Progressive Encoding and Compression of Surfaces Generated from Point Cloud Data

J. Smith, G. Petrova, S. Schaefer

Texas A&M University

Digital Michelangelo Project

StreetMapper 360

EarthScope LiDAR

Lunarscience.nasa.gov LiDAR "ILRIS-3D"

Surface Reconstruction

- Octree Quantification
 - [Scnabel and Klein 2006]
 - [Huang et al. 2006]
 - [Huang et al. 2008]
- Oriented Normals
 - [Deering 1995]

Compression of wavelet coefficients using a zero tree encoder

- Laney et al. [2002]

- Compression of a multiscale surflet representation
 - [Chandrasekaran et al. 2009]

Unstructured polygon meshes

– Too many to mention.

- Compression of structured mesh
 - [Saupe and Kuska 2002]
 - [Lee et al. 2003]
 - [Lewiner et al. 2004]

Surface Compression

Surface Compression

- Construct an octree estimating local regions of surface with planes for each level of the octree.
 - Encode children planes as distances from parent planes [Park and Lee 2009].

Contributions

- Compression technique for planes estimating local regions of point clouds
- 2 phase compression
 - Pruning of an adaptive octree for removing redundant geometric data
 - Plane data progressively encoded as displacements

Point Cloud

Intermediate Representation

Generate Implicit

[Manson et al. 2011]

Generate Surface

[Schaefer and Warren 2004]

Problems with Pruning

Prevent Extrapolation

Merging

Merging

Merging

Prevent Merging

Prevent Merging

Results of Pruning

1179.18 KB 100% 282.47KB 20%

Encoding Phase

- Progressively encode planes from the root
 - Adaptive octree
 - Leaf bit
 - Children connectivity
 - Data per node
 - Plane displacements
 - Sign bits

Arithmetic Encoder

- Adaptive Arithmetic Coding [F. Wheeler 1996]
 - Source code at http://www.cipr.rpi.edu/~wheeler/ac

Problem of Quantization

Problem of Quantization

 $\min_{n} (|n|^2 - 1)^2$
subject to
 $n \cdot p_i + c = d_i$

Results

7.63 KB 22.46 KB 45.36 KB 53.14 KB

247,064 Polygons

Results

Results

2,283,540 Polygons

Comparison

Data Set	Num Points	Park and Lee	Ours
African Statue	220,318	47.93	38.61
Bunny	362,272	154.37	53.14
David Head	4,520,803	405.33	282.47
Atlas	8,195,996	1269.63	309.99
Awakening	7,621,482	722.65	235.86
Barbuto	6,577,132	1030.25	331.03

Comparison

[Park and Lee 2009]

Limitations

- No guarantee of topology or geometry of original model.
- Progressive nature does not allow for random access to arbitrary data in the model

Conclusion

- Our algorithm is fast
- Outperforms other state of the art methods

