Scales and Scale-like Structures Eric Landreneau Scott Schaefer Texas A&M University

Introduction: Natural Phenomena

Introduction: Scales

Introduction

Examples of scales in artwork

Usually modeled/painted manually or with ad hoc techniques

Previous Work

- Direct modeling of scales artist creates scales manually (slow and painstaking)
- Models places a scale shape at each position, no connectivity between scales
- Displacement maps artist paints scales on a model, displaces height
- Shell maps/mesh quilting can create 3d geometry, but problems with borders, seams (based on 2D parameterization)

Main Objective Given a mesh

Main Objective Grow scales on the surface

Part 1:

Scale Placement

Scale Placement

- Segment surface into per-scale regions
- Want evenly spaced scales
- Hexagonal arrangement ^[1]
- Scales need orientation

[1] Kenneth V. Kardong, *Vertebrates: Comparative Anatomy*, Function, Evolution, McGraw-Hill, 1998.

Solution? CVTs (Centroidal Voronoi Tessellations^[2])

[2] Liu, Y., Wang, W., Lévy, B., Sun, F., Yan, D., Lu, L., and Yang, C. 2009. On centroidal voronoi tessellation—energy smoothness and fast computation. *ACM Trans. Graph.* 28, 4 (Aug. 2009)

Solution? CVTs (Centroidal Voronoi Tessellations^[2])

Even distribution of sites

[2] Liu, Y., Wang, W., Lévy, B., Sun, F., Yan, D., Lu, L., and Yang, C. 2009. On centroidal voronoi tessellation—energy smoothness and fast computation. *ACM Trans. Graph.* 28, 4 (Aug. 2009)

Solution? CVTs (Centroidal Voronoi Tessellations^[2])

Produces mostly hexagons

[2] Liu, Y., Wang, W., Lévy, B., Sun, F., Yan, D., Lu, L., and Yang, C. 2009. On centroidal voronoi tessellation—energy smoothness and fast computation. *ACM Trans. Graph.* 28, 4 (Aug. 2009)

Orientation

Determine vector field on surface, and propagate to the Voronoi Tessellation

Orientation

Orientations allow for anisotropy

How do we guide the CVT?

How do we guide the CVT?

Solution – use a *lateral line*

The artist draws the lateral line

Scale-sites spawn from the lateral line

Scale-sites spawn from the lateral line

Scale-sites spawn from the lateral line

Vector field initialized from the lateral line's tangents

Vector field initialized from the lateral line's tangents

Initial scale distribution

Applying anisotropic Lloyd's algorithm

Example of dense CVT

Part 2:

Scale geometry synthesis

- Replace scale regions with artist-provided geometry
- Connect geometry together in a watertight fashion
- Conform geometry to original surface

- Replace scale regions with artist-provided geometry
- Connect geometry together in a watertight fashion
- Conform geometry to original surface

Cut the proxy model using the boundary of the scale region

Triangle stitching to match boundary

Move the cut proxy-model to the mesh, and deform it to fit the surface

Repeat for each scale region, then connect together to form a watertight network of scales

Results

Results

Conclusions

- Does not require a global 2D mesh parameterization
- Allows for arbitrary scales including high-genus or long/thin shapes incompatible with displacement mapping
- Allows intuitive control through the lateral line
- Provides a watertight, topologically 2-manifold surface well suited for post-processing such as subdivision and simplification

Questions?