Simplification of Articulated Meshes

Eric Landreneau Scott Schaefer
Texas A\&M University

Introduction

Introduction

Articulated meshes

Introduction

Articulated meshes

$$
\hat{v}=\sum_{k} \alpha_{k}\left(M_{k} v\right)
$$

Introduction

Articulated meshes

$$
\hat{v}=\sum_{k} \alpha_{k}\left(M_{k} v\right)
$$

M_{k} : Bone Transformation Matrix

Introduction

Articulated meshes

$$
\hat{v}=\sum_{k} \alpha_{k}\left(M_{k} v\right)
$$

M_{k} : Bone Transformation Matrix α_{k} : Skin Weights

$$
\sum_{k} \alpha_{k}=1, \alpha_{k} \geq 0
$$

Introduction

Unsimplified

Introduction

Unsimplified

Introduction

Introduction

Static simplification

Introduction

Static simplification insufficient for deformable models

Quadric Error Functions

Basic QEF equation:

$$
E_{i}(v)=\sum_{m}\left(n_{m} \cdot\left(v-p_{i}\right)\right)^{2}=v^{T} Q_{i} v
$$

$p_{i}: i^{\text {th }}$ vertex p in mesh
n_{m} : normal of $m^{\text {th }}$ adjacent face

QEF Edge Collapses
$\mathrm{Q}_{\mathrm{m}}=$ Quadric Error Function
\quad (distance to plane on face m)

QEF Edge Collapses

QEF Edge Collapses

$$
Q_{v}=Q_{0}+Q_{1}+Q_{2}+Q_{3}+Q_{4}+Q_{5}
$$

QEF Edge Collapses

$$
\mathrm{Q}_{\mathrm{v}}=\mathrm{Q}_{0}+\mathrm{Q}_{1}+\mathrm{Q}_{2}+\mathrm{Q}_{3}+\mathrm{Q}_{4}+\mathrm{Q}_{5}
$$

QEF Edge Collapses

QEF Edge Collapses

QEF Edge Collapses

QEF Edge Collapses

$$
\mathrm{Q}_{\mathrm{e}}=\mathrm{Q}_{\mathrm{v} 0}+\mathrm{Q}_{\mathrm{v} 1}
$$

QEF Edge Collapses

Our Method

Example Poses

Our Method

Modify QEF Equation:

$$
\sum_{j} \sum_{m}\left(n_{m}^{j} \cdot\left(\hat{v}^{j}-p_{i}^{j}\right)\right)^{2}=\left(\hat{v}^{j}\right)^{T} Q_{i}^{j} \hat{v}^{j}
$$

Our Method

Modify QEF Equation:

$$
\sum_{j} \sum_{m}\left(n_{m}^{j} \cdot\left(\hat{v}^{j}-p_{i}^{j}\right)\right)^{2}=\left(\hat{v}^{j}\right)^{T} Q_{i}^{j} \hat{v}^{j}
$$

$$
\hat{v}^{j}=\sum_{k} \alpha_{k} M_{k}^{j} v
$$

Our Method

Modify QEF Equation:

$$
\begin{gathered}
E_{i}\left(v, \alpha_{k}\right)=\sum_{j}\left(\sum_{k} \alpha_{k} M_{k}^{j} v\right)^{T} Q_{i}^{j}\left(\sum_{k} \alpha_{k} M_{k}^{j} v\right) \\
\hat{v}^{j}=\sum_{k} \alpha_{k} M_{k}^{j} v
\end{gathered}
$$

Our Method

Modify QEF Equation:

$$
E_{i}\left(v, \alpha_{k}\right)=\sum_{j}\left(\sum_{k} \alpha_{k} M_{k}^{j} v\right)^{T} Q_{i}^{j}\left(\sum_{k} \alpha_{k} M_{k}^{j} v\right)
$$

Problem: equation is quartic
Solution: split into alternating quadratic equations

Our Method

Quadratic \#1 - Solve for position

Hold weights constant and solve for position v

Our Method

Quadratic \#2 - Solve for weights

$$
\min _{\alpha} E_{i}\left(\alpha_{k}\right)=\alpha^{T}\left(\sum_{j} V_{j}^{T} Q_{i}^{j} V_{j}\right) \alpha
$$

Hold V constant and solve for weights

$$
V_{j}=\left(\begin{array}{llll}
M_{0}^{j} v & M_{1}^{j} v & \cdots & M_{k}^{j} v
\end{array}\right)
$$

Our Method

Quadratic \#2 - Solve for weights

$$
\begin{gathered}
\min _{\alpha} E_{i}\left(\alpha_{k}\right)=\alpha^{T}\left(\sum_{j} V_{j}^{T} Q_{i}^{j} V_{j}\right) \alpha \\
\text { subject to } \sum_{k} \alpha_{k}=1
\end{gathered}
$$

Hold V constant and solve for weights

$$
V_{j}=\left(\begin{array}{llll}
M_{0}^{j} v & M_{1}^{j} v & \cdots & M_{k}^{j} v
\end{array}\right)
$$

Our Method

Quadratic \#2 - Solve for weights

$$
\begin{gathered}
\min _{\alpha} E_{i}\left(\alpha_{k}\right)=\alpha^{T}\left(\sum_{j} v_{j}^{T} Q_{i}^{j} V_{j}\right) \alpha \\
\text { subject to } \sum_{k} \alpha_{k}=1, \alpha_{k} \geq 0
\end{gathered}
$$

Hold V constant and solve for weights

$$
V_{j}=\left(\begin{array}{llll}
M_{0}^{j} v & M_{1}^{j} v & \cdots & M_{k}^{j} v
\end{array}\right)
$$

Our Method

Alternating minimization

$$
\begin{gathered}
E_{i}(v)=v^{T}\left(\sum_{j}\left(\sum_{k} \alpha_{k} M_{k}^{j}\right)^{T} Q_{i}^{j}\left(\sum_{k} \alpha_{k} M_{k}^{j}\right)\right) v \\
\Longrightarrow E_{i}\left(\alpha_{k}\right)=\alpha^{T}\left(\sum_{j} v_{j}^{T} Q_{i}^{j} V_{j}\right) \alpha
\end{gathered}
$$

Results

Input Poses

240,448 poly

Results

10,000 poly

5,000 poly

2,000 poly

Results

Input Poses

206,672 poly

Results

Original Wesh

Results

Comparison with previous techniques

Results

4 Input Poses

Results

Results

DeCoro et al.

Results

Ours

Results

DeCoro et al.

Ours

Results

Weight Influences

Results

Weight reduction

Restriction to \mathbf{n} weight influences:

- Minimize $E_{i}\left(\alpha_{k}\right)$
- Prune down to \boldsymbol{n} largest weights
- Minimize $E_{i}\left(\alpha_{k}\right)$ again

Results

Weight Reduction

Results

Results

Model	Polys	Poses	Mohr	DeCoro	Our Method
Centipede	206672	5	6.769	5.180	22.727
Cheb	13334	27	2.025	.536	5.806
Lion	35152	33	6.733	1.704	13.720
Square Column	114688	4	1.927	2.221	19.580
Human	240448	9	12.066	6.123	24.452

Conclusions

- Minimizes both skin weights and vertex positions
- Easy to implement (quadratic minimization)
-Requires few example poses
-Reduces to a specified number of weights everywhere in the hierarchy

Questions?

