

Approximating Subdivision Surfaces

with Gregory Patches for

Hardware Tessellation

Charles Loop

Microsoft Research

Scott Schaefer

Texas A&M University

Tianyun Ni

NVIDIA

Ignacio Castaño

NVIDIA

Goal

Real-Time Displaced „Subdivision Surfaces‟

Problem: Real-Time Animation

•Each vertex „touched‟ at runtime

– new position influenced by

many bones weights or morph

targets

•Costly for dense meshes

•Coarse meshes are used

– faceting artifacts

•Dense static objects

– high disk/bus consumption

Solution: Hardware Tessellation

•Store/send coarse mesh to GPU

•Animate coarse mesh vertices

– inexpensive

•Expand geometry on GPU

– reduce bus traffic

– exploit GPU parallelism

•Better shape fidelity

– reduced faceting

– displacement mapping

Domain Shader

Hull Shader

Tessellator

Input Assembler

Vertex Shader

Geometry Shader

Setup/Raster

Tessellation Pipeline

• Direct3D11 has support for programmable

tessellation

• Two new programable shader stages:

• Hull Shader (HS)

• Domain Shader (DS)

• One fixed function stage:

• Tessellator (TS)

Domain Shader

Tessellator

Input Assembler

Vertex Shader

Geometry Shader

Setup/Raster

Hull Shader

• Transforms control points from

irregular control mesh data to

regular patch data

• Computes edge tessellation

factors

Hull Shader (HS)

Domain Shader

Hull Shader

Input Assembler

Vertex Shader

Geometry Shader

Setup/Raster

Tessellator

Tessellator (TS)

• Fixed function stage, but

configurable

• Domains:

– Triangle, Quad, Line

• Spacing:

– Discrete, Continuous, Pow2

Tessellator (TS)

Level 5 Level 5.4 Level 6.6

Tessellator (TS)

Inside Tess:

minimum

Inside Tess:

average

Inside Tess:

maximum

Top,Right = 4.5

Bottom,Left = 9.0

Left = 3.5

Right = 4.4

Bottom = 3.0

Hull Shader

Tessellator

Input Assembler

Vertex Shader

Geometry Shader

Setup/Raster

Domain Shader

Domain Shader (DS)

Subdivision Surfaces

• Already in the content creation pipeline

• Used extensively in film and game industries

• Coarse mesh input leads to smooth higher order surface

Catmull, E. AND Clark, J. 1978,

Recursively generated B-spline surfaces on arbitrary topological meshes

subdivision

Problem: Infinite number of patches

subdivision

• Does not easily fit hardware tessellation paradigm

•

• Using exact evaluation possible, but expensive

• Need two levels of subdivision to get started

• Eigen basis function storage/evaluation costly

Stam, J. 1998,

Exact evaluation of Catmull-Clark subdivision surfaces at arbitrary

parameter values

Approximation Schemes

•

•

•

• This paper

Loop, C. AND Schaefer, S. 2008,

Approximating Catmull-Clark subdivision surfaces with bicubic patches

Quads only, continuous geometry, smooth normal field

25 control points per patch

Myles, A, Ni, T., AND Peters, J. 2008,

Fast Parallel construction of smooth surfaces from meshes with tri/quad/pent facets

3, 4, or 5 sided faces, smooth geometry and normal field

19, 25, and 31 control points per patch

Ni, T., Yeo. Y.I., Miles, A, AND Peters, J. 2008,

GPU smoothing of quad meshes

Quads only smooth geometry and normal field

24 control points per patch

3, 4 sided Gregory patches

15, 20 control points per patch

Gregory Patches

•

•

Gregory, J. 1974,

Smooth interpolation without twist constraints

Chiyokura, H. AND Kimura, F., 1983

Design of solids with free-form surfaces

Introduced to solve subtle problem with incompatible mixed partial

derivatives, or “twists” at patch corners in the regular setting

Extended to irregular setting, introduced Bézier formulation

Bicubic Bézier Patch

Gregory Quad Patch

Gregory Quad Patch

Gregory Quad Patch

Gregory Triangle Patch

Patch Construction

• General construction for 3 or 4

sided faces

Gregory patches in 1-1 correspondence

with control mesh faces

Patch Construction

p

•

Patch Construction

p

•

Patch Construction

p

•

Edge Midpoints/Face Centroids

v

mi

ci

mi+1

mi-1

ci+1

ci-1

Corner Point

p

Interpolate limit position of Catmull-Clark Surface

Edge Points

Interpolate limit tangent of Catmull-Clark Surface

Edge Points

Interpolate limit tangent of Catmull-Clark Surface

Face Points

Face Points

Two GPU Implementations

• Vertex/Hull Shaders

– Exploit vertex-centric nature of computations

– Avoid redundant computations

• Hull Shader Stencil Approach

– Map patch construction to hull shader exclusively

– Frees vertex shader for other tasks

• „Best‟ implementation will depend on

– LOD, low V/H better, high HSS better

– Hardware vendor

– Application

Vertex/Hull Shader Approach

•

Hull Shader Stencil Approach

• Sort mesh into patch connectivity types

– permutation of a face 1-ring neighborhood

• Each connectivity type determines a weight matrix

– store these matrices in a texture

– hull shader computes patch as matrix/vector product

• Advantages

– simple code, low register/shared memory pressure

– fits tessellator pipeline well

• Disadvantages

– sparse matrix, many unnecessary fetches/products

– redundant computations – corner/edges points

Domain Shader

•

Results

Results

Conclusions

• Simple geometry construction

– Handling boundaries in paper

• Lowest fetch overhead for domain shader

– 20 control points for quads, 15 for triangles

– Critical performance bottleneck

• Error to „true‟ Catmull-Clark surface small

– See paper

– “artist intent” problem solved by migration to tool

chain

Thank You

