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Subdivision
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Subdivision

m Set of rules S that recursively act on a shape p°

poo _ Soo(pO)
m Converges to a smooth shape




Linear Subdivision

m Locally can be written as matrix multiplication
pk+1 =M pk
m Usually reproduce polynomials
m Easy to analyze
o Sufficient conditions of continuity based on
eigen-structure of M [Reif 95]
m Includes Catmull-Clark, Loop, Butterfly, etc...



Non-linear Subdivision

m Greater expression
+ Reproduce non-polynomial functions
¢ circles [Sabin et al. 2005]
¢ p(X)e!® [Micchelli 1996]
o Preserve convexity [Floater et al. 1998]

+ Subdivision curves on manifolds
[Noakes 1998, Wallner et al. 2005]

m Hard to analyze smoothness



Contributions

m Provide a simple class of non-linear
subdivision schemes

o Easy to analyze smoothness
o Modification of linear subdivision schemes

o Can reproduce interesting functions:
trigonometrics, gaussians

m Applications to intersection calculations



Linear Subdivision Example

m Uniform B-splines [Lane, Reisenfeld 1980]
+ Doubling followed by mid-point averaging
o Smoothness: C™! (n = # of averaging steps)
o Piecewise polynomial
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Simple Non-Linear Subdivision

m Replace mid-point with geometric mean

m |s the curve smooth?
m \What functions does this method reproduce?
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Functional Equations

m Find parametric midpoint of a function F
0~ 6(F () F )

m Example: L(X) =mx+ D
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0~ 6(F () F )

m Example: F(x) = emx+b
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Functional Equations

m Find parametric midpoint of a function F
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m Find parametric midpoint of a function F
0~ 6(F () F )

m Example: F(x) = cos(m x+b)
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Functional Equations

m Find parametric midpoint of a function F
0~ 6(F () F )

m Example: F(x) = cos(m x+b)
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Functional Equations

m Find parametric midpoint of a function F
0~ 6(F () F )

m Example: F(x) = cos(m x+b)
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Functional Equations

m Find parametric midpoint of a function F
0~ 6(F () F )

m Example: F(x) = cos(m x+b)

F(XO + le A+ FO)A+F () =y (- F (6 )(A-F (%))
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Functional Equations

m Find parametric midpoint of a function F
0~ 6(F () F )

m Example: F(x) = cos(m x+b)

F(XO + le A+ FO)A+F () =y (- F (6 )(A-F (%))
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Functional Equations

m Find parametric midpoint of a function F
0~ 6(F () F )

m Example: F(x) = cos(m x+b)

F(XO + le _ @+ FOQ)A+F(x)) == F (%))~ F (x.))
2 2

LN
N

v




Other Averaging Rules

Function

F(x):x/;
F(x)=x*
F(X)=+

F(X)=-

F (X) = cosh( x)

Averaging Rule

F (fa) = \/F(Xo) +F (%)

F (o) = ((F (%)+F (4))/ 2+ F (%) F (%)

2 2

Xo+X\ F(x)F(Xx)
F( 7 (|:(><o)o+|:(><1l))/2
(X0+X1) F(X0)F(x)

V(F (%)2+F (x)?)/2

(x0+x1) J(F (o) +D)(F (%)+1) + (F (Xo)-1)(F (%)-1)
2



Non-linear Maps

m Glven
o F: 1-1 functionon Q c R"
¢ S: subdivision scheme
¢S=FoSoF™
m Then
¢S”=FoS”oF™
*s(p°)=p" = S*(F(p°)=F(p")




Non-linear Maps

m Given
o F: 1-1 functionon Q c R"
¢S=S5, 0..0S, 0S5 subdivision scheme
¢ S=FoSoF™
m Then
¢ S$=(FoS,oF *)o...0(FoS,0F*)o(FoS,0F?)




Non-linear Maps Example

§=(FOSd oF_l)o,,,o(FoSZOF‘l)O(FosloF—l)

ane-Reisenfeld F(X)

|¢1(p) pj+pj = §i¢1(p)j _ F(F (Pj)+2F (Pj+1))




Non-linear Maps Example

§=(FOSd oF_l)o,,,o(FoSZOF‘l)O(FosloF—l)

|_ane-Reisenfeld F(x)=¢"
Sl(p)' = pL/J §1(p)j = pMJ
|¢1(p) ijerl SAi;tl(p)j :\/pjpj+1



Smoothness and Interpolation

m Glven
o F: 1-1 functionon Q c R"
+ S: subdivision scheme
¢ S=FoSoF™
m Then
o S7(p°):CY & F:C" = S™(p°):cmntkn
o S:interpolatory =  S:interpolatory




Example

Four-Point [Dyn et al. 1987]
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Example

Four-Point [Dyn et al. 1987]
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Four-Point [Dyn et al. 1987]
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Example

Four-Point [Dyn et al. 1987]

-
. ® -,

......
llllll

L *
------



Example

Four-Point [Dyn et al. 1987]
A

pey




Example

Four-Point [Dyn et al. 1987] Mobius Transform
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Four-Point [Dyn et al. 1987] Mobius Transform
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Example

Four-Point [Dyn et al. 1987] Mobius Transform
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Example

Four-Point [Dyn et al. 1987] Mobius Transform




Geometric Properties

m Properties: convex-hull, variation diminishing

Linear F(z)=¢
A A




Geometric Interpretation

m Modify geodesics so that the properties hold

D(If)’(j) — DISt Euclidean(F_l(IS)i F_l(é))

Y/ v
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Geometric Interpretation

m A set C Is convex w.r.t. the geodesics G If the
geodesic connecting any two points in C lies
completely within C
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Computing Convex Hulls

m Non-linear hulls may be curved and difficult
to compute

m [f F'(t) IS monotonic, we can compute a
simple piecewise linear approximation
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Future Work

¢ Lofting curve networks
m Extensions to surfaces
o Extraordinary points
m Slowing varying non-linear maps




