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Goal

Real-Time Displaced „Subdivision Surfaces‟



Problem: Real-Time Animation

•Each vertex „touched‟ at runtime

– new position influenced by 

many bones weights or morph 

targets

•Costly for dense meshes

•Coarse meshes are used

– faceting artifacts

•Dense static objects

– high disk/bus consumption



Solution: Hardware Tessellation

•Store/send coarse mesh to GPU

•Animate coarse mesh vertices

– inexpensive

•Expand geometry on GPU

– reduce bus traffic

– exploit GPU parallelism

•Better shape fidelity

– reduced faceting

– displacement mapping
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Tessellation Pipeline

• Direct3D11 has support for programmable 

tessellation

• Two new programable shader stages:

• Hull Shader (HS)

• Domain Shader (DS)

• One fixed function stage:

• Tessellator (TS)
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Hull Shader

• Transforms control points from 

irregular control mesh data to 

regular patch data

• Computes edge tessellation 

factors

Hull Shader (HS)
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Tessellator (TS)

• Fixed function stage, but 

configurable

• Domains:

– Triangle, Quad, Line

• Spacing:

– Discrete, Continuous, Pow2



Tessellator (TS)

Level 5 Level 5.4 Level 6.6



Tessellator (TS)
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Subdivision Surfaces

• Already in the content creation pipeline

• Used extensively in film and game industries

• Coarse mesh input leads to smooth higher order surface

Catmull, E. AND Clark, J.  1978, 

Recursively generated B-spline surfaces on arbitrary topological meshes  

subdivision



Problem: Infinite number of patches

subdivision

• Does not easily fit hardware tessellation paradigm

•

• Using exact evaluation possible, but expensive

• Need two levels of subdivision to get started

• Eigen basis function storage/evaluation costly

Stam, J. 1998, 

Exact evaluation of Catmull-Clark subdivision surfaces at arbitrary 

parameter values



Approximation Schemes

•

•

•

• This paper   

Loop, C. AND Schaefer, S.  2008, 

Approximating Catmull-Clark subdivision surfaces with bicubic patches

Quads only, continuous geometry, smooth normal field

25 control points per patch

Myles, A, Ni, T., AND Peters, J.  2008, 

Fast Parallel construction of smooth surfaces from meshes with tri/quad/pent facets

3, 4, or 5 sided faces, smooth geometry and normal field

19, 25, and 31 control points per patch

Ni, T., Yeo. Y.I., Miles, A, AND Peters, J.  2008, 

GPU smoothing of quad meshes  

Quads only smooth geometry and normal field

24 control points per patch

3, 4 sided Gregory patches

15, 20 control points per patch



Gregory Patches

•

•

Gregory, J.  1974, 

Smooth interpolation without twist constraints

Chiyokura, H. AND Kimura, F., 1983

Design of solids with free-form surfaces

Introduced to solve subtle problem with incompatible mixed partial

derivatives, or “twists” at patch corners in the regular setting

Extended to irregular setting, introduced Bézier formulation



Bicubic Bézier Patch



Gregory Quad Patch



Gregory Quad Patch



Gregory Quad Patch



Gregory Triangle Patch



Patch Construction

• General construction for 3 or 4 

sided faces

Gregory patches in 1-1 correspondence 

with control mesh faces
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Corner Point

p

Interpolate limit position of Catmull-Clark Surface



Edge Points

Interpolate limit tangent of Catmull-Clark Surface



Edge Points

Interpolate limit tangent of Catmull-Clark Surface



Face Points



Face Points



Two GPU Implementations

• Vertex/Hull Shaders

– Exploit vertex-centric nature of computations

– Avoid redundant computations

• Hull Shader Stencil Approach

– Map patch construction to hull shader exclusively

– Frees vertex shader for other tasks

• „Best‟ implementation will depend on

– LOD, low V/H better, high HSS better

– Hardware vendor

– Application 



Vertex/Hull Shader Approach

•



Hull Shader Stencil Approach

• Sort mesh into patch connectivity types

– permutation of a face 1-ring neighborhood

• Each connectivity type determines a weight matrix

– store these matrices in a texture

– hull shader computes patch as matrix/vector product

• Advantages

– simple code, low register/shared memory pressure

– fits tessellator pipeline well

• Disadvantages

– sparse matrix, many unnecessary fetches/products

– redundant computations – corner/edges points



Domain Shader

•



Results



Results



Conclusions

• Simple geometry construction

– Handling boundaries in paper

• Lowest fetch overhead for domain shader

– 20 control points for quads, 15 for triangles

– Critical performance bottleneck

• Error to „true‟ Catmull-Clark surface small

– See paper

– “artist intent” problem solved by migration to tool 

chain



Thank You


