Approximate Catmull-Clark Patches

Scott Schaefer

Charles Loop

Approximate Catmull-Clark Patches

Scott Schaefer

Charles Loop

Catmull-Clark Surface

ACC-Patches

Polygon Models

Prevalent in game industry Very fast to render ■ Not smooth (faceted) **Complicated LOD management** High-resolution models require lots of band-width and computational resources

Goal: Fast Smooth Surfaces

Eliminate faceting artifacts
Animate low-res representation
Let GPU worry about LOD

Current

Future

DirectX 10 Pipeline

Tessellator Unit

Tessellator Unit

Domain Shader

- Tessellation factor per edge
- Called for each vertex of the sample pattern
- Early form in the XBox 360

DS_OUT DS(float2 uv : BARYCENTRIC, int patchInd : INDEX)

DS_OUT Out = (DS_OUT)0;

- // fetch data for patch #patchInd
- // evaluate patch at uv

return Out;

{

Subdivision Surfaces

Used in movie and game industries Supported by most 3D modeling software

Toy Story © Disney / Pixar

Geri's Game © Pixar Animation Studios

Subdivision Surfaces

- Set of rules *S* that recursively act on a shape p^0 $p^{k+1} = S p^k$
- Arbitrary topology surfacesSmooth everywhere

Subdivide until x is in ordinary region
 SⁱP

Subdivide until x is in ordinary region
 SⁱP

Subdivide until x is in ordinary region
 SⁱP

 Subdivide until x is in ordinary region
 SⁱP

 Extract B-spline control points and evaluate at x

Performance Issues

Limits # extraordinary verts

Performance Issues

Limits # extraordinary verts

Performance Issues

Limits # extraordinary vertsLots of shader constants

 $V\Lambda^i(V^{-1}P)$

Valence	Constants
3	882
4	1040
5	1206
6	1380
7	1562
8	1752

- Replace extraordinary patches with polynomials
 - Geometry patch (degree 3x3)
 2 Tangent patches (degree 3x2)
- Based on conversion from
 - **B-spline to Bezier form**

Replace extraordinary patches with polynomials
 Geometry patch (degree 3x3)
 2 Tangent patches (degree 3x2)
 Based on conversion from B-spline to Bezier form

Replace extraordinary patches with polynomials
 Geometry patch (degree 3x3)
 2 Tangent patches (degree 3x2)
 Based on conversion from B-spline to Bezier form

Replace extraordinary patches with polynomials
 Geometry patch (degree 3x3)
 2 Tangent patches (degree 3x2)
 Based on conversion from B-spline to Bezier form

- Use knot-insertion rules from ordinary case
- At corners, use limit masks

- Use knot-insertion rules from ordinary case
- At corners, use limit masks

- Use knot-insertion rules from ordinary case
- At corners, use limit masks

- Use knot-insertion rules from ordinary case
- At corners, use limit masks

- Use knot-insertion rules from ordinary case
- At corners, use limit masks

- Use knot-insertion rules from ordinary case
- At corners, use limit masks
- Smooth everywhere
 except edges touching
 extraordinary vertices

 $v(t) \times u(t) \propto \hat{v}(t) \times u(t)$

ACC Geo/Tan Patches

ACC Geo/Tan Patches

ACC Geo/Tan Patches

ACC Geo/Tan

Catmull-Clark

ACC Geo/Tan Patches

Worse

Worse

Better

Worse

Conclusions

Creates visually smooth surfaces
Suitable for displacement/normal mapping
Handles any number of extraordinary vertices
Simple to evaluate

Demo part of DirectX March 2008 SDK