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Linear Subdivision

 Locally can be written as matrix multiplication

pk+1 = M pk

 Usually reproduce polynomials

 Easy to analyze

Sufficient conditions of continuity based on 

eigen-structure of M [Reif 95]

 Includes Catmull-Clark, Loop, Butterfly, etc…



Non-linear Subdivision

 Greater expression

Reproduce non-polynomial functions

circles [Sabin et al. 2005]

p(x)el(x) [Micchelli 1996]

Preserve convexity [Floater et al. 1998]

Subdivision curves on manifolds 

[Noakes 1998, Wallner et al. 2005]

 Hard to analyze smoothness



Contributions

 Provide a simple class of non-linear 

subdivision schemes

Easy to analyze smoothness

Modification of linear subdivision schemes

Can reproduce interesting functions: 

trigonometrics, gaussians

 Applications to intersection calculations 



Linear Subdivision Example

 Uniform B-splines [Lane, Reisenfeld 1980]

Doubling followed by mid-point averaging

Smoothness: Cn-1 (n = # of averaging steps)

Piecewise polynomial
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Simple Non-Linear Subdivision

 Replace mid-point with geometric mean

 Is the curve smooth?

 What functions does this method reproduce?
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Functional Equations

 Find parametric midpoint of a function F

 Example: L(x) = m x + b
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Other Averaging Rules
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Non-linear Maps

 Given

F: 1-1 function on 

S: subdivision scheme
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Non-linear Maps Example
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Smoothness and Interpolation

 Given

F: 1-1 function on

S: subdivision scheme



 Then
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Geometric Properties

 Properties: convex-hull, variation diminishing
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Geometric Interpretation

 Modify geodesics so that the properties hold
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geodesic connecting any two points in C lies 

completely within C
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intersect, then the curves do not intersect

2) If each curve is approximately a straight 

line, intersect those lines; else subdivide
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Future Work

 Other types of averaging rules (non-analytic)

Lofting curve networks

 Extensions to surfaces

Extraordinary points

 Slowing varying non-linear maps


