On the Parameterization of Catmull-Rom Curves

Cem Yuksel Scott Schaefer John Keyser
Texas A&M University

- Important Properties
 - Interpolate control points
 - Local support
 - Piecewise polynomial representation

- Important Properties
 - Interpolate control points
 - Local support
 - Piecewise polynomial representation

- Parameterization
 - Uniform:

$$t_{i+1} = t_i + 1$$

- Chordal:

$$t_{i+1} = t_i + |\mathbf{P}_{i+1} - \mathbf{P}_i|$$

- Parameterization
 - Uniform:

$$t_{i+1} = t_i + |\mathbf{P}_{i+1} - \mathbf{P}_i|^0$$

- Chordal:

$$t_{i+1} = t_i + |\mathbf{P}_{i+1} - \mathbf{P}_i|^1$$

Parameterization

$$t_{i+1} = t_i + |\mathbf{P}_{i+1} - \mathbf{P}_i|^{\alpha}$$

Parameterization

$$t_{i+1} = t_i + |\mathbf{P}_{i+1} - \mathbf{P}_i|^{\alpha}$$

Parameterization

$$t_{i+1} = t_i + |\mathbf{P}_{i+1} - \mathbf{P}_i|^{\alpha}$$

On the Parameterization of Catmull-Rom Curves

On the Parameterization of Catmull-Rom Curves

CUSPS & SELF-INTERSECTIONS

On the Parameterization of Catmull-Rom Curves

DISTANCE BOUND

$$h \leq d_2 \times A$$

$$r = \frac{d_1}{d_2}$$

$$h \le d_2 \frac{r^{1-\alpha}}{4(1+r^{\alpha})}$$

$$r = \frac{d_1}{d_2}$$

$$h \le d_2 \frac{r^{1-\alpha}}{4\left(1+r^{\alpha}\right)}$$

$$\alpha < 1/2$$
 $h \le \infty$
 $\alpha = 1/2$ $h \le d_2/4$
 $\alpha = 2/3$ $h \le d_2/8$
 $\alpha = 1$ $h \le d_2/4$

$$r = \frac{d_1}{d_2}$$

$$h \le d_2 \frac{r^{1-\alpha}}{4\left(1+r^{\alpha}\right)}$$

$$\alpha < 1/2 \quad h \le \infty$$

$$\alpha = 1/2 \quad h \le d_2/4$$

$$\alpha = 2/3 \quad h \le d_2/8$$

$$\alpha = 1 \quad h \le d_2/4$$

$$r = \frac{d_1}{d_2}$$
 $h \le d_2 \frac{r^{1-\alpha}}{4(1+r^{\alpha})}$

$$\alpha < 1/2 \quad h \le \infty$$

$$\alpha = 1/2 \quad h \le d_2/4$$

$$\alpha = 2/3 \quad h \le d_2/8$$

$$\alpha = 1 \quad h \le d_2/4$$

Distance to the infinite line

$$r = \frac{d_1}{d_2}$$
 $h \le d_2 \frac{r^{1-\alpha}}{4(1+r^{\alpha})}$

$$\alpha < 1/2 \quad h \le \infty$$

$$\alpha = 1/2 \quad h \le d_2/4$$

$$\alpha = 2/3 \quad h \le d_2/8$$

$$\alpha = 1 \quad h \le d_2/4$$

Distance to the end points

$$l \le \frac{d_2 \sqrt{r^2 - r^{4\alpha}}}{3 r^{\alpha} (1 + r^{\alpha})}$$

 α only

 α and r

On the Parameterization of Catmull-Rom Curves

INTERSECTION-FREE CURVES

- Avoid self-intersections
 - Centripetal parameterization

- Avoid adjacent segment intersections
 - Control polygon angle > $\pi/3$

- Avoid non-adjacent segment intersections
 - Bounding box

On the Parameterization of Catmull-Rom Curves

DISCUSSION

- Distance to Control Polygon
 - Uniform is closer for longer segments
 - Chordal is closer for shorter segments

- Edge Direction
 - Chordal has extreme sensitivity to short edge directions

- Edge Direction
 - Chordal has extreme sensitivity to short edge directions

- Edge Direction
 - Chordal has extreme sensitivity to short edge directions

- Edge Direction
 - Chordal has extreme sensitivity to short edge directions

Curvature

 Centripetal *tends* to have higher curvature at control points.

- Curvature
 - Centripetal tends to have higher curvature at control points.

- Curvature
 - Centripetal tends to have higher curvature at control points.

- Curvature
 - Centripetal tends to have higher curvature at control points.

Catmull-Rom Curves

Cem Yuksel, Scott Schaefer, John Keyser, "Hair Meshes," Siggraph Asia 2009

Catmull-Rom Curves

Cem Yuksel, Scott Schaefer, John Keyser, "Hair Meshes," Siggraph Asia 2009

Catmull-Rom Curves

Cem Yuksel, Scott Schaefer, John Keyser, "Hair Meshes," Siggraph Asia 2009

Summary

Parameterization of Catmull-Rom curves

$$0 \leq \alpha \leq 1$$

- Cusps and self-intersections
- Distance bound
- Intersection-free curves

C¹ Catmull-Rom curves only!

On the Parameterization of Catmull-Rom Curves

QUESTIONS?