)}(p) = (0, \bar{\Psi}(p_y), 0)$$

$$F^{(0,0,1)}(p) = (0, 0, \bar{\Psi}(p_z))$$

$$F^{(1,1,0)}(p) = (\bar{\Psi}(p_x) \psi(p_y), 0, 0)$$

$$F^{(1,0,1)}(p) = (\psi(p_x) \bar{\Psi}(p_z), 0, 0)$$

$$F^{(0,1,1)}(p) = (0, \bar{\Psi}(p_y) \psi(p_z), 0, 0)$$

$$F^{(0,1,1)}(p) = (0, \bar{\Psi}(p_y) \psi(p_z), 0, 0)$$

$$F^{(1,1,1)}(p) = (\bar{\Psi}(p_x) \psi(p_y) \psi(p_z), 0, 0)$$

3D Formulation

$$F^{(0,0,0)}(p) = \frac{1}{3}(\bar{\Phi}(p_x),\bar{\Phi}(p_y),\bar{\Phi}(p_z))$$

$$c^{(0,0,0)} = \int_{p \in T} F^{(0,0,0)}(p) \cdot nd\sigma = \frac{1}{6} det(v_0, v_1, v_2)$$