SIGGRAPHASIA2009

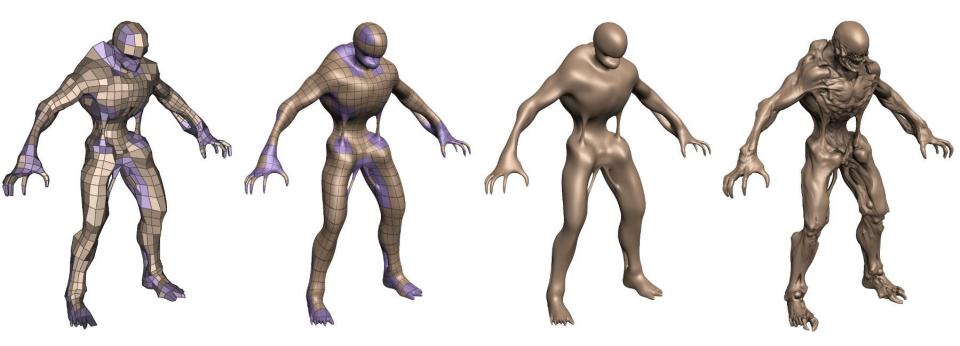
Approximating Subdivision Surfaces with Gregory Patches for Hardware Tessellation

Charles Loop Microsoft Research

> Tianyun Ni *NVIDIA*

Scott Schaefer Texas A&M University

Ignacio Castaño NVIDIA



Real-Time Displaced 'Subdivision Surfaces'

Problem: Real-Time Animation

Each vertex 'touched' at runtime

- new position influenced by
 many bones weights or morph
 targets
- Costly for dense meshes
- Coarse meshes are used
 - faceting artifacts
- Dense static objects
 - high disk/bus consumption

Solution: Hardware Tessellation

- Store/send coarse mesh to GPU
- Animate coarse mesh vertices
 - inexpensive
- Expand geometry on GPU
 - reduce bus traffic
 - exploit GPU parallelism
- Better shape fidelity
 - reduced faceting
 - displacement mapping

Tessellation Pipeline

- Direct3D11 has support for programmable tessellation
- Two new programable shader stages:
 - Hull Shader (HS)
 - Domain Shader (DS)
- One fixed function stage:
 - Tessellator (TS)

Hull Shader (HS)

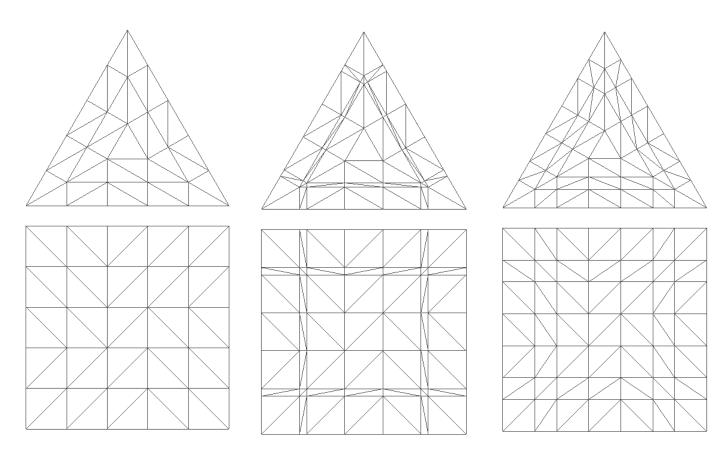
- Transforms control points from irregular control mesh data to regular patch data
- Computes edge tessellation factors

Tessellator (TS)

- Fixed function stage, but configurable
- Domains:
 - Triangle, Quad, Line
- Spacing:
 - Discrete, Continuous, Pow2

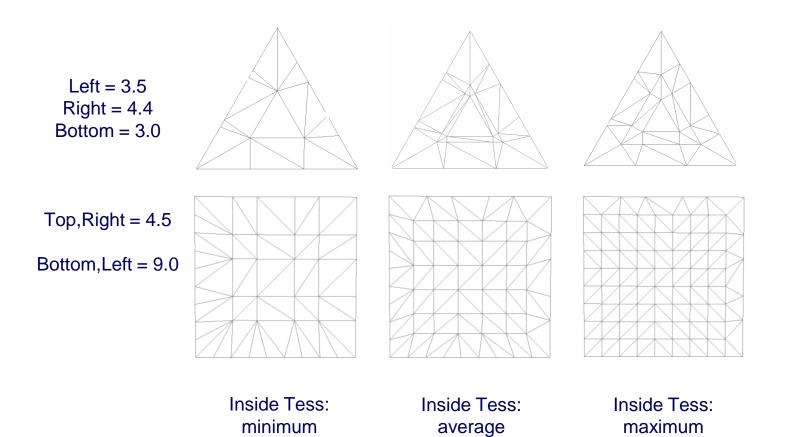


Tessellator (TS)



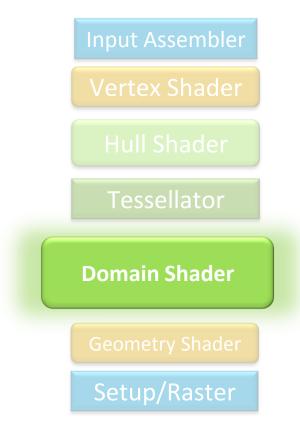
Level 6.6

Tessellator (TS)



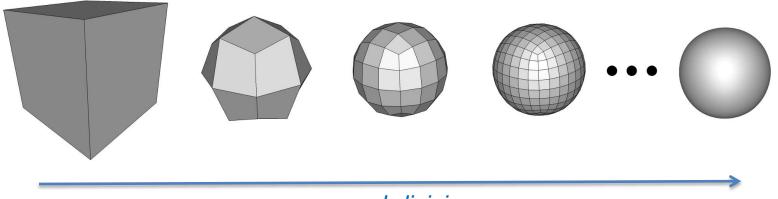
Domain Shader (DS)

- Evaluate surface given parametric u, v coordinates
- Interpolate attributes
- Apply displacements



Subdivision Surfaces

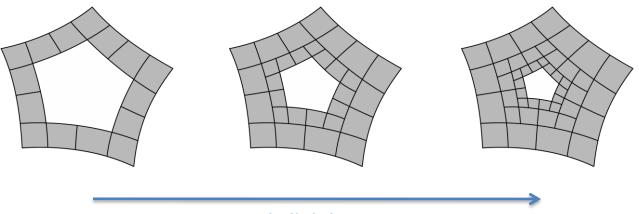
Catmull, E. AND Clark, J. 1978, *Recursively generated B-spline surfaces on arbitrary topological meshes*



subdivision

- Already in the content creation pipeline
- Used extensively in film and game industries
- Coarse mesh input leads to smooth higher order surface

Problem: Infinite number of patches



subdivision

- Does not easily fit hardware tessellation paradigm
- Stam, J. 1998, *Exact evaluation of Catmull-Clark subdivision surfaces at arbitrary parameter values*
- Using exact evaluation possible, but expensive
 - Need two levels of subdivision to get started
 - Eigen basis function storage/evaluation costly

SIGGRAPHASIA2009

Approximation Schemes

• Loop, C. AND Schaefer, S. 2008, *Approximating Catmull-Clark subdivision surfaces with bicubic patches*

Quads only, continuous geometry, smooth normal field 25 control points per patch

• Ni, T., Yeo. Y.I., Miles, A, AND Peters, J. 2008, *GPU smoothing of quad meshes*

Quads only smooth geometry and normal field 24 control points per patch

• Myles, A, Ni, T., AND Peters, J. 2008, Fast Parallel construction of smooth surfaces from meshes with tri/quad/pent facets

3, 4, or 5 sided faces, smooth geometry and normal field 19, 25, and 31 control points per patch

This paper

3, 4 sided Gregory patches15, 20 control points per patch

Gregory Patches

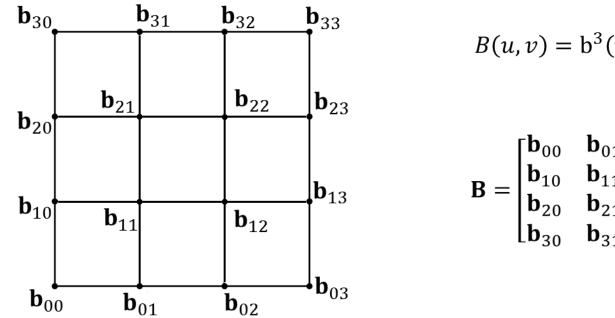
• Gregory, J. 1974, Smooth interpolation without twist constraints

Introduced to solve subtle problem with incompatible mixed partial derivatives, or "twists" at patch corners in the regular setting

• Chiyokura, H. AND Kimura, F., 1983 Design of solids with free-form surfaces

Extended to irregular setting, introduced Bézier formulation

Bicubic Bézier Patch

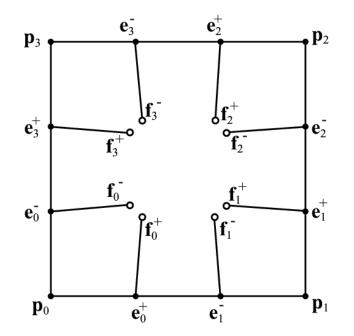


$$B(u,v) = b^3(u) \cdot \mathbf{B} \cdot b^3(v)$$

$$\mathbf{B} = \begin{bmatrix} \mathbf{b}_{00} & \mathbf{b}_{01} & \mathbf{b}_{02} & \mathbf{b}_{03} \\ \mathbf{b}_{10} & \mathbf{b}_{11} & \mathbf{b}_{12} & \mathbf{b}_{13} \\ \mathbf{b}_{20} & \mathbf{b}_{21} & \mathbf{b}_{22} & \mathbf{b}_{23} \\ \mathbf{b}_{30} & \mathbf{b}_{31} & \mathbf{b}_{32} & \mathbf{b}_{33} \end{bmatrix}$$

$$b^{3}(u) = [(1-u)^{3} \quad 3(1-u)^{2}u \quad 3(1-u)u^{2} \quad u^{3}]$$

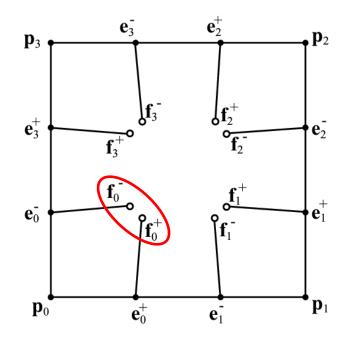
Gregory Quad Patch



$$Q(u, v) = b^{3}(u) \cdot \mathbf{G}(u, v) \cdot b^{3}(v)$$

$$\mathbf{G}(u,v) = \begin{bmatrix} \mathbf{p}_3 & \mathbf{e}_0^- & \mathbf{e}_3^+ & \mathbf{p}_2 \\ \mathbf{e}_0^+ & \mathbf{F}_0(u,v) & \mathbf{F}_3(u,v) & \mathbf{e}_3^- \\ \mathbf{e}_1^- & \mathbf{F}_1(u,v) & \mathbf{F}_2(u,v) & \mathbf{e}_2^+ \\ \mathbf{p}_0 & \mathbf{e}_1^+ & \mathbf{e}_2^- & \mathbf{p}_1 \end{bmatrix}$$

Gregory Quad Patch



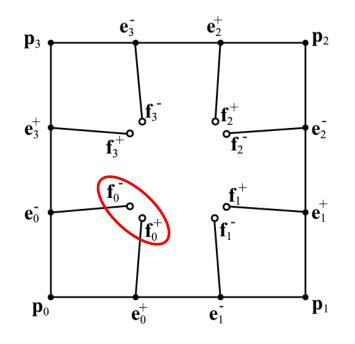
$$Q(u, v) = b^{3}(u) \cdot \mathbf{G}(u, v) \cdot b^{3}(v)$$

$$\mathbf{G}(u,v) = \begin{bmatrix} \mathbf{p}_3 & \mathbf{e}_0^- & \mathbf{e}_3^+ & \mathbf{p}_2 \\ \mathbf{e}_0^+ & \mathbf{F}_0(u,v) & \mathbf{F}_3(u,v) & \mathbf{e}_3^- \\ \mathbf{e}_1^- & \mathbf{F}_1(u,v) & \mathbf{F}_2(u,v) & \mathbf{e}_2^+ \\ \mathbf{p}_0 & \mathbf{e}_1^+ & \mathbf{e}_2^- & \mathbf{p}_1 \end{bmatrix}$$

$$\mathbf{F}_0(u,v) = \frac{u \mathbf{f}_0^+ + v \mathbf{f}_0^-}{u + v}$$

 $\textbf{F}_{1}, \textbf{F}_{2}, \textbf{F}_{3}$ are similar

Gregory Quad Patch



 $Q(u, v) = b^3(u) \cdot \mathbf{G}(u, v) \cdot b^3(v)$

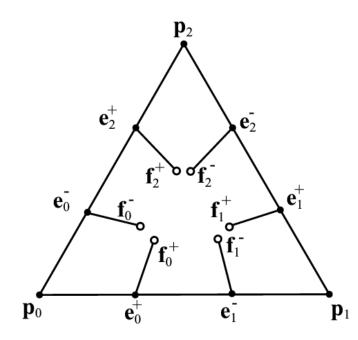
$$\mathbf{G}(u,v) = \begin{bmatrix} \mathbf{p}_3 & \mathbf{e}_0^- & \mathbf{e}_3^+ & \mathbf{p}_2 \\ \mathbf{e}_0^+ & \mathbf{F}_0(u,v) & \mathbf{F}_3(u,v) & \mathbf{e}_3^- \\ \mathbf{e}_1^- & \mathbf{F}_1(u,v) & \mathbf{F}_2(u,v) & \mathbf{e}_2^+ \\ \mathbf{p}_0 & \mathbf{e}_1^+ & \mathbf{e}_2^- & \mathbf{p}_1 \end{bmatrix}$$

 $\mathbf{F}_{0}(u, v) = \frac{u \, \mathbf{f}_{0}^{+} + v \, \mathbf{f}_{0}^{-}}{u + v} \mathbf{F}_{1},$

 \mathbf{F}_1 , \mathbf{F}_2 , \mathbf{F}_3 are similar

Note that $\mathbf{F}_0(0,0) = \mathbf{F}_1(1,0) = \mathbf{F}_2(1,1) = \mathbf{F}_3(0,1) = \frac{0}{0}$

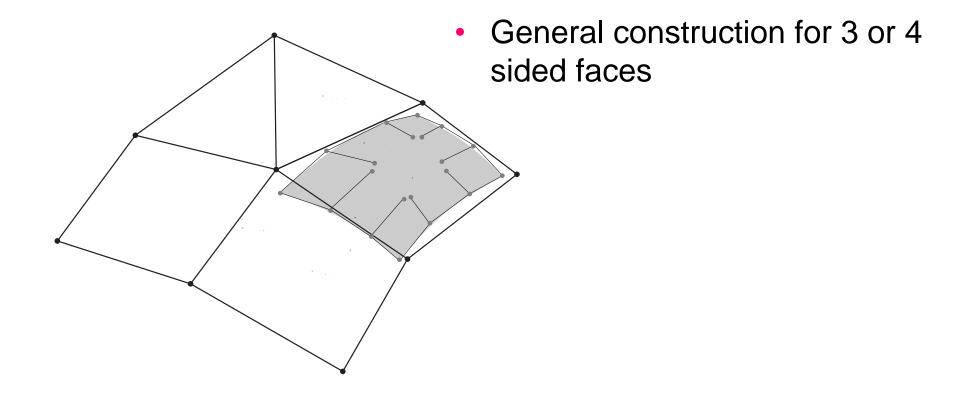
Gregory Triangle Patch



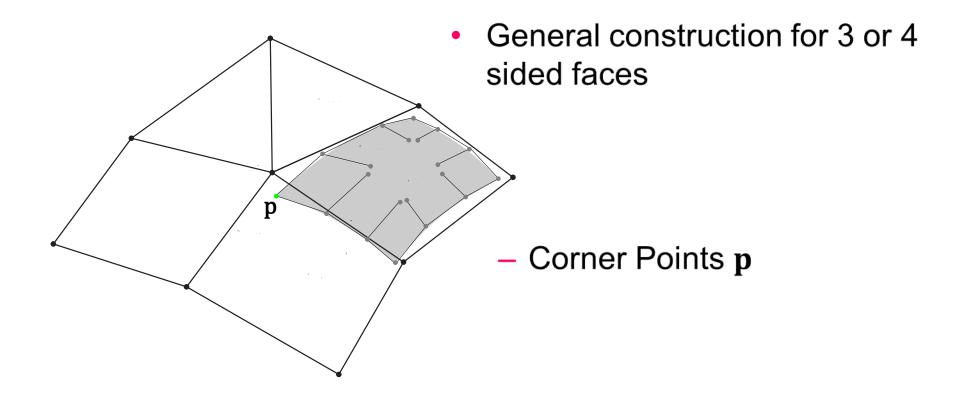
$$T(u, v, w) = u^{3}\mathbf{p}_{0} + v^{3}\mathbf{p}_{1} + w^{3}\mathbf{p}_{2}$$

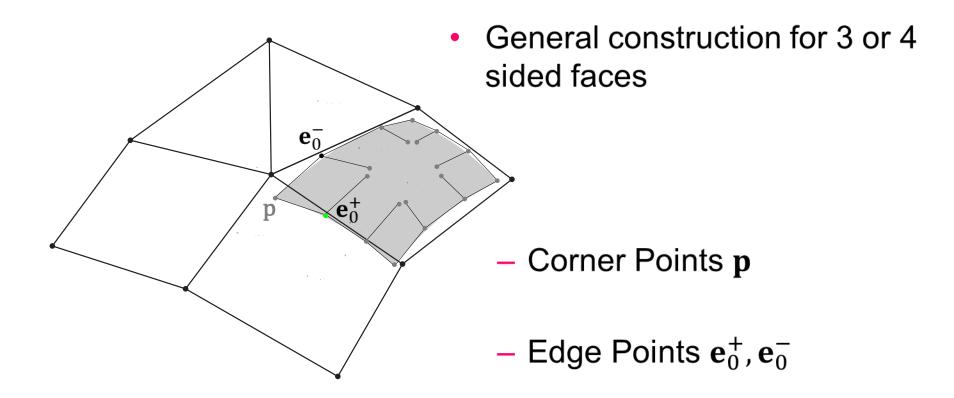
+ $3uv(u + v)(u\mathbf{e}_{0}^{+} + v\mathbf{e}_{1}^{-})$
+ $3vw(v + w)(v\mathbf{e}_{1}^{+} + w\mathbf{e}_{2}^{-})$
+ $3wu(w + u)(w\mathbf{e}_{2}^{+} + u\mathbf{e}_{0}^{-})$
+ $12uvw(u\mathbf{F}_{0} + v\mathbf{F}_{1} + w\mathbf{F}_{2})$

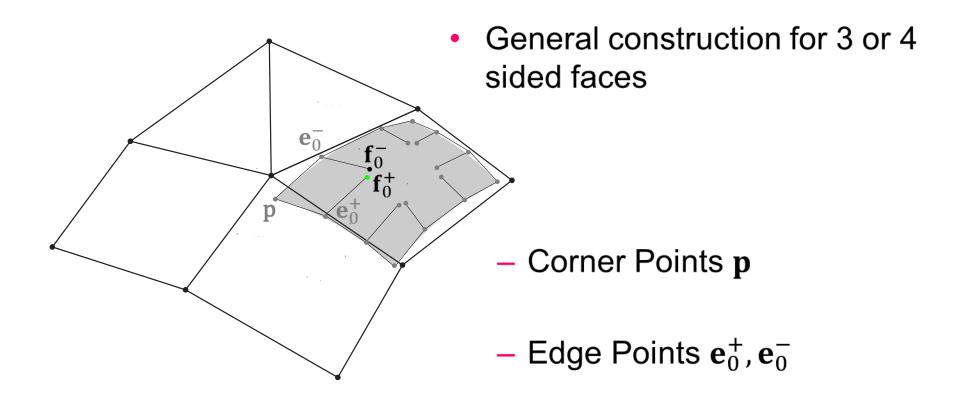
$$\mathbf{F}_{0}(v,w) = \frac{w \mathbf{f}_{0}^{-} + v \mathbf{f}_{0}^{+}}{v + w}, \quad \mathbf{F}_{1}(u,w) = \frac{u \mathbf{f}_{1}^{-} + w \mathbf{f}_{1}^{+}}{w + u}, \quad \mathbf{F}_{2}(u,v) = \frac{v \mathbf{f}_{2}^{-} + u \mathbf{f}_{2}^{+}}{u + v}$$



Gregory patches in 1-1 correspondence with control mesh faces

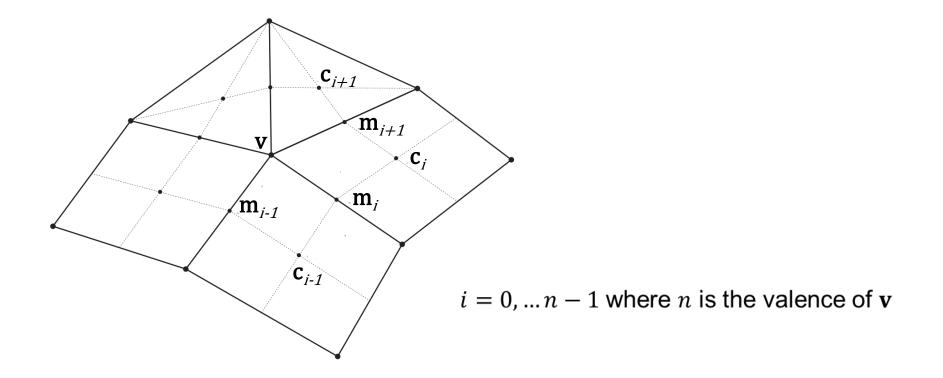




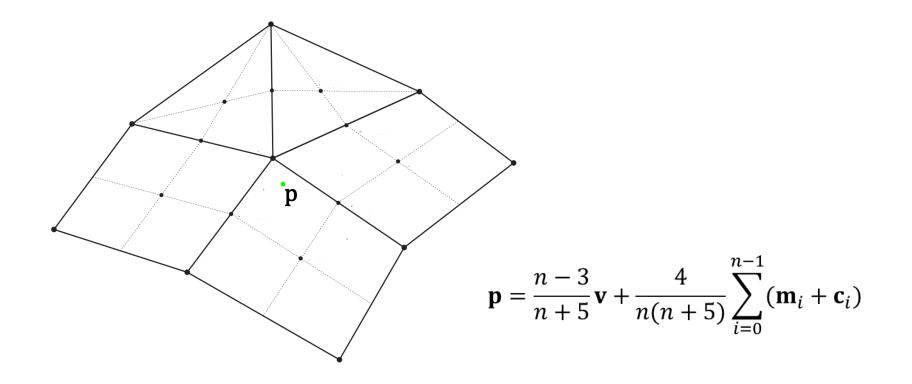


– Face Points f_0^+ , f_0^-

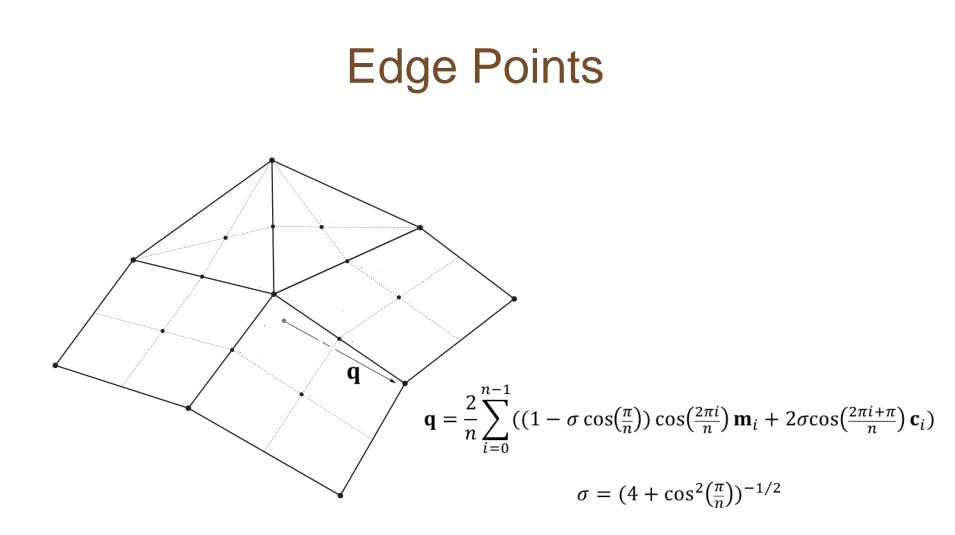
Edge Midpoints/Face Centroids



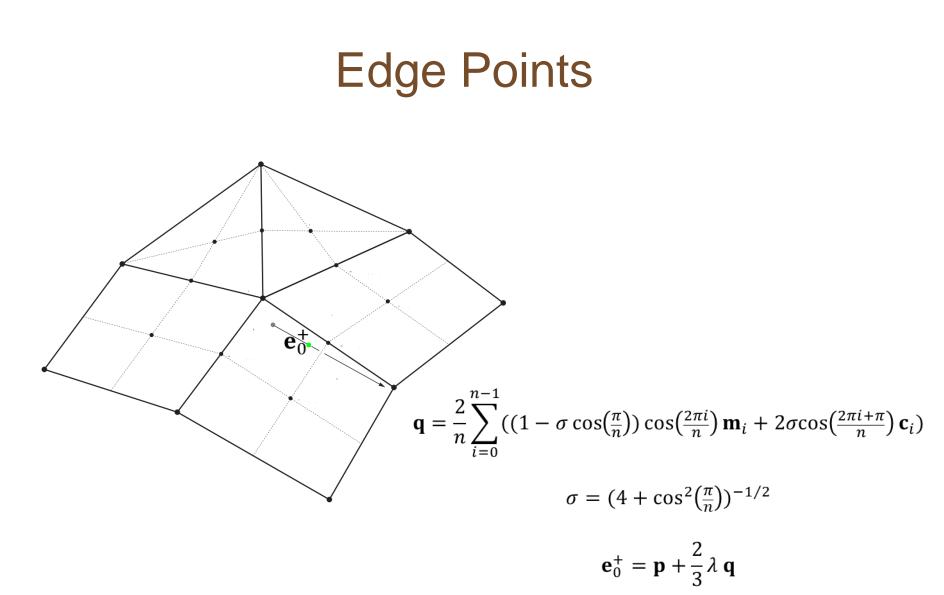
Corner Point



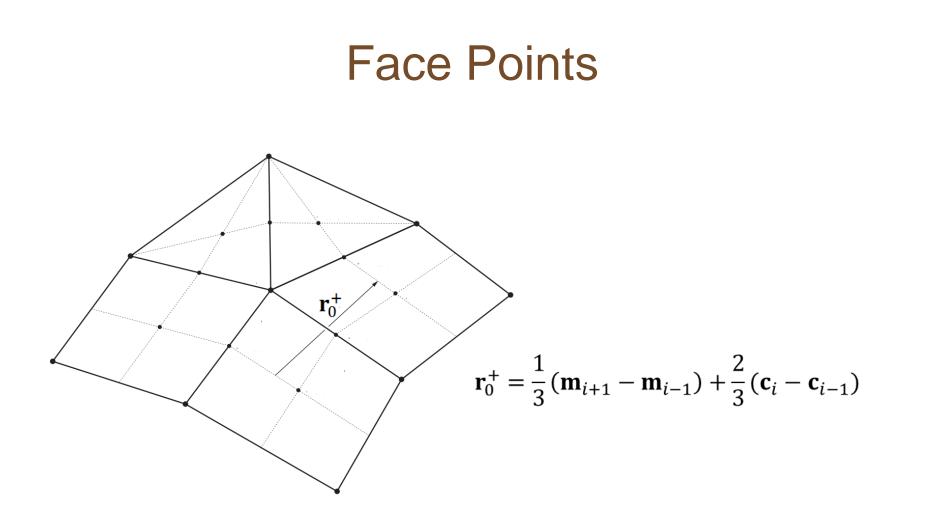
Interpolate limit position of Catmull-Clark Surface

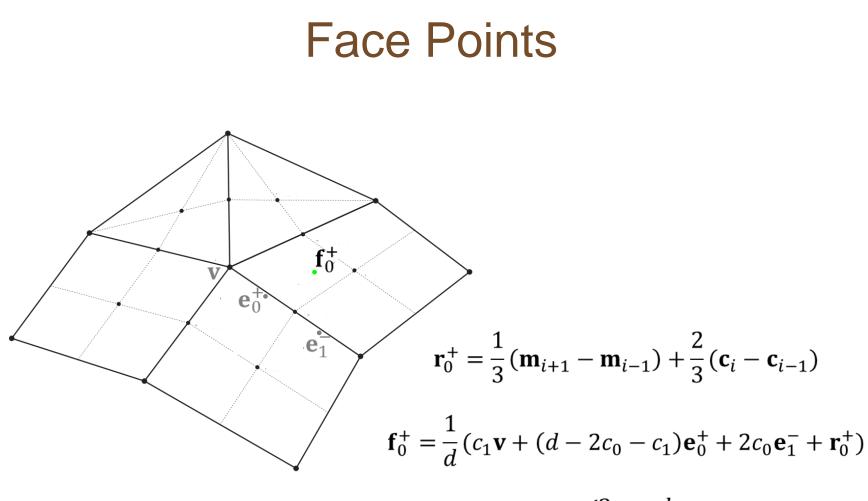


Interpolate limit tangent of Catmull-Clark Surface



Interpolate limit tangent of Catmull-Clark Surface





 $d = \begin{cases} 3 \ quad \\ 4 \ triangle \end{cases}$

Two GPU Implementations

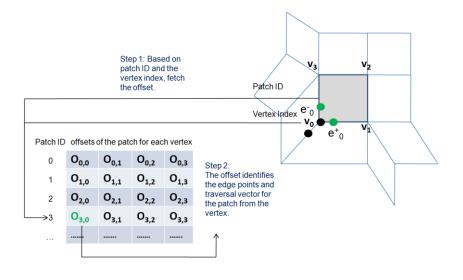
- Vertex/Hull Shaders
 - Exploit vertex-centric nature of computations
 - Avoid redundant computations
- Hull Shader Stencil Approach
 - Map patch construction to hull shader exclusively
 - Frees vertex shader for other tasks
- 'Best' implementation will depend on
 - LOD, low V/H better, high HSS better
 - Hardware vendor
 - Application

Vertex/Hull Shader Approach

• Compute $\mathbf{p}, \mathbf{e}_i^+, \mathbf{e}_i^-, \mathbf{r}_i^+, \mathbf{r}_i^-, i = 0, ..., n - 1$, in vertex shader

	Vertex ID	vertex IDs of its direct and diagonal neighbors					· v	Vertex ID Position		
Based on vertex ID, fetch the vertex ids of its one ring	0	id_P _{0,0}	id_Q _{0,0}	id_P _{0,1}	$id_Q_{0,1}$		Based on the vertex ID of the vertex, fetch its position.	0	Vo	
	1	id_P _{1,0}	id_Q _{1,0}	id_P _{1,1}	$id_Q_{1,1}$			1	V ₁	
	2	id_P _{2,0}	id_Q _{2,0}	id_P _{2,1}	$id_{2,1}$			2	V ₂	
	→ 3	id_P _{3,0}	$id_\mathbf{Q}_{3,0}$	id_P _{3,1}	$id_Q_{3,1}$			3	V ₃	

Pass 4 (or 3) point primitive to hull shader



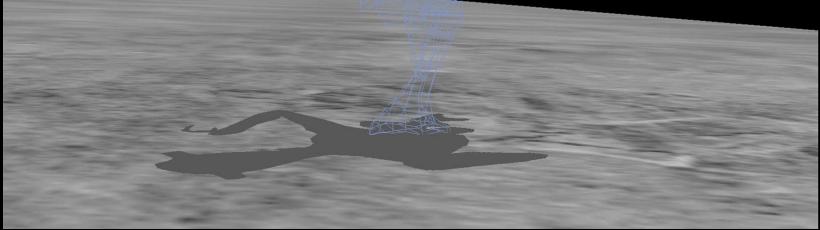
SIGGRAPHASIA2009

Hull Shader Stencil Approach

- Sort mesh into patch *connectivity types*
 - permutation of a face 1-ring neighborhood
- Each connectivity type determines a *weight matrix*
 - store these matrices in a texture
 - hull shader computes patch as matrix/vector product
- Advantages
 - simple code, low register/shared memory pressure
 - fits tessellator pipeline well
- Disadvantages
 - sparse matrix, many unnecessary fetches/products
 - redundant computations corner/edges points

Domain Shader

- Evaluates patches at *u*, *v* values generated by tessellator
- Two cases: 3 and 4 sided patches
- In both cases
 - evaluate the F_i (rational function of u and v)
 - use DeCasteljau's algorithm for position/normal
 - normal not 'correct', but continuous on edges
- Corner degeneracy $\left(\frac{0}{0}\right)$
 - use conditional assignment
 - low impact on SIMD efficiency



Results

Conclusions

- Simple geometry construction
 - Handling boundaries in paper
- Lowest fetch overhead for domain shader
 20 control points for quads, 15 for triangles
 - Critical performance bottleneck
- Error to 'true' Catmull-Clark surface small
 - See paper
 - "artist intent" problem solved by migration to tool chain

Thank You

