Simplification of Articulated Meshes

Eric Landreneau Scott Schaefer Texas A&M University

Simplification

10,000 faces

Articulated meshes

Articulated meshes

$$\hat{v} = \sum_{k} \alpha_{k} (M_{k} v)$$

Articulated meshes

$$\hat{v} = \sum_{k} \alpha_{k} (M_{k} v)$$

 M_k : Bone Transformation Matrix

Articulated meshes

$$\hat{v} = \sum_{k} \alpha_{k} (M_{k} v)$$

- M_k : Bone Transformation Matrix
 - α_k : Skin Weights

$$\sum_{k} \alpha_{k} = 1, \, \alpha_{k} \ge 0$$

Unsimplified

Unsimplified

Static simplification

Static simplification insufficient for deformable models

Quadric Error Functions

Basic QEF equation:

$$E_i(v) = \sum_m \left(n_m \cdot (v - p_i) \right)^2 = v^T Q_i v$$

 p_i : i^{th} vertex p in mesh

 n_m : normal of m^{th} adjacent face

Q_m = Quadric Error Function (distance to plane on face m)

Example Poses

Modify QEF Equation:

 $\sum_{j} \sum_{m} \left(n_m^j \cdot (\hat{v}^j - p_i^j) \right)^2 = (\hat{v}^j)^T \mathcal{Q}_i^j \hat{v}^j$

Modify QEF Equation:

 $\sum_{i} \sum_{m} \left(n_m^j \cdot (\hat{v}^j - p_i^j) \right)^2 = (\hat{v}^j)^T Q_i^j \hat{v}^j$

 $\hat{v}^{j} = \sum \alpha_{k} M_{k}^{j} v$ k

Modify QEF Equation:

$$E_i(v, \alpha_k) = \sum_j \left(\sum_k \alpha_k M_k^j v \right)^T Q_i^j \left(\sum_k \alpha_k M_k^j v \right)$$

$$\hat{v}^{j} = \sum_{k} \alpha_{k} M_{k}^{j} v$$

Modify QEF Equation:

$$E_i(v, \alpha_k) = \sum_j \left(\sum_k \alpha_k M_k^j v \right)^T Q_i^j \left(\sum_k \alpha_k M_k^j v \right)$$

Problem: equation is quartic

Solution: split into alternating quadratic equations

Quadratic #1 – Solve for position

$$\min_{v} E_{i}(v) = v^{T} \left(\sum_{j} \left(\sum_{k} \alpha_{k} M_{k}^{j} \right)^{T} Q_{i}^{j} \left(\sum_{k} \alpha_{k} M_{k}^{j} \right) \right) v$$

Hold weights constant and solve for position v

Quadratic #2 – Solve for weights $\min_{\alpha} E_i(\alpha_k) = \alpha^T \left(\sum_j V_j^T Q_i^j V_j \right) \alpha$

Hold V constant and solve for weights

$$V_{j} = \begin{pmatrix} M_{0}^{j}v & M_{1}^{j}v & \cdots & M_{k}^{j}v \end{pmatrix}$$

Quadratic #2 – Solve for weights $\min_{\alpha} E_i(\alpha_k) = \alpha^T \left(\sum_j V_j^T Q_i^j V_j \right) \alpha$ subject to $\sum_k \alpha_k = 1$

Hold V constant and solve for weights

$$V_{j} = \begin{pmatrix} M_{0}^{j} v & M_{1}^{j} v & \cdots & M_{k}^{j} v \end{pmatrix}$$

Quadratic #2 – Solve for weights $\min_{\alpha} E_i(\alpha_k) = \alpha^T \left(\sum_j V_j^T Q_i^j V_j \right) \alpha$ subject to $\sum_k \alpha_k = 1, \ \alpha_k \ge 0$

Hold V constant and solve for weights

$$V_{j} = \begin{pmatrix} M_{0}^{j} v & M_{1}^{j} v & \cdots & M_{k}^{j} v \end{pmatrix}$$

Alternating minimization

$$E_{i}(v) = v^{T} \left(\sum_{j} \left(\sum_{k} \alpha_{k} M_{k}^{j} \right)^{T} Q_{i}^{j} \left(\sum_{k} \alpha_{k} M_{k}^{j} \right) \right) v$$

$$E_{i}(\alpha_{k}) = \alpha^{T} \left(\sum_{j} V_{j}^{T} Q_{i}^{j} V_{j} \right) \alpha$$

Input Poses

240,448 poly

5,000 poly

2,000 poly

Input Poses

206,672 poly

Original Meeh (2011,672 party)

Comparison with previous techniques

4 Input Poses

Results

DeCoro et al.

Results

Weight Influences

Weight reduction

- Restriction to \mathbf{n} weight influences:
- •Minimize $E_i(\alpha_k)$
- •Prune down to *n* largest weights
- •Minimize $E_i(\alpha_k)$ again

Weight Reduction

Results

Model	Polys	Poses	Mohr	DeCoro	Our Method
Centipede	206672	5	6.769	5.180	22.727
Cheb	13334	27	2.025	.536	5.806
Lion	35152	33	6.733	1.704	13.720
Square					
Column	114688	4	1.927	2.221	19.580
Human	240448	9	12.066	6.123	24.452

- Minimizes both skin weights and vertex positions
- •Easy to implement (quadratic minimization)
- •Requires few example poses
- Reduces to a specified number of weights everywhere in the hierarchy

Questions?