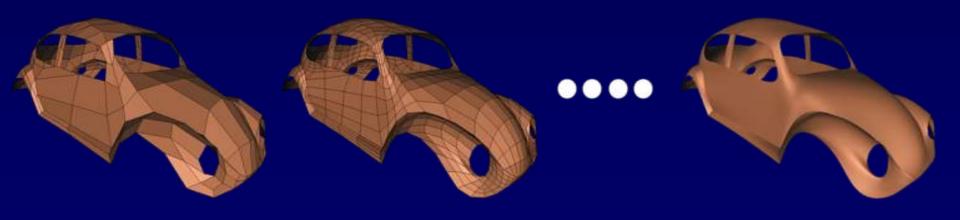
A Simple Class of Non-Linear Subdivision Schemes

Scott Schaefer Etienne Vouga Ron Goldman

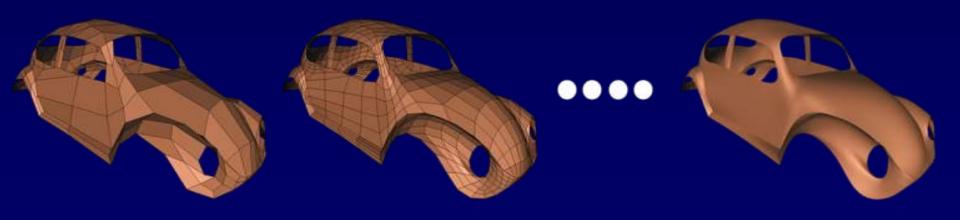
Subdivision

- Set of rules *S* that recursively act on a shape p^0 $p^{k+1} = S(p^k)$
- Converges to a smooth shape



Subdivision

- Set of rules *S* that recursively act on a shape p^0 $p^{\infty} = S^{\infty}(p^0)$
- Converges to a smooth shape



Linear Subdivision

• Locally can be written as matrix multiplication $p^{k+1} = M p^k$

Usually reproduce polynomials

Easy to analyze

◆ Sufficient conditions of continuity based on eigen-structure of *M* [Reif 95]

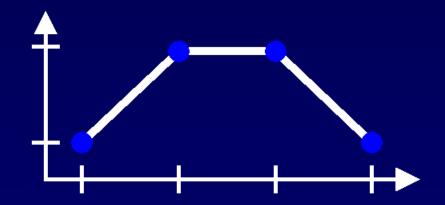
■ Includes Catmull-Clark, Loop, Butterfly, etc...

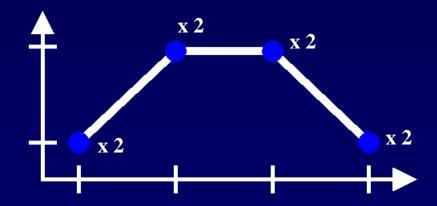
Non-linear Subdivision

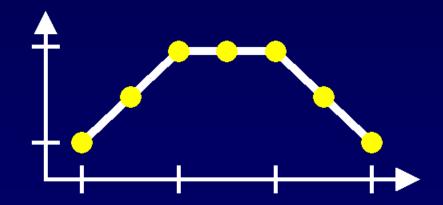
Greater expression ◆ Reproduce non-polynomial functions • circles [Sabin et al. 2005] $\bullet p(x)e^{l(x)}$ [Micchelli 1996] ◆ Preserve convexity [Floater et al. 1998] Subdivision curves on manifolds [Noakes 1998, Wallner et al. 2005] Hard to analyze smoothness

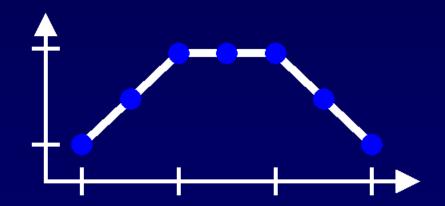
Contributions

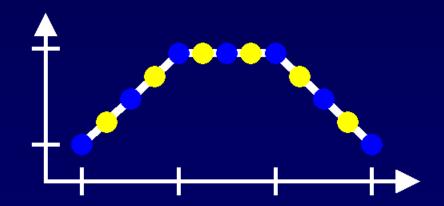
- Provide a simple class of non-linear subdivision schemes
 - ♦ Easy to analyze smoothness
 - Modification of linear subdivision schemes
 - Can reproduce interesting functions: trigonometrics, gaussians
- Applications to intersection calculations

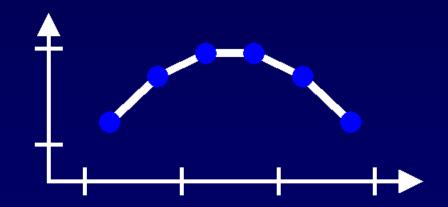


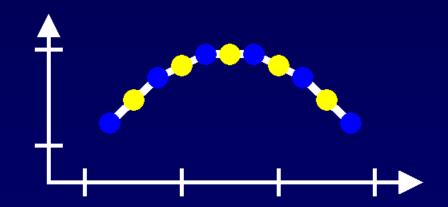


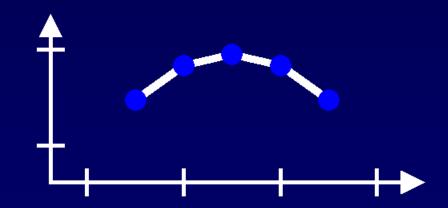


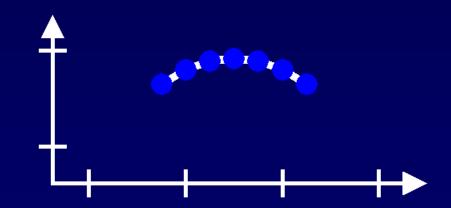


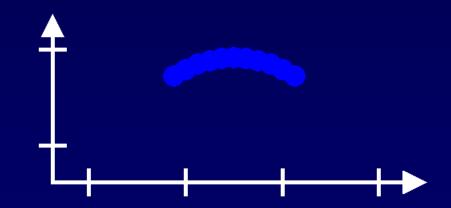


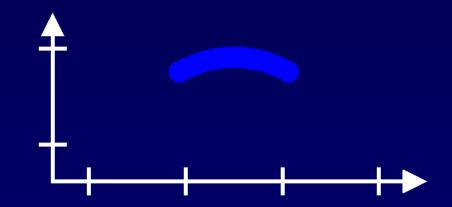


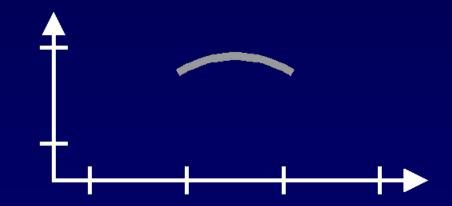






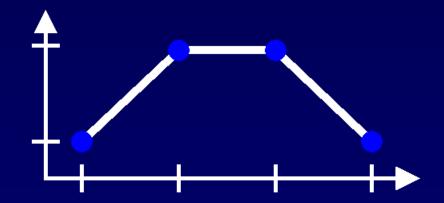






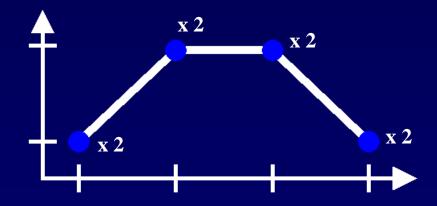
• Replace mid-point with geometric mean $\frac{a+b}{2} \rightarrow \sqrt{ab}$

■ Is the curve smooth?



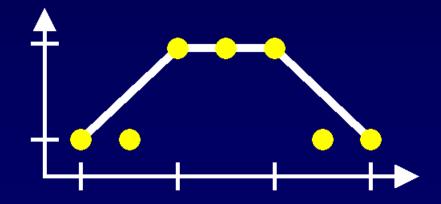
• Replace mid-point with geometric mean $\frac{a+b}{2} \rightarrow \sqrt{ab}$

- Is the curve smooth?
- What functions does this method reproduce?



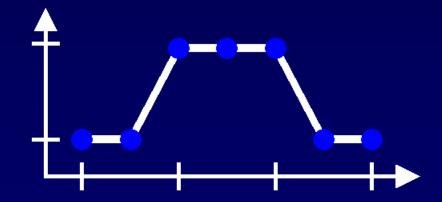
• Replace mid-point with geometric mean $\frac{a+b}{2} \rightarrow \sqrt{ab}$

■ Is the curve smooth?



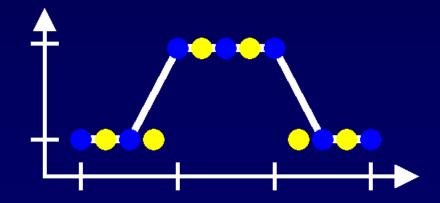
• Replace mid-point with geometric mean $\frac{a+b}{2} \rightarrow \sqrt{ab}$

■ Is the curve smooth?



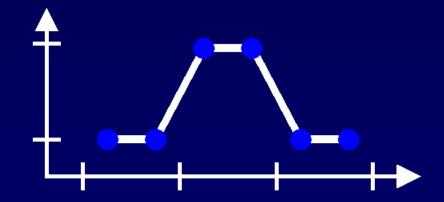
Replace mid-point with geometric mean $\frac{a+b}{2} \rightarrow \sqrt{ab}$

■ Is the curve smooth?



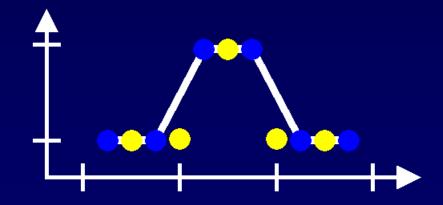
Replace mid-point with geometric mean $\frac{a+b}{2} \rightarrow \sqrt{ab}$

■ Is the curve smooth?



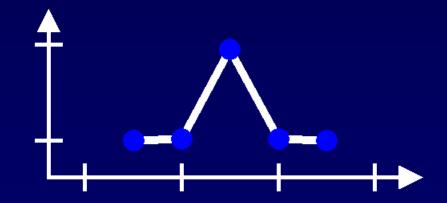
Replace mid-point with geometric mean $\frac{a+b}{2} \rightarrow \sqrt{ab}$

■ Is the curve smooth?



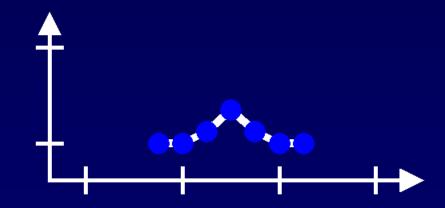
Replace mid-point with geometric mean $\frac{a+b}{2} \rightarrow \sqrt{ab}$

■ Is the curve smooth?



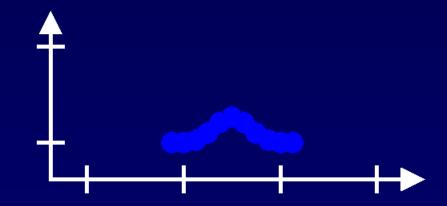
Replace mid-point with geometric mean $\frac{a+b}{2} \rightarrow \sqrt{ab}$

■ Is the curve smooth?



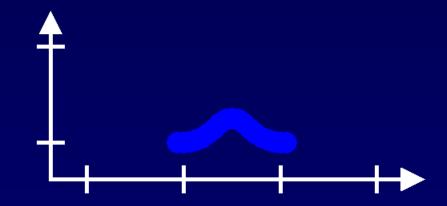
• Replace mid-point with geometric mean $\frac{a+b}{2} \rightarrow \sqrt{ab}$

■ Is the curve smooth?



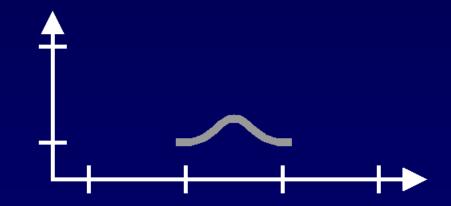
Replace mid-point with geometric mean $\frac{a+b}{2} \rightarrow \sqrt{ab}$

■ Is the curve smooth?

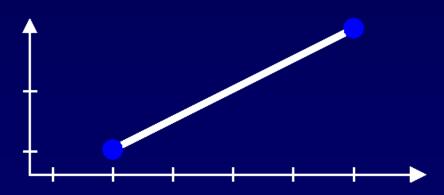


• Replace mid-point with geometric mean $\frac{a+b}{2} \rightarrow \sqrt{ab}$

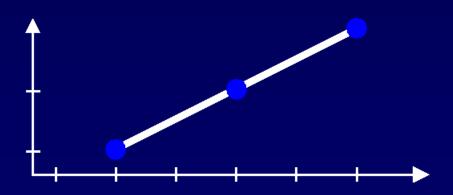
■ Is the curve smooth?



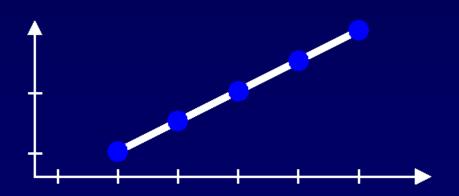
- Find parametric midpoint of a function F $F\left(\frac{x_0 + x_1}{2}\right) = G(F(x_0), F(x_1))$
- Example: L(x) = m x + b $L\left(\frac{x_0 + x_1}{2}\right) = \frac{L(x_0) + L(x_1)}{2}$



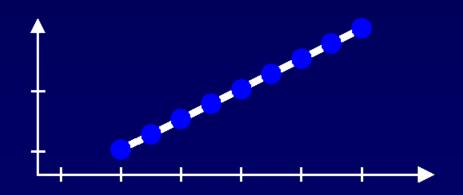
- Find parametric midpoint of a function F $F\left(\frac{x_0 + x_1}{2}\right) = G(F(x_0), F(x_1))$
- Example: L(x) = m x + b $L\left(\frac{x_0 + x_1}{2}\right) = \frac{L(x_0) + L(x_1)}{2}$



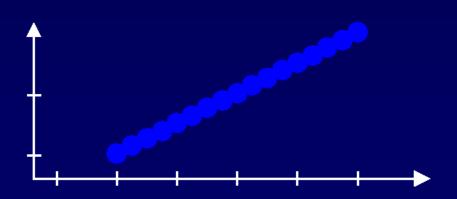
- Find parametric midpoint of a function F $F\left(\frac{x_0 + x_1}{2}\right) = G(F(x_0), F(x_1))$
- Example: L(x) = m x + b $L\left(\frac{x_0 + x_1}{2}\right) = \frac{L(x_0) + L(x_1)}{2}$



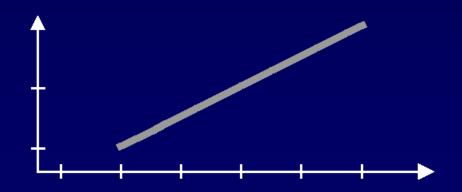
- Find parametric midpoint of a function F $F\left(\frac{x_0 + x_1}{2}\right) = G(F(x_0), F(x_1))$
- Example: L(x) = m x + b $L\left(\frac{x_0 + x_1}{2}\right) = \frac{L(x_0) + L(x_1)}{2}$



- Find parametric midpoint of a function F $F\left(\frac{x_0 + x_1}{2}\right) = G(F(x_0), F(x_1))$
- Example: L(x) = m x + b $L\left(\frac{x_0 + x_1}{2}\right) = \frac{L(x_0) + L(x_1)}{2}$

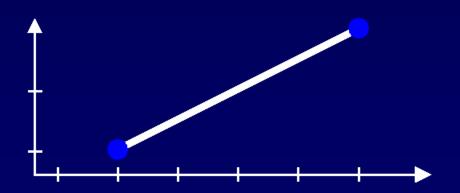


- Find parametric midpoint of a function F $F\left(\frac{x_0 + x_1}{2}\right) = G(F(x_0), F(x_1))$
- Example: L(x) = m x + b $L\left(\frac{x_0 + x_1}{2}\right) = \frac{L(x_0) + L(x_1)}{2}$



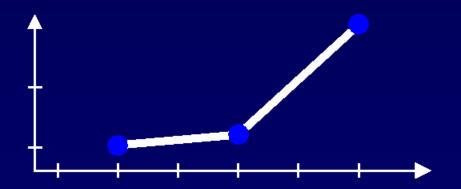
Find parametric midpoint of a function F $F\left(\frac{x_0 + x_1}{2}\right) = G(F(x_0), F(x_1))$

$$F\left(\frac{x_0 + x_1}{2}\right) = \sqrt{F(x_0)F(x_1)}$$



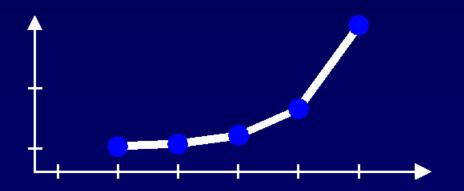
Find parametric midpoint of a function F $F\left(\frac{x_0 + x_1}{2}\right) = G(F(x_0), F(x_1))$

$$F\left(\frac{x_0 + x_1}{2}\right) = \sqrt{F(x_0)F(x_1)}$$



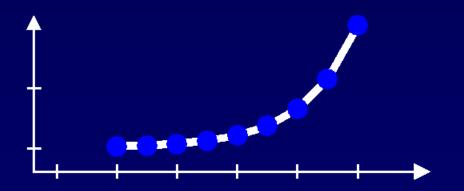
Find parametric midpoint of a function F $F\left(\frac{x_0 + x_1}{2}\right) = G(F(x_0), F(x_1))$

$$F\left(\frac{x_0 + x_1}{2}\right) = \sqrt{F(x_0)F(x_1)}$$



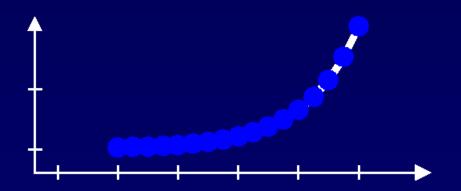
Find parametric midpoint of a function F $F\left(\frac{x_0 + x_1}{2}\right) = G(F(x_0), F(x_1))$

$$F\left(\frac{x_0 + x_1}{2}\right) = \sqrt{F(x_0)F(x_1)}$$



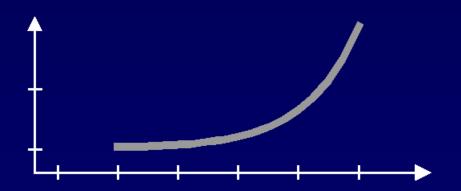
Find parametric midpoint of a function F $F\left(\frac{x_0 + x_1}{2}\right) = G(F(x_0), F(x_1))$

$$F\left(\frac{x_0 + x_1}{2}\right) = \sqrt{F(x_0)F(x_1)}$$

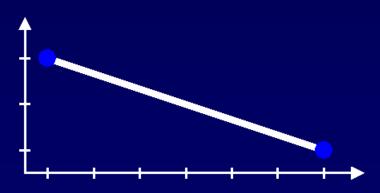


Find parametric midpoint of a function F $F\left(\frac{x_0 + x_1}{2}\right) = G(F(x_0), F(x_1))$

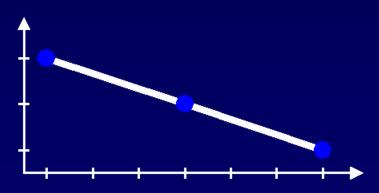
$$F\left(\frac{x_0 + x_1}{2}\right) = \sqrt{F(x_0)F(x_1)}$$



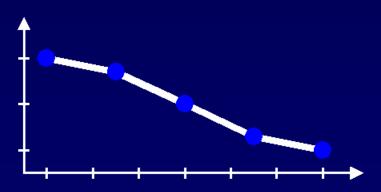
Find parametric midpoint of a function F $F\left(\frac{x_0 + x_1}{2}\right) = G(F(x_0), F(x_1))$



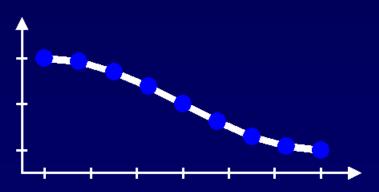
Find parametric midpoint of a function F $F\left(\frac{x_0 + x_1}{2}\right) = G(F(x_0), F(x_1))$



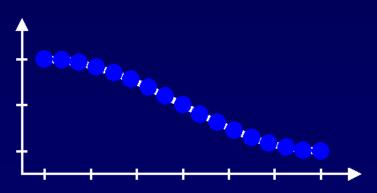
Find parametric midpoint of a function F $F\left(\frac{x_0 + x_1}{2}\right) = G(F(x_0), F(x_1))$



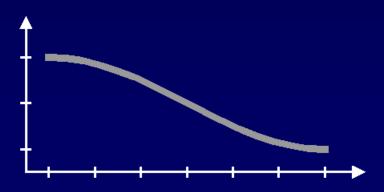
Find parametric midpoint of a function F $F\left(\frac{x_0 + x_1}{2}\right) = G(F(x_0), F(x_1))$



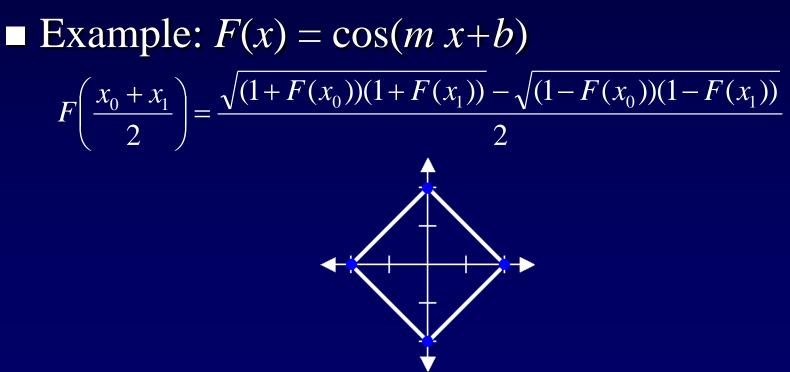
Find parametric midpoint of a function F $F\left(\frac{x_0 + x_1}{2}\right) = G(F(x_0), F(x_1))$



Find parametric midpoint of a function F $F\left(\frac{x_0 + x_1}{2}\right) = G(F(x_0), F(x_1))$



Find parametric midpoint of a function F $F\left(\frac{x_0 + x_1}{2}\right) = G(F(x_0), F(x_1))$



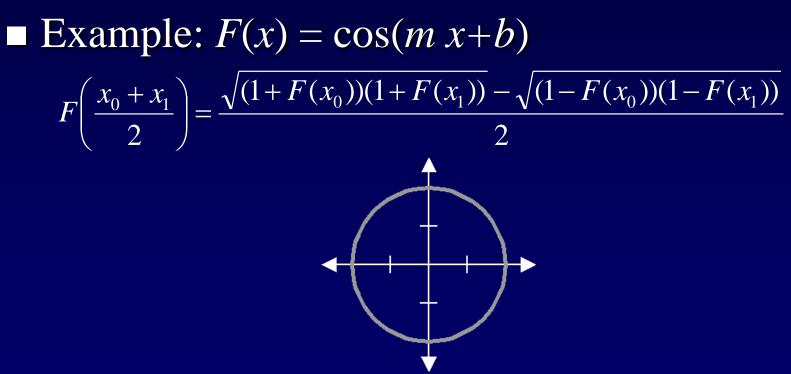
- Find parametric midpoint of a function F $F\left(\frac{x_0 + x_1}{2}\right) = G(F(x_0), F(x_1))$
- Example: $F(x) = \cos(m x + b)$ $F\left(\frac{x_0 + x_1}{2}\right) = \frac{\sqrt{(1 + F(x_0))(1 + F(x_1))} - \sqrt{(1 - F(x_0))(1 - F(x_1))}}{2}$

- Find parametric midpoint of a function F $F\left(\frac{x_0 + x_1}{2}\right) = G(F(x_0), F(x_1))$
- Example: $F(x) = \cos(m x + b)$ $F\left(\frac{x_0 + x_1}{2}\right) = \frac{\sqrt{(1 + F(x_0))(1 + F(x_1))} - \sqrt{(1 - F(x_0))(1 - F(x_1))}}{2}$

- Find parametric midpoint of a function F $F\left(\frac{x_0 + x_1}{2}\right) = G(F(x_0), F(x_1))$
- Example: $F(x) = \cos(m x + b)$ $F\left(\frac{x_0 + x_1}{2}\right) = \frac{\sqrt{(1 + F(x_0))(1 + F(x_1))} - \sqrt{(1 - F(x_0))(1 - F(x_1))}}{2}$

- Find parametric midpoint of a function F $F\left(\frac{x_0 + x_1}{2}\right) = G(F(x_0), F(x_1))$
- Example: $F(x) = \cos(m x + b)$ $F\left(\frac{x_0 + x_1}{2}\right) = \frac{\sqrt{(1 + F(x_0))(1 + F(x_1))} - \sqrt{(1 - F(x_0))(1 - F(x_1))}}{2}$

Find parametric midpoint of a function F $F\left(\frac{x_0 + x_1}{2}\right) = G(F(x_0), F(x_1))$



Other Averaging Rules

Averaging Rule Function $F(\frac{x_0 + x_1}{2}) = \sqrt{\frac{F(x_0)^2 + F(x_1)^2}{2}}$ $F(x) = \sqrt{x}$ $F(\frac{x_0 + x_1}{2}) = \frac{((F(x_0) + F(x_1))/2 + \sqrt{F(x_0)}F(x_1))}{2}$ $F(x) = x^2$ $\overline{F(\frac{x_0+x_1}{2})} = \frac{F(x_0)F(x_1)}{(F(x_0)+F(x_1))/2}$ $F(x) = \frac{1}{x}$ $F(\frac{x_0+x_1}{2}) = \frac{F(x_0)F(x_1)}{\sqrt{(F(x_0)^2 + F(x_1)^2)/2}}$ $F(x) = \frac{1}{x^2}$ $F(\frac{x_0+x_1}{2}) = \frac{\sqrt{(F(x_0)+1)(F(x_1)+1)} + \sqrt{(F(x_0)-1)(F(x_1)-1)}}{2}$ $F(x) = \cosh(x)$

Non-linear Maps

Given ♦ *F*: 1-1 function on $Ω ⊂ R^n$ \diamond S: subdivision scheme $\bullet \hat{S} = F \circ S \circ F^{-1}$ ■ Then $\blacklozenge \hat{S}^{\infty} = F \circ S^{\infty} \circ F^{-1}$ $\bullet S^{\infty}(p^{0}) = p^{\infty} \implies \hat{S}^{\infty}(F(p^{0})) = F(p^{\infty})$

Non-linear Maps

Given *F*: 1-1 function on Ω ⊆ Rⁿ *S* = S_d ∘...∘ S₂ ∘ S₁: subdivision scheme *Ŝ* = F ∘ S ∘ F⁻¹ Then

$$\bullet \hat{S} = \left(F \circ S_d \circ F^{-1} \right) \circ \ldots \circ \left(F \circ S_2 \circ F^{-1} \right) \circ \left(F \circ S_1 \circ F^{-1} \right)$$

Non-linear Maps Example

$$\hat{S} = \left(F \circ S_d \circ F^{-1}\right) \circ \ldots \circ \left(F \circ S_2 \circ F^{-1}\right) \circ \left(F \circ S_1 \circ F^{-1}\right)$$

Lane-Reisenfeld

$$S_1(p)_j = p_{\lfloor \frac{j}{2} \rfloor}$$
$$S_{i \neq 1}(p)_j = \frac{p_j + p_{j+1}}{2}$$

$$\hat{S}_{1}(p)_{j} = F(F^{-1}(p_{\lfloor j/2 \rfloor}))$$
$$\hat{S}_{i\neq 1}(p)_{j} = F(\frac{F^{-1}(p_{j}) + F^{-1}(p_{j+1})}{2})$$

Non-linear Maps Example

$$\hat{S} = \left(F \circ S_d \circ F^{-1}\right) \circ \ldots \circ \left(F \circ S_2 \circ F^{-1}\right) \circ \left(F \circ S_1 \circ F^{-1}\right)$$

Lane-Reisenfeld

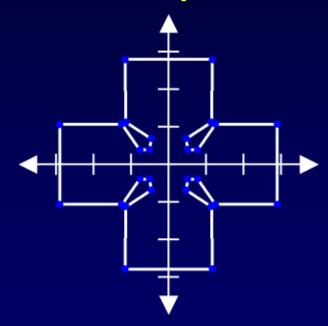
 $F(x) = e^{x}$

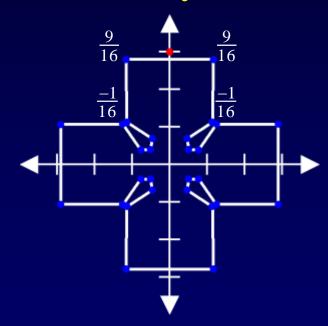
 $S_1(p)_j = p_{\lfloor \frac{j}{2} \rfloor}$ $S_{i \neq 1}(p)_j = \frac{p_j + p_{j+1}}{2}$

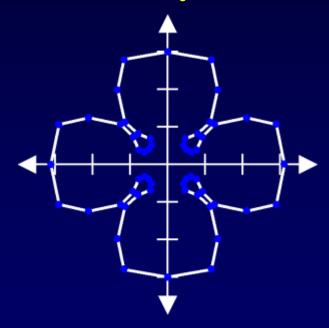
$$\hat{S}_{1}(p)_{j} = p_{\lfloor j/2 \rfloor}$$
$$\hat{S}_{i\neq 1}(p)_{j} = \sqrt{p_{j}p_{j+1}}$$

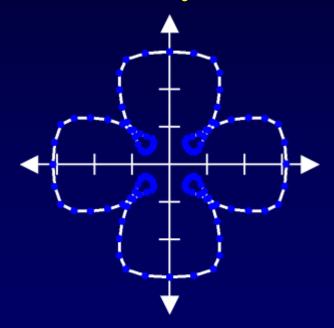
Smoothness and Interpolation

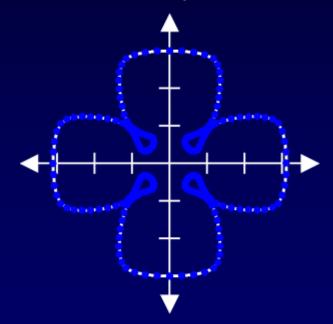
Given $\bullet F$: 1-1 function on $\Omega \subset \mathbb{R}^n$ \diamond S: subdivision scheme $\bullet \hat{S} = F \circ S \circ F^{-1}$ Then $\diamond S^{\infty}(p^0): C^k \& F: C^n \Rightarrow \hat{S}^{\infty}(\hat{p}^0): C^{\min(k,n)}$ • S:interpolatory \Rightarrow \hat{S} :interpolatory

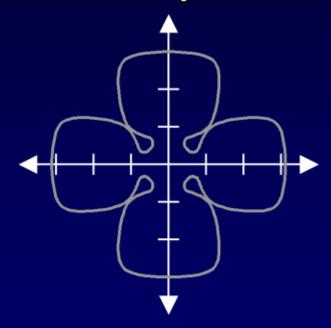


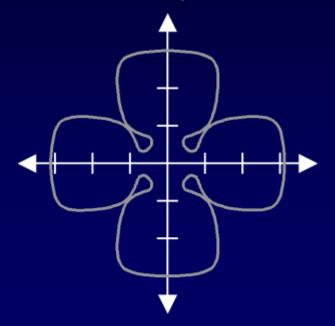


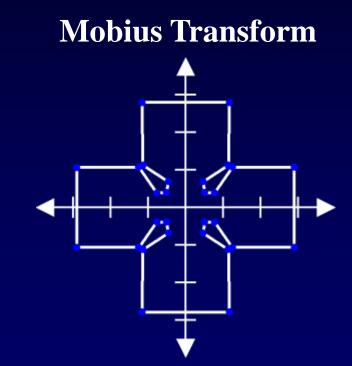




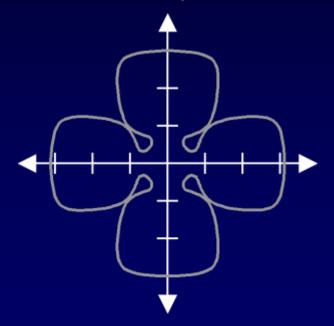




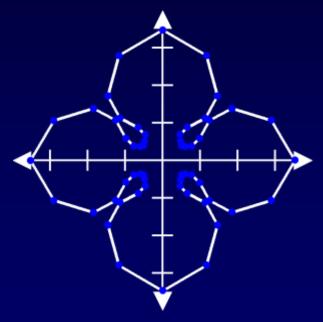




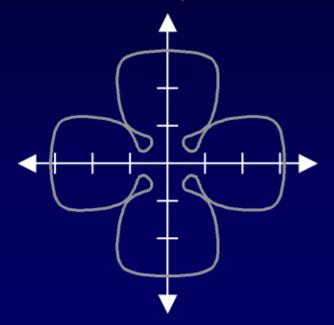
Four-Point [Dyn et al. 1987]



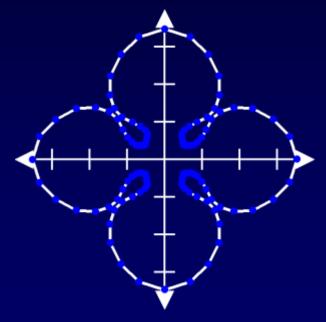
Mobius Transform

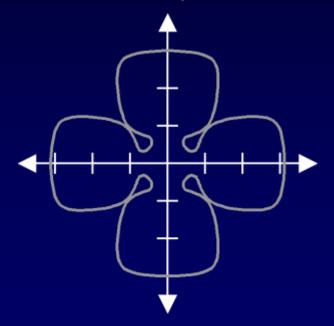


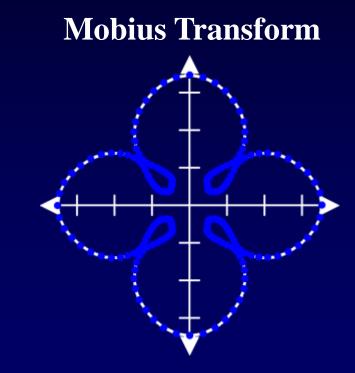
Four-Point [Dyn et al. 1987]



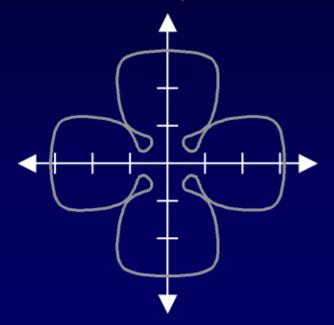
Mobius Transform



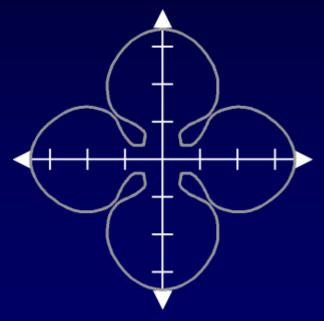




Four-Point [Dyn et al. 1987]

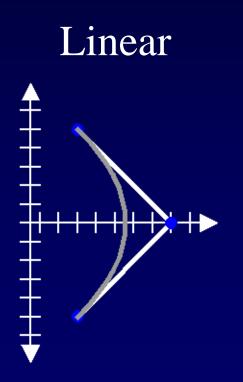


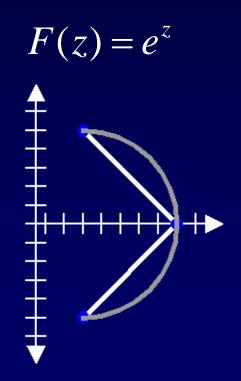
Mobius Transform



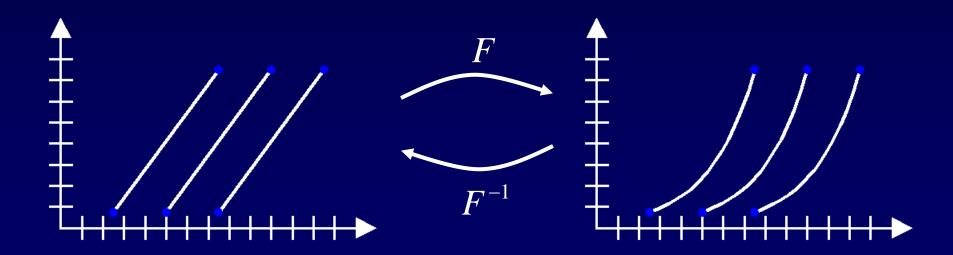
Geometric Properties

Properties: convex-hull, variation diminishing

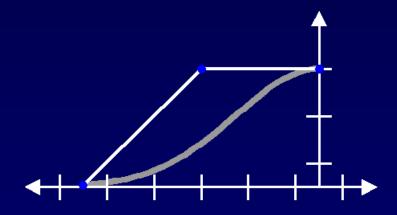




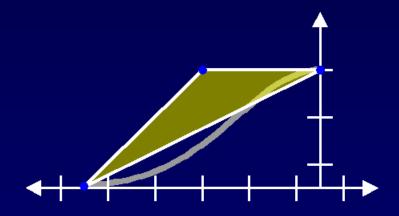
• Modify geodesics so that the properties hold $\hat{D}(\hat{P},\hat{Q}) = Dist_{Euclidean}(F^{-1}(\hat{P}),F^{-1}(\hat{Q}))$



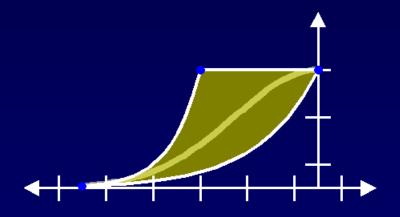
A set C is convex w.r.t. the geodesics G if the geodesic connecting any two points in C lies completely within C



A set C is convex w.r.t. the geodesics G if the geodesic connecting any two points in C lies completely within C



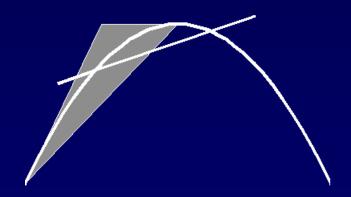
A set C is convex w.r.t. the geodesics G if the geodesic connecting any two points in C lies completely within C



- 1) If convex hulls of the control points do not intersect, then the curves do not intersect
- 2) If each curve is approximately a straight line, intersect those lines; else subdivide



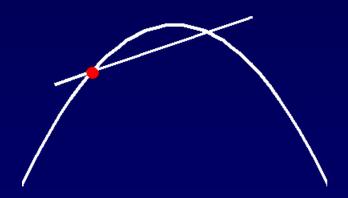
- 1) If convex hulls of the control points do not intersect, then the curves do not intersect
- 2) If each curve is approximately a straight line, intersect those lines; else subdivide



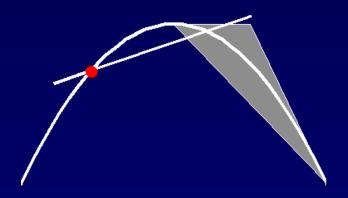
- 1) If convex hulls of the control points do not intersect, then the curves do not intersect
- 2) If each curve is approximately a straight line, intersect those lines; else subdivide

- 1) If convex hulls of the control points do not intersect, then the curves do not intersect
- 2) If each curve is approximately a straight line, intersect those lines; else subdivide

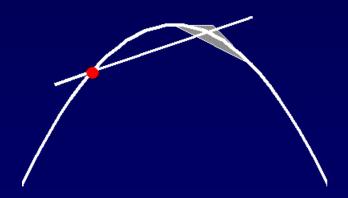
- 1) If convex hulls of the control points do not intersect, then the curves do not intersect
- 2) If each curve is approximately a straight line, intersect those lines; else subdivide



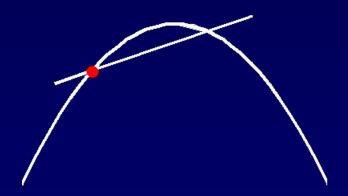
- 1) If convex hulls of the control points do not intersect, then the curves do not intersect
- 2) If each curve is approximately a straight line, intersect those lines; else subdivide



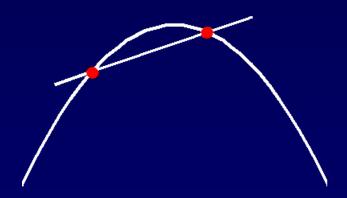
- 1) If convex hulls of the control points do not intersect, then the curves do not intersect
- 2) If each curve is approximately a straight line, intersect those lines; else subdivide



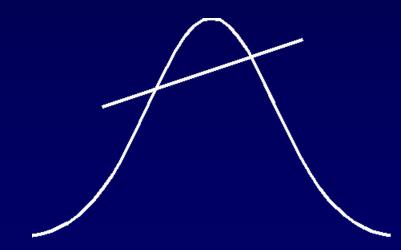
- 1) If convex hulls of the control points do not intersect, then the curves do not intersect
- 2) If each curve is approximately a straight line, intersect those lines; else subdivide



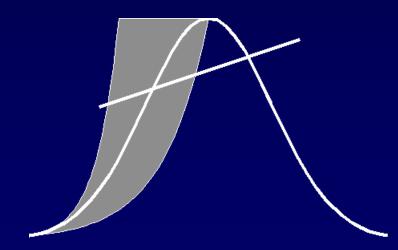
- 1) If convex hulls of the control points do not intersect, then the curves do not intersect
- 2) If each curve is approximately a straight line, intersect those lines; else subdivide



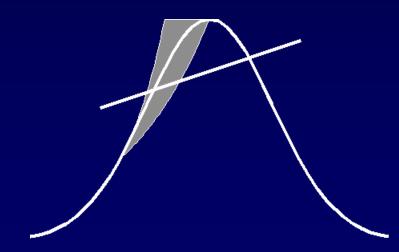
- 1) If convex hulls of the control points do not intersect, then the curves do not intersect
- 2) If each curve is approximately a straight line, intersect those lines; else subdivide



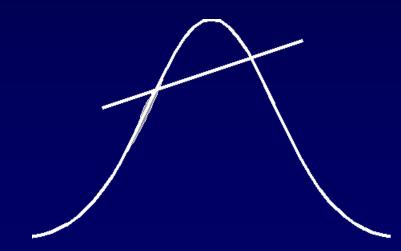
- 1) If convex hulls of the control points do not intersect, then the curves do not intersect
- 2) If each curve is approximately a straight line, intersect those lines; else subdivide



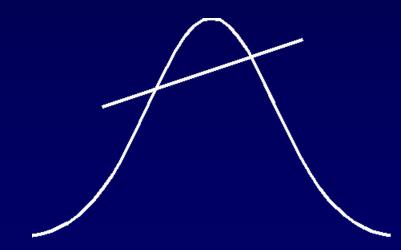
- 1) If convex hulls of the control points do not intersect, then the curves do not intersect
- 2) If each curve is approximately a straight line, intersect those lines; else subdivide



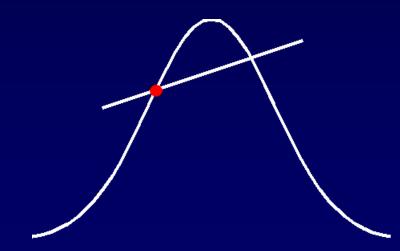
- 1) If convex hulls of the control points do not intersect, then the curves do not intersect
- 2) If each curve is approximately a straight line, intersect those lines; else subdivide



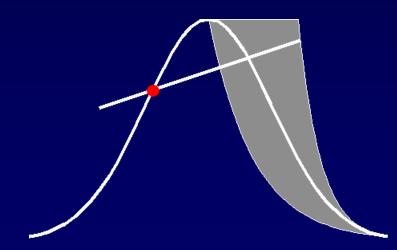
- 1) If convex hulls of the control points do not intersect, then the curves do not intersect
- 2) If each curve is approximately a straight line, intersect those lines; else subdivide



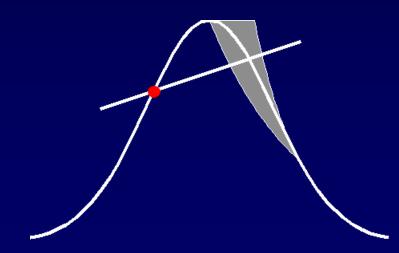
- 1) If convex hulls of the control points do not intersect, then the curves do not intersect
- 2) If each curve is approximately a straight line, intersect those lines; else subdivide



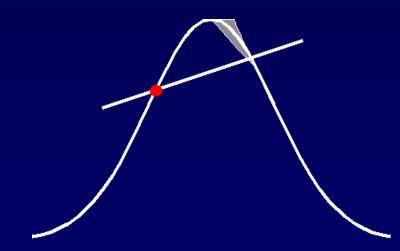
- 1) If convex hulls of the control points do not intersect, then the curves do not intersect
- 2) If each curve is approximately a straight line, intersect those lines; else subdivide



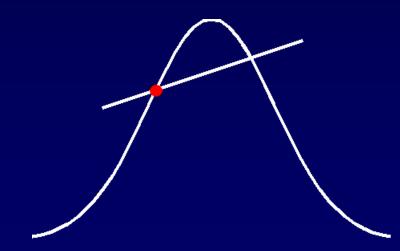
- 1) If convex hulls of the control points do not intersect, then the curves do not intersect
- 2) If each curve is approximately a straight line, intersect those lines; else subdivide



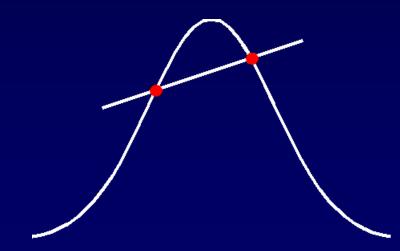
- 1) If convex hulls of the control points do not intersect, then the curves do not intersect
- 2) If each curve is approximately a straight line, intersect those lines; else subdivide



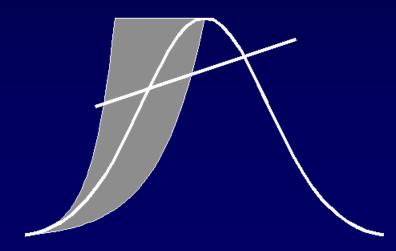
- 1) If convex hulls of the control points do not intersect, then the curves do not intersect
- 2) If each curve is approximately a straight line, intersect those lines; else subdivide



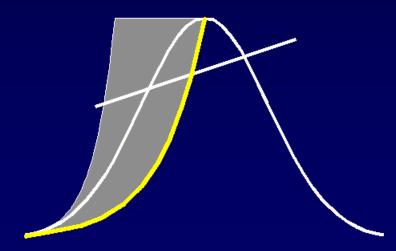
- 1) If convex hulls of the control points do not intersect, then the curves do not intersect
- 2) If each curve is approximately a straight line, intersect those lines; else subdivide



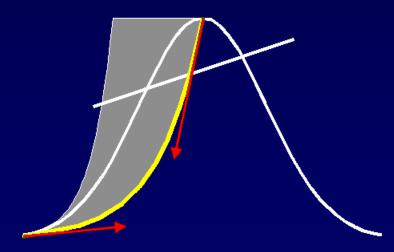
- Non-linear hulls may be curved and difficult to compute
- If F'(t) is monotonic, we can compute a simple piecewise linear approximation



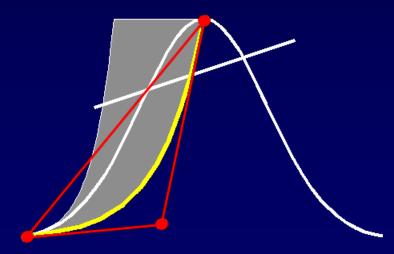
- Non-linear hulls may be curved and difficult to compute
- If F'(t) is monotonic, we can compute a simple piecewise linear approximation



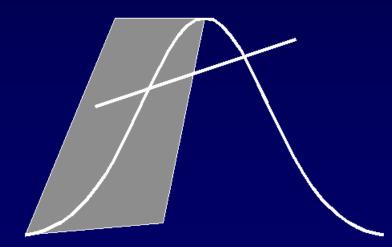
- Non-linear hulls may be curved and difficult to compute
- If F'(t) is monotonic, we can compute a simple piecewise linear approximation



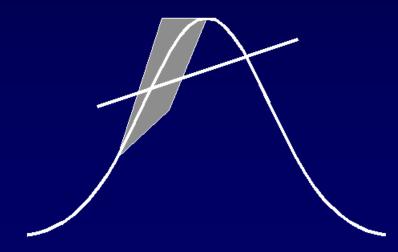
- Non-linear hulls may be curved and difficult to compute
- If F'(t) is monotonic, we can compute a simple piecewise linear approximation



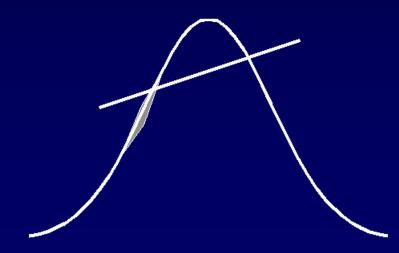
- Non-linear hulls may be curved and difficult to compute
- If F'(t) is monotonic, we can compute a simple piecewise linear approximation



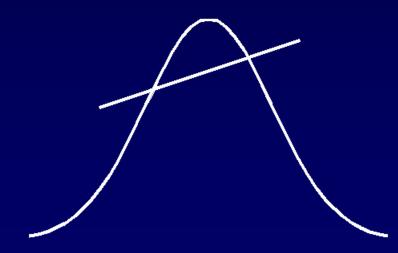
- Non-linear hulls may be curved and difficult to compute
- If F'(t) is monotonic, we can compute a simple piecewise linear approximation



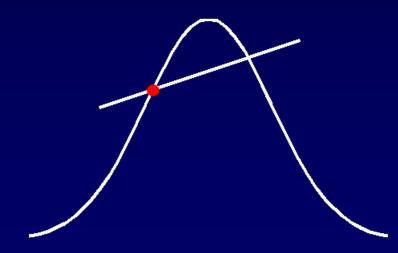
- Non-linear hulls may be curved and difficult to compute
- If F'(t) is monotonic, we can compute a simple piecewise linear approximation



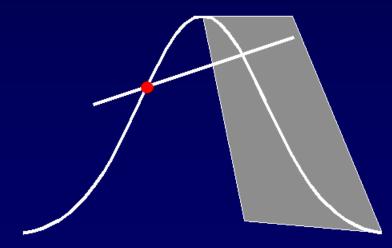
- Non-linear hulls may be curved and difficult to compute
- If F'(t) is monotonic, we can compute a simple piecewise linear approximation



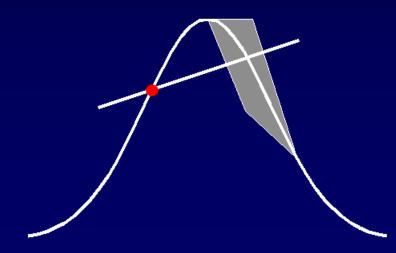
- Non-linear hulls may be curved and difficult to compute
- If F'(t) is monotonic, we can compute a simple piecewise linear approximation



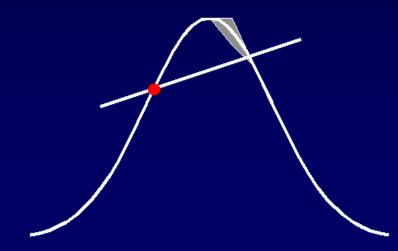
- Non-linear hulls may be curved and difficult to compute
- If F'(t) is monotonic, we can compute a simple piecewise linear approximation



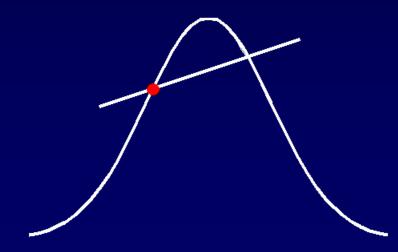
- Non-linear hulls may be curved and difficult to compute
- If F'(t) is monotonic, we can compute a simple piecewise linear approximation



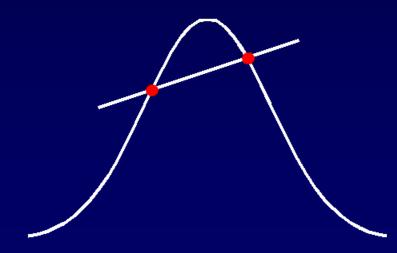
- Non-linear hulls may be curved and difficult to compute
- If F'(t) is monotonic, we can compute a simple piecewise linear approximation



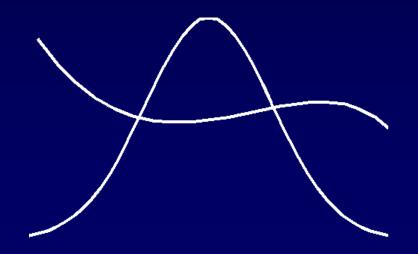
- Non-linear hulls may be curved and difficult to compute
- If F'(t) is monotonic, we can compute a simple piecewise linear approximation



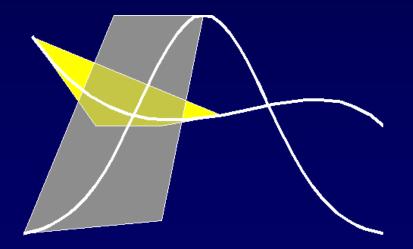
- Non-linear hulls may be curved and difficult to compute
- If F'(t) is monotonic, we can compute a simple piecewise linear approximation



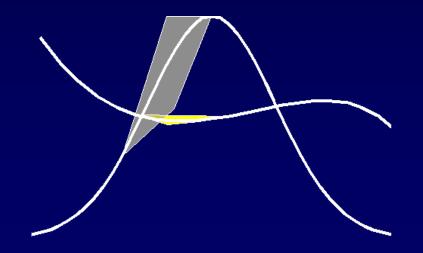
- Non-linear hulls may be curved and difficult to compute
- If F'(t) is monotonic, we can compute a simple piecewise linear approximation



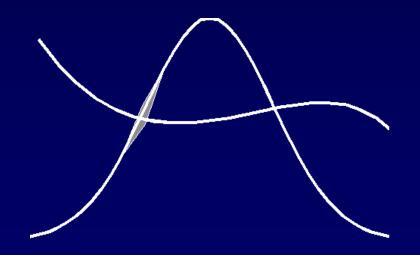
- Non-linear hulls may be curved and difficult to compute
- If F'(t) is monotonic, we can compute a simple piecewise linear approximation



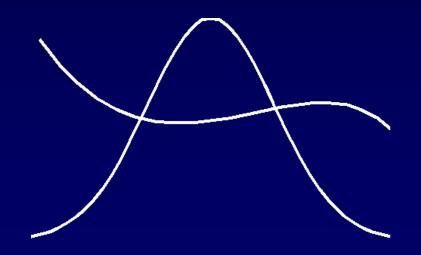
- Non-linear hulls may be curved and difficult to compute
- If F'(t) is monotonic, we can compute a simple piecewise linear approximation



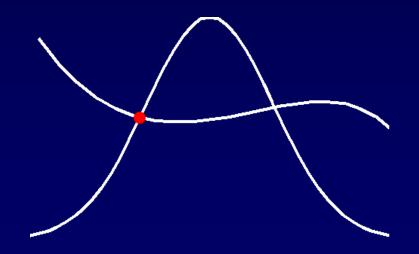
- Non-linear hulls may be curved and difficult to compute
- If F'(t) is monotonic, we can compute a simple piecewise linear approximation



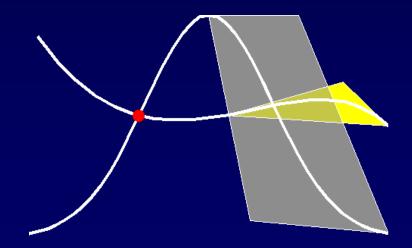
- Non-linear hulls may be curved and difficult to compute
- If F'(t) is monotonic, we can compute a simple piecewise linear approximation



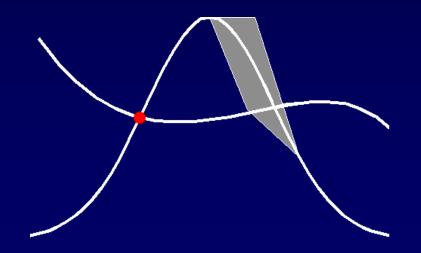
- Non-linear hulls may be curved and difficult to compute
- If F'(t) is monotonic, we can compute a simple piecewise linear approximation



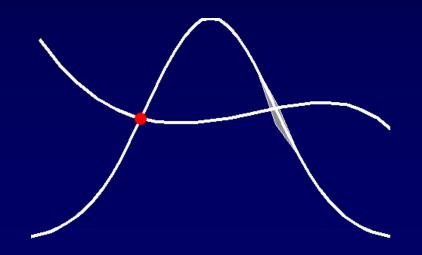
- Non-linear hulls may be curved and difficult to compute
- If F'(t) is monotonic, we can compute a simple piecewise linear approximation



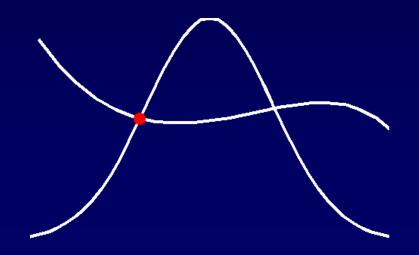
- Non-linear hulls may be curved and difficult to compute
- If F'(t) is monotonic, we can compute a simple piecewise linear approximation



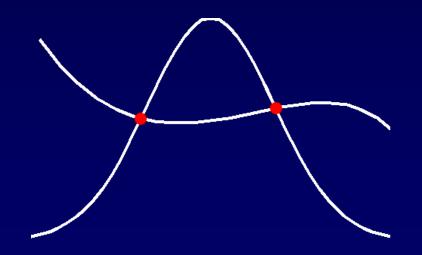
- Non-linear hulls may be curved and difficult to compute
- If F'(t) is monotonic, we can compute a simple piecewise linear approximation

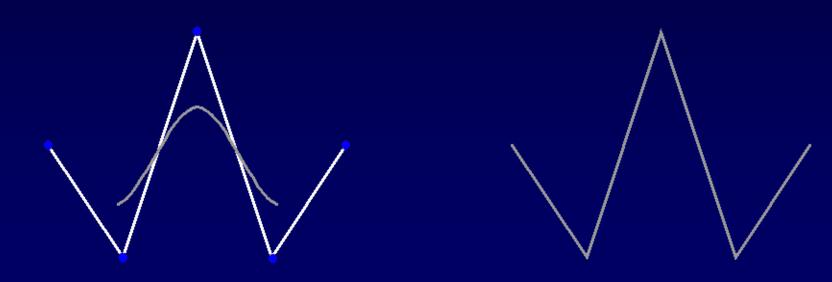


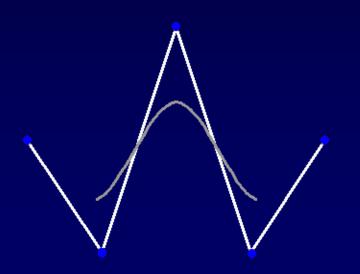
- Non-linear hulls may be curved and difficult to compute
- If F'(t) is monotonic, we can compute a simple piecewise linear approximation

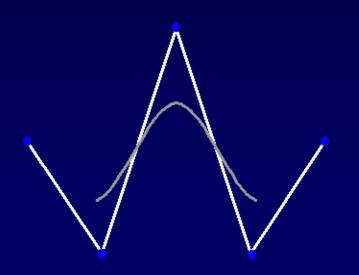


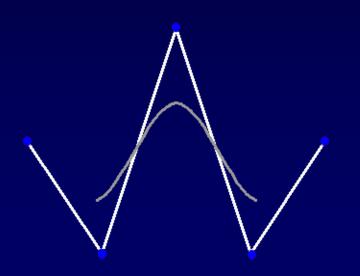
- Non-linear hulls may be curved and difficult to compute
- If F'(t) is monotonic, we can compute a simple piecewise linear approximation

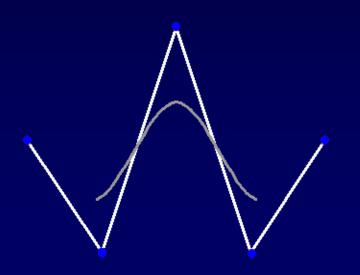


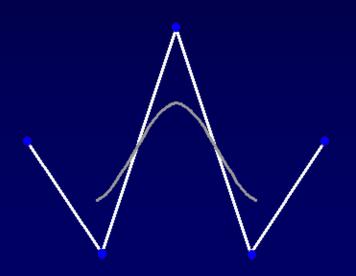




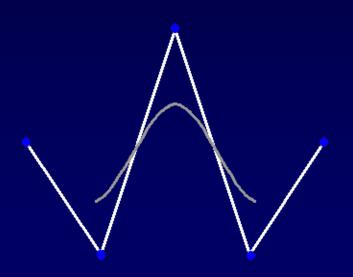


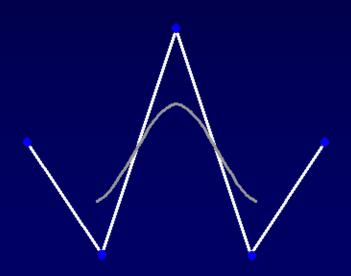


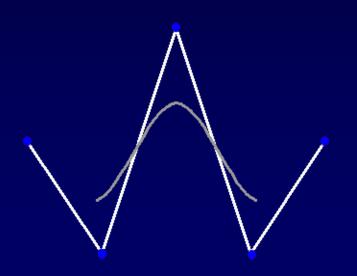


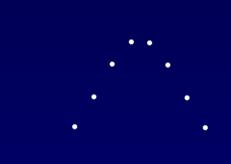


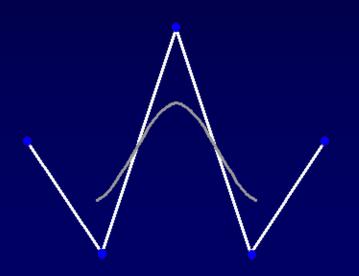
٠



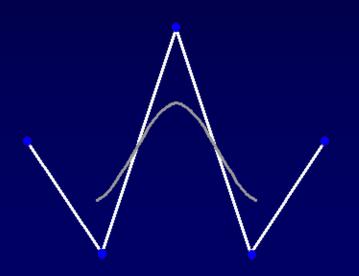


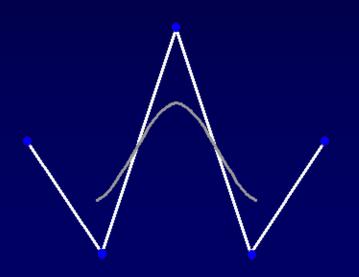


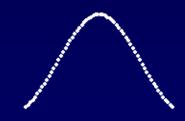


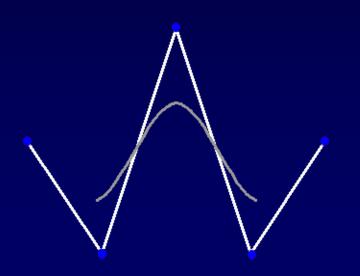


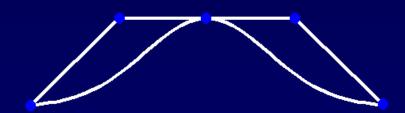














Future Work

Other types of averaging rules (non-analytic)
Lofting curve networks
Extensions to surfaces
Extraordinary points
Slowing varying non-linear maps