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• Distance to the infinite line

• Distance to end points
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Intersection-Free Curves

• Avoid self-intersections

– Centripetal parameterization

• Avoid adjacent segment intersections

– Control polygon angle   >   π / 3

• Avoid non-adjacent segment intersections

– Bounding box
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Discussion

• Distance to Control Polygon

– Uniform is closer for longer segments

– Chordal is closer for shorter segments
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Summary

• Parameterization of Catmull-Rom curves

• Cusps and self-intersections

• Distance bound

• Intersection-free curves

• C1 Catmull-Rom curves only!

0 ≤   a ≤   1
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