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Abstract
We present a method for extracting a hierarchical, rigid skeleton from a setof example poses. We then use this
skeleton to not only reproduce the example poses, but create new deformations in the same style as the examples.
Since rigid skeletons are used by most 3D modeling software, this skeleton and the corresponding vertex weights
can be inserted directly into existing production pipelines. To create the skeleton, we first estimate the rigid trans-
formations of the bones using a fast, face clustering approach. We present an efficient method for clustering by
providing a Rigid Error Function that finds the best rigid transformation froma set of points in a robust, space
efficient manner and supports fast clustering operations. Next, we solve for the vertex weights and enforce locality
in the resulting weight distributions. Finally, we use these weights to determine the connectivity and joint locations
of the skeleton.

Categories and Subject Descriptors(according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism

1. Introduction

In Computer Animation, deformation plays a key role in
posing digital characters. In order to manipulate the char-
acter, the artist uses some set of deformation handles to
deform the character into various poses. In recent years
a variety of methods have been developed to assist the
artist in this endeavor and allow shapes to be manipu-
lated with grids [SP86], polygons [JSW05] and even points
by attempting to preserve the shape’s intrinsic characteris-
tics [YZX∗04,LSLCO05,BPGK06].

Perhaps the most common and intuitive method for
deforming these shapes is skeletal deformation [LCF00].
Skeletons form a compact representation of shape and mimic
the way real-world skeletons create deformations of our own
bodies. To deform a shape (denoted therest pose) with skele-
tal deformation, the user specifies a hierarchical set of trans-
formations representing the bones of the skeleton. In arigid
skeleton, the transformations consists only of translation and
rotation. Therefore, the skeleton can be represented as a hi-
erarchical set of joint locations, each location representing
a translation through movement of that joint and orientation
through a rotation about that joint’s position.

Once a skeleton is specified, we “skin” the vertices of the
rest pose by representing each vertex as a weighted combi-

nation of each bone. Typically we enforce that∑i α j = 1 to
make the deformation invariant under rigid transformations
whereα j is the weight associated with thejth bone. Now,
given these weights, the deformed location ˆp of a pointp is

p̂= ∑
j

α j (Rj p+Tj ) (1)

whereRj ,Tj represent the rotation and translation for the
jth bone andp, p̂ are column vectors. Today, skeletal defor-
mation enjoys widespread support in Graphics, movies and
games. Skeletal deformation is also found in most 3D mod-
eling packages and is even hardware accelerated on today’s
GPU’s.

However, creating the hierarchy of bones and weights for
skeletal deformation is a nontrivial task. Ideally, we could
automatically construct the hierarchy, bones and weights di-
rectly from a set of examples. Specifically, given a set of
poses of a character (see Figure1 left) with the same con-
nectivity, we would like to use these examples to infer how
the character moves and estimate the parameters for rigid
skeletal deformation to not only reproduce those poses, but
create new poses in the same style as the examples. We can
then approximate deformations that are the product of possi-
bly unknown deformation methods or expensive, nonlinear
computation using this skeletal system in real-time. Further-
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Figure 1: From a set of example poses we extract clusters representing rigid bones of a skeleton. Next we “skin” the model by
estimating bone weights for each vertex that we then use to determine the connectivity of the skeleton and joint locations. With
this skeleton, we can create new poses outside of the example set includingmaking the horse jump, chase his tail and rear in
the air.

more, since rigid skeletons are supported by most model-
ing applications, we can manipulate these shapes using pro-
grams such as Maya without the need for special software or
plugins and fit these new deformation models directly into
existing production pipelines.

2. Previous Work

Several authors have developed methods for extracting
skeletons directly from a static pose of a model using seg-
mentation approaches. [KT03] use a fuzzy clustering ap-
proach to develop a hierarchical decomposition of a shape,
which a skeleton can then be extracted from. [dATM∗04]
and [TdAM∗04] both use voxel descriptions of an object and
fit either ellipsoids or superquadrics to estimate a skeleton.
Later [KLT05] developed a different segmentation approach
based on feature point extraction. [LKA06] also created a
fast decomposition method based on approximate convex
decompositions of shape for skeleton extraction as well.

Other methods estimate skeletons from a static pose us-
ing other data such as feature points [TVD06], various types
of distance functions [LWM∗03,MWO03], gaussian curva-
ture [MP02] or even probability distributions [FS06]. How-
ever, these methods are based on a single pose and rarely
discuss skinning because these weights are difficult to obtain
from a static pose and have little to do with how the shape
actually moves. Furthermore, these techniques may segment
or extract regions of a shape that are in fact static, like the
tusks of an elephant, because they are based solely on the
geometry of the shape.

The complement to skeletal extraction is skinning. Given
a set of example poses and skeletons associated with each
pose, [WP02] introduce Multi-Weight Enveloping to solve
for vertex weights. However, instead of using a single weight
associated with a transformation, the authors allow multiple
weights, one for each entry in the transformation matrix. The
result is a much better fit to the data and smoother deforma-
tions though few modeling packages currently support this
technique.

[MG03] also take an example-based approach to skin-
ning. Again the input is a set of deformed models, each with

a deformed skeleton associated with them. The authors insert
various bones to alleviate traditional problems with skeletal
animation and determine influence sets using a point cluster-
ing method to solve for vertex weights as well. However both
of these skinning techniques assume a skeleton and model
are provided for all example poses a priori.

Recently, several example-based deformation techniques
have been developed. [JT05] developed a technique for com-
pressing the storage space needed for an animation or set of
poses. The authors accomplish this task by utilizing mean-
shift clustering to robustly determine a set of representative
transformations associated with the animation. Then the au-
thors use non-negative least squares to fit the vertex weights
to the transformations and avoid over-fitting in the solution.
Despite the similarity of this technique to skeletal anima-
tion, the method is designed to reproduce and compress an
animation rather than create new deformations. In particular,
the authors do not build a skeleton to manipulate the shape
and utilize affine transformations (uncommon in skeletal de-
formation) to fit the data better.

[SZGP05] also developed an example-based deforma-
tion method using deformation gradients and nonlinear min-
imization. Their technique can create very realistic looking
deformations, but the nonlinear minimization is quite slow
and limits interactive applications. [DSP06] later improved
the speed of this method by computing a set of representa-
tive vertices for use in the minimization, which speeds up
the computation and results in interactive posing.

A few researchers have worked on extracting skele-
tal models from various sources including motion capture
markers [KOF05], 3D range data [AKP∗04], and even CT
scans of the human hand [KM04]. [AKP∗04] extract a skele-
ton from 3D range data and clusters rigid components on the
surface using an an algorithm that iterates between assigning
vertices to clusters through an integer programming prob-
lem and estimation of rigid transformations through an It-
erated Closest Point algorithm. [KOF05] attempts to extract
a rigid skeleton from the positions of a set of markers from
motion capture data. Their algorithm determines rigid parts
by clustering vertices based on the standard deviation of the
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pair-wise distance between all markers. In our context, these
markers correspond to vertices on the surface. While motion
capture data inherently uses a small number of markers, our
surfaces may have 10 to 100 thousand vertices and comput-
ing the pair-wise distance between all vertices for clustering
rigid components is not feasible.

[KM04] extract an articulated skeleton from volumet-
ric CT data of a hand in various poses as well as provid-
ing a deformation method based on pose space deforma-
tions [LCF00] to capture the subtle skin movement as the
user manipulates the shape. In contrast to previous tech-
niques, the authors do not need to find bone transformations
through clustering because the CT data contains the real-
world bones inside of the hand. In practice, the volumetric,
skeletal structure is rarely available.

Contributions

We present a method for estimating the complete set of
parameters for skeletal animation including the rigid bone
transformations, skeletal hierarchy, root node, joint locations
and vertex weights from a set of example poses. We can then
use this extracted skeleton to create new poses of the char-
acter in a similar fashion to the examples. Since, rigid skele-
tons are supported by most 3D modeling packages, these de-
formable models fit directly into existing art pipelines. First,
we provide what we call “Rigid Error Functions” that allow
us to efficiently find the best rigid transformation and the
error of that fit for a set of points using a constant amount
of space. We then use these error functions to estimate the
transformations of the bones in the example poses with a
fast, face clustering approach. Given these bones, we “skin”
the mesh by solving for vertex weights using a constrained
optimization and bone influence maps. With these weights,
we determine both the connectivity of the skeleton and the
joint locations. Finally, we provide several example models
and drastic, new deformations outside of the example set to
demonstrate the robustness of our method.

3. Bone Estimation

Given a rest pose as well as a set of example poses, our goal
is to estimate a set of bone transformations that govern the
motion of the examples. There are several approaches we
could take to solve this problem. [JT05] present a robust face
clustering method based on mean-shift clustering to extract
these transformations. The advantage of this approach is that
the clustering can robustly remove outliers in the data.

However, the disadvantage is that the method is based
on clustering points in a high dimensional space represent-
ing concatenated rotation matrices. If we are givenn exam-
ples poses, the points lie in a 9n-dimensional space (or 12n-
dimensional space if translation is used) and nearest neigh-
bor queries become expensive. Furthermore, the clustering
does not respect the topology of the mesh and can clus-
ter many disconnected triangles together. For compressing

mesh animations, these disconnected triangles are not prob-
lematic since data reduction is the only goal. However, in
skeletal animation, bones are typically associated with com-
pact sets of triangles on the mesh. Therefore, we use a dif-
ferent approach to determine the bone transformations.

Our bone estimation technique is inspired by work in sur-
face simplification. Algorithms such as QSlim [GH97] use
an edge-collapse approach to cluster vertices on the sur-
face. Each vertex has an associated Quadratic Error Func-
tion whose minimizer determines the location and error of
that vertex. The cost of clustering two vertices connected by
an edge is then the error of the function that results from
summing the two vertex functions. These vertices are clus-
tered together in a greedy manner until the desired number
of vertices (or polygons) is reached.

To find bone transformations, we will find clusters of
faces on the surface that transform in a similar manner by
modifying the standard surface simplification algorithm. The
rigid transformations that best describes the motion of each
cluster will then be the transformations associated with each
bone in our skeleton.

3.1. Rigid Error Functions

One key piece of the surface simplification algorithm is the
Quadratic Error Function [GH97]. Here we construct its
equivalent, theRigid Error Functionfor rigid transformation
simplification. We will assume that we have some set of tri-
angles in parametric formpi(t) from the rest pose and their
deformed imagesqk

i (t) from thekth example pose wheret is
a bivariate parameter. In particular,pi(t) has the form

pi(t) = t1pi,1+ t2pi,2+(1− t1− t2)pi,3

wherepi, j is the jth vertex of the trianglepi(t).

The best rigid transformationR,T that maps the triangles
pi(t) to their imageqk

i (t) is given by

Ek(R,T) = ∑
i

∫
t

∣

∣

∣
Rpi(t)+T −qk

i (t)
∣

∣

∣

2
dt. (2)

Now, the best rigid transformation in Equation2 for thekth

example pose is the minimizer of that error function.

min
RT R=I ,T

Ek(R,T)

Due to the nonlinear constraintRTR= I , this transformation
cannot be found through linear minimization. However, the
problem contains enough structure that a simple solution still
exists.

If we differentiate Equation2 with respect toT and inte-
grate, we find that

T = q̄k−Rp̄
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where p̄, q̄k denotes the area weighted average of the cen-
troids

p̄ = ∑i ∆ic(pi)
∑i ∆i

q̄k = ∑i ∆ic(q
k
i )

∑i ∆i
,

(3)

∆i is the area of the trianglepi(t) andc(pi) is the centroid
of the trianglepi(t). Substituting this definition into Equa-
tion 2, we find that the error now becomes

∑
i

∫
t

∣

∣

∣
Rp̂i(t)− q̂k

i (t)
∣

∣

∣

2
dt

wherep̂i(t), q̂k
i (t) are the triangles with verticespi, j − p̄ and

qk
i, j − q̄k. Therefore, the best rotationR is given by the polar

decomposition of the matrix

M =
∫

t
p̂i(t)q̂

k
i (t)

Tdt. (4)

The polar decomposition has been used many times
in Graphics to find optimal rotations of a set of
points [ACOL00], [MHTG05] and factors a matrixM = RS
into an orthogonal matrixRand a skew-symmetric matrixS.
Unfortunately, orthogonal does not mean a rotation matrix
as reflections lie in the space of orthogonal matrices. Also,
the polar decomposition is only defined for matrices of full-
rank, meaning that the triangles must span 3-dimensional
space (impossible for a single triangle or planar region of
the surface). Therefore, the polar decomposition can fail to
produce the correct solution to this minimization problem.

Fortunately, [Hor87] provides an alternative solution
based on the eigen-structure of a 4×4 symmetric matrix that
solves these problems. Given the 3×3 matrixM, we can eas-
ily show that Horn’s 4×4 matrix can be found directly from
M [BM92] and is

(

Tr(M) v
vT MT +M−Tr(M)I

)

whereTr(M) is the trace of the matrixM, I is the 3× 3
identity matrix and

v=
(

M2,3−M3,2 M3,1−M1,3 M1,2−M2,1
)

.

The unit eigenvector corresponding to the largest positive
eigenvalue denotes the unit quaternion representing the best
rotation (negative eigenvalues indicate reflections).

Simplification not only requires a method for finding the
best rigid transformation from a set of points, but also ef-
ficient methods for storing and combining these Rigid Error
Functions. We can do so easily by integrating Equation4 and
substituting Equation3 to form

M = ∑
i

∆i

(

3
4

c(qk
i )c(pi)

T +
1
12

3

∑
j=1

qk
i, j p

T
i, j

)

− q̄k p̄T ∑
i

∆i .

Assuming thatR is the optimal rotation (which can be de-
termined solely fromM), the error associated with the mini-

Figure 2: Horse skeleton with skin weights shown for differ-
ent numbers of bones. From left to right: 29 bones, 19 bones
and 9 bones.

mizer ofEk(R,T) can likewise be rewritten as

∑i
∆i
12

(

9|c(pi)|
2+9

∣

∣

∣
c(qk

i )
∣

∣

∣

2
+∑3

j=1

∣

∣pi, j
∣

∣

2
+
∣

∣

∣
qk

i, j

∣

∣

∣

2
)

−(∑i ∆i)

(

|p̄|2+
∣

∣

∣
q̄k
∣

∣

∣

2
)

−2M
⊕

R

where
⊕

denotes component-wise multiplication of
the two matrices followed by summing those products.
Notice that, in order to computeM, we only need the
scalar∑i ∆i , the vectors∑i ∆ic(pi) and ∑i ∆ic(q

k
i ) as well

as the matrix ∑i

(

3
4c(qk

i )c(pi)
T + 1

12 ∑3
j=1 qk

i, j p
T
i, j

)

.

Furthermore, to compute the error associ-
ated with the minimizer we need the scalar

∑i
∆i
12

(

9|c(pi)|
2+9

∣

∣

∣
c(qk

i )
∣

∣

∣

2
+∑3

j=1

∣

∣pi, j
∣

∣

2
+
∣

∣

∣
qk

i, j

∣

∣

∣

2
)

.

These sums use a constant amount of space (17 floats) and
combining two error functions amounts to adding these 17
numbers together, which is extremely fast.

3.2. Face Clustering

Instead of clustering vertices like surface simplification, we
cluster faces. Each non-degenerate face in the rest pose along
with its image in an example pose defines a unique, rigid
transformation. Therefore, before clustering, we construct a
Rigid Error Function for each face in the rest pose and for
each example pose. Now each face hasn Rigid Error Func-
tions associated with it, one for each of then example poses.
Next, we connect faces together that share an edge on the
surface. For each of these adjacent faces, we insert an edge
connecting them into a priority queue whose sort key is the
error associated with combining those two faces as defined
by their Rigid Error Functions summed over alln examples.
Finally we remove edges from the queue with the lowest er-
ror and cluster faces together until a specific error tolerance
or a desired number of clusters is reached. Figure2 shows
the skeletons created by our algorithm for different numbers
of bones. In general, fewer bones means less work for the
user when creating new deformations, but also greater ap-
proximation error.

Notice that this algorithm requires that the mesh is con-
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Figure 3: The influence of the bone associated with the front
paw before (left) and after (right) enforcing locality. Without
locality the bone affects not only the paw but the rear feet,
legs and even the ears all of which will result in undesirable
deformations when creating new poses.

nected. For surfaces made of disconnected pieces, edges be-
tween faces from separate pieces may need to be created if
clustering across these disconnected pieces is desired. One
automatic method for creating these edges is to connect faces
along boundaries with other boundary faces based on prox-
imity information.

The implementation of this method is relatively straight-
forward with one caveat. The Rigid Error Functions in Sec-
tion 3.1 are somewhat expensive to evaluate as they require
n eigenvector computations for then example poses. Typical
surface simplification algorithms perform an edge-collapse,
recalculate the error associated with all edges leading to the
new cluster and reinsert these edges back into the prior-
ity queue after each edge-collapse. However, a single edge-
collapse does not just remove one edge, but multiple edges
(all adjacent clusters connected to both clusters will have one
edge removed to eliminate redundancy after the collapse).
Therefore, many of these recalculated edges will never be
collapsed but removed by neighboring collapses instead.

By taking advantage of the inherent monotonic property
of the Rigid Error Functions (the collapsed error function
will have error greater than or equal to the maximum of the
two children functions), we can improve the performance
of this algorithm greatly. After an edge-collapse, we simply
mark the edges connected to this new cluster as dirty instead
of recalculating their errors. When we remove the lowest er-
ror edge from the priority queue, we check if the edge is
dirty. If so, we recalculate the error associated with the edge,
mark the edge as clean and reinsert the edge into the pri-
ority queue. This procedure avoids many costly evaluations
and results in nearly an order of magnitude speed-up in the
algorithm.

Figures1, 4, 6 and7 show examples of clustering gener-
ated using this method. This process is extremely fast (see
Table1) and is over an order of magnitude faster than mean

shift clustering though not as robust with respect to outliers.
Nevertheless, we have found this technique to be a very
good approximation to the rigid movement of the surface.
Optionally, we can use a variational technique like Lloyd’s
method [CSAD04] with our Rigid Error Functions to at-
tempt to improve upon the clusters. In our examples, we
have not seen significant improvement with Lloyd’s algo-
rithm though it may help with highly deformable objects.

4. Skinning: Weight Estimation

After clustering, we now skin the rest pose and solve for
weights α j in Equation1 associated with each vertex to
reproduce their positions in the example poses. Several
example-based skinning methods [WP02, MG03] as well
as [JT05] describe methods could be used here. We fol-
low [JT05] and enforce that the weights produce deforma-
tions invariant under rigid transformations (weights for each
vertex sum to one) and that each vertex may only be influ-
ence by a maximum number of bones (4 for all our exam-
ples). Limiting the number of bones allows us to compute
the deformations in an efficient manner using modern GPUs.
Furthermore, we require that eachα j ≥ 0. While negative
weights may be optimal to reproduce the example poses,
they can lead to extremely undesirable deformations when
the bones are moved to new poses.

These constraints lead to a least squares problem for the
weightsα j (one for each bone) of the form

min
α j

n

∑
k=1

∣

∣

∣

∣

∣

∑
j
(α jRj,kpi +Tj,k)−qi,k

∣

∣

∣

∣

∣

2

subject to the constraints

∑ j α j = 1
α j ≥ 0 ∀ j

∣

∣{α j |α j > 0}
∣

∣ ≤ 4

whereRj,k,Tj,k is the minimizer of the Rigid Error Func-

tion for the jth cluster andkth example pose andqi,k is the

position of pi in the kth example pose. This type of least
squares problem with equality and inequality constraints can
be solved with a general purpose least squares solver with
inequality constraints [LH74]. However, our problems are
based on skeletal deformation and typically have more struc-
ture than a general least squares problem. A simple proce-
dure of repeatedly solving the least squares problem with the
partition of unity constraint and forcing the smallestα j < 0
to zero until allα j ≥ 0 and 4 or fewerα j ≥ 0 suffices.

The result of this minimization is a set of weightsα j for
each vertex of the surface. These weights still may not pro-
duce good deformations outside of the example poses be-
cause the weights may lack locality, a common property en-
forced in deformation methods. This lack of locality is the
product of bone motions that happen to be correlated in the
example poses but is extremely undesirable when creating
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Figure 4: From left to right: Example poses of a cat, clustering for bone transformations, skeleton found with root shown in
yellow and new poses created using this skeleton.

new poses of the character. Figure3 (left) shows the influ-
ence of the bone associated with the front paw of the cat after
minimization. Note how the influence is not connected and
even influences the back paw and ear of the cat. Even small
weights in these disconnected regions can create undesirable
deformations as the user manipulates the paw of the cat due
to the lack of locality.

Therefore, we enforce locality by finding an influence
map for each bone. For each bone we find the vertex that
contains the largest weight and flood outwards until we en-
counter vertices with weight zero with respect to that bone.
We then use these influence maps to restrict the minimiza-
tion to those bones and re-solve for the weightsα j . Figure3
(right) shows the restricted influence map using this tech-
nique. It is possible, though unlikely, that a vertex may not
be covered by any influence map after flooding. In this situ-
ation, we extend the influence maps of the neighboring ver-
tices to this vertex and repeat until all vertices are covered.
In our examples, our algorithm never had to utilize this step
but this case may arise under extreme deformations.

Figure 5: RMS error for the horse with a variable number
of bones both for the vertex positions and the unit normals
of the polygons. The error for vertex positions is measured
as a percentage of the length of the bounding box diagonal.

Our goal is to develop a set of weights and a skeleton such
that a user can create new deformations outside of the exam-
ple set and not just reproduce the example poses. However,
using these bone transformations and vertex weights, we can
compare how closely these transformations/weights match
the example poses. Figure5 shows a plot of the RMS er-
ror of the vertex positions as a percentage of the length of
the diagonal of the bounding box for the rest surface as the
number of bones increases. The RMS of the unit normal is
also shown as a function of the number of bones. Table1 also

contains the RMS error for each of our examples. As we in-
crease the number of bones, both measures of error decrease.
However, increasing the number of bones is not always de-
sirable and there are more bones that must be manipulated
to create new deformations.

5. Skeletal Extraction

So far we have found bone transformations (Section3) and
weights associated with vertices of the mesh (Section4), but
have not created a skeleton to manipulate the shape with.
A skeleton consists of two parts: the connectivity between
bones and the joint locations between pairs of connected
bones.

5.1. Skeleton Connectivity

Several researchers have taken different approaches to de-
termining skeleton connectivity. [AKP∗04] bases the con-
nectivity of the skeleton on the adjacency information be-
tween clusters representing rigid components, which works
well for tube-like regions where the skeleton connectivity is
unambiguous. However, this technique does not produce de-
sirable results in regions with more complex adjacency such
as the rear of the horse. [KOF05] determine skeleton con-
nectivity using a minimum spanning tree approach similar
to our method. However, their edge weights are based on a
nonlinear measure of the error of placing a joint in between
these two bones. We propose a simpler solution based on the
vertex weights from Section4.

In skeletal animation, vertices of a mesh are typi-
cally weighted by multiple, connected bones. These vertex
weights actually indicate information about the connectivity
of the skeleton. If a vertex is weighted by three bones, then
it is likely that these three bones are connected together in
some fashion in the skeleton. Therefore, we take advantage
of this locality property when determining the connectivity
between the bones from Section3.

Our algorithm constructs a weighted edge graph between
all of the bones of the skeleton and is initially a complete
graph with all edge weights set to zero. Next, we iterate
through all of the vertices in the shape and find their high-
est weighted bone. Letmaxbe the index of that bone. Then,
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Figure 6: The example poses of this model were created using Mean Value Coordinates, which we successfully convert to a
skeletal deformation model. From left to right: the examples of the armadillo man, clustering for bone transformations, the
extracted skeleton (root shown in yellow) and additional poses created with this skeleton including the stretching, sorrowful
and relaxing armadillo man.

for each j 6= max, we add the weightα j to the edge in the
connectivity graph between bonesj andmax. If desired, this
weight α j could be multiplied by the area of the triangles
in the one-ring surrounding this vertex to make the result
less dependent on the tessellation of the surface, though we
found no difference in the result for any of our examples.
Finally, we extract a maximal spanning tree to determine the
final connectivity of the skeleton. Notice that this algorithm
gives strong emphasis to vertices with nearly equal weights,
for instance.5/.5, as an indication of a joint and less empha-
sis to vertices with more widely spread weights, like.95/.05,
that may be related to subtle smoothing effects in the exam-
ple poses.

While this algorithm determines the connectivity of the
skeleton, it does not determine the root. The choice of which
bone represents the root of the skeleton is somewhat arbi-
trary. Artists will typically choose the pelvis or torso of a
human skeleton as the root. For shapes such as snakes, the
choice of the root is less obvious. For our purposes, we de-
termine the root of the skeleton using the center of mass of
the shape. The center of mass for a human happens to be
near the pelvis or torso, and, given the importance of this
point in physical calculations, there is some physical basis
for choosing this point as the root of the skeletal hierarchy.
Hence, we choose the bone whose corresponding polygons
from the clustering step have a center of mass closest to that
of the rest pose as the root of the skeletal hierarchy.

5.2. Joint Determination

Joint determination is a well-studied problem in skeleton ex-
traction [AKP∗04,KM04,KOF05]. Assume that bones 1 and
2 are connected. A jointx connecting these two bones has
the property that its location is the same with respect to both
bone transformations in all positions. Using this description,
we define the joint positionx as the point that moves the least
with respect to both bones, which leads to the quadratic min-
imization problem

min
x ∑

k

∣

∣

(

R1,kx+T1,k
)

−
(

R2,kx+T2,k
)∣

∣

2
(5)

whereR1,k,T1,k andR2,k,T2,k are the rigid transformations

associated with the two bones for thekth example pose.

Many joints like elbows and knees act as hinges and bend
along a single axis. This hinge-like action creates an infinite
number of minimizers along the axis of rotation. Thus, there
may not be a single minimizer to Equation5, but an entire
subspace. Furthermore, slight noise or variation in the exam-
ple poses may lead to a minimizer in that subspace far away
from the actual surface.

Several solutions to this problem have been proposed in-
volving non-linear minimization [KOF05] and minimizing
the distance to the centroid of the boundary [AKP∗04]. We
use this idea of minimizing the distance of the joint’s loca-
tion to a point that approximates the joint’s location ˆx. The
minimization problem then becomes

min
v ∑

k

∣

∣

(

R1,k(v+ x̂)+T1,k
)

−
(

R2,k(v+ x̂)+T2,k
)∣

∣

2
. (6)

wherev is a vector and we find the solution in the subspace
which minimizes the magnitude ofv. This solution can eas-
ily be found using a pseudoinverse and the final position of
the joint isx = x̂+ v. However, we do not use the centroid
of the boundary for ˆx because the skeleton connectivity al-
gorithm in Section5.1 does not require that the connected
clusters are adjacent on the surface.

Instead, we estimate the joint’s position ˆx using a similar
procedure to Section5.1. The intuition is that the weights
of the vertices not only indicate information about the con-
nectivity of the skeleton, but also about the positions of the
joints. For instance a vertex evenly weighted by two bones
(.5/.5) should be very near the joint’s location. Therefore,
we find all of the verticesci ⊆ pi whose maximum weight is
associated with either bone 1 or 2. Letαi, j be the weight for
ci associated with bonej. We build a weighted average over
all theseci to approximate the joint position as

x̂=
∑i min(αi,1,αi,2)ci

∑i min(αi,1,αi,2)
.

This position is refined using the minimization of Equation6
to create the final placement of that joint.
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Figure 7: In the examples (left) the motion of the pinkie and index fingers are nearly identical in all frames. However, our
algorithm successfully extracts separate bones for the skeleton. On the right we show several new examples created with this
skeleton.

6. Results

Figures1, 4, 6 and7 illustrate our method on several differ-
ent examples. The number of example poses range from 9
(cat and armadillo man) to 46 (the hand example). We de-
rive the skeletal hierarchy and the joint positions automati-
cally and, in many cases, these skeletons actually resemble
the real-world skeletal structures of these shapes.

Figure 8: Our system creates a rigid skeleton, which can be
imported directly into standard modeling packages such as
Maya (shown here).

Each of these figures also shows several new poses cre-
ated with the extracted skeleton and weights. We have also
implemented a script that loads the rest pose, skeleton and
weights directly into Maya for manipulation purposes (see
Figure8). Since we estimate a standard, rigid skeleton, this
data fits readily into existing software and requires no special
software beyond standard modeling packages to manipulate
these shapes.

Many of these examples are available freely off the web
and the methods used to create these deformations (SSD,
FFD, etc...) are unknown. While automatically creating
skeletons for poses created with skeletal animation is un-
surprising (though still difficult) our algorithm can be used
to create skeletons for poses that were created using other
deformation methods. Unlike the other examples, the source

of the armadillo man’s deformations is known and were pro-
duced using 3D mean value coordinates [JSW05]. The defor-
mations created by mean value coordinates are complex, not
local and have no underlying skeletal structure. However, we
are still able to extract a skeleton which approximates these
examples.

In the example poses for the hand example (Figure7), the
motion of the pinkie and ring fingers are correlated and move
in a nearly identical fashion. Transformation clustering ap-
proaches [JT05] may not be able to distinguish between the
bones of the separate fingers because no topology informa-
tion is used. Even clustering points for influence maps using
rigidity scores [MG03] can fail in this situation and find cor-
relation between the fingers. One solution to this problem is
to add more examples poses to demonstrate the disconnected
motion of the fingers. However, the topology of the shape
provides sufficient information to remove influence between
the fingers and our algorithm creates the proper weights for
the vertices without the need for further examples.

Several of our examples represent animations such as the
hand partially closing and opening again. Our method re-
quires very few example poses (as little as one plus a rest
pose) to obtain plausible results. However, we added all
of the animation frames into our optimization to illustrate
the running times of the algorithm though fewer frames are
needed to create good skeletons.

The running times of our algorithm were measured on an
Intel Core 2 6700 PC. Table1 includes timing results for
each of the stages of our algorithm on the different exam-
ples. Face clustering is very fast and finishes in a matter of
a few seconds as opposed to minutes or even close to hours
using mean shift clustering. Skinning times encompass both
the first minimization, finding the influence map and sec-
ond minimization. Skeletonization times were trivial in all
examples and almost all under 0.01 seconds. The table also
displays the RMS error of the vertex positions as a percent-
age of the length of the diagonal for the bounding box of the
rest shape as well as the RMS error of the unit normal. In all
cases, our method reproduces the example poses very accu-
rately (less than 1% RMS error) but, more importantly, can
be used to create new poses with our hierarchical skeleton.
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Model Faces Example Bones Face Skinning Skeleton Vertex Normal
Poses Clustering Extraction RMS RMS

Hand 15789 46 19 9.96s 6.46s 0.00s 0.14% 0.09
Horse 16843 23 29 5.53s 11.14s 0.00s 0.29% 0.19
Cat 14410 9 24 2.11s 4.01s 0.00s 0.52% 0.30

Armadillo 30000 9 12 5.21s 2.53s 0.00s 0.75% 0.17
Elephant 84638 23 22 32.29s 32.23s 0.02s 0.34% 0.15

Lion 9996 9 19 1.57s 1.85s 0.00s 0.65% 0.31

Table 1: Running times for various phases of our algorithm with several different models as well as the RMS error for the
position and normal with respect to the example poses. All times are measured in seconds.

Figure 9: Sometimes our algorithm extracts bones whose
motion is really dependent on that of the surrounding bones
as in the case of the knuckle here.

7. Future Work

In the future we would like to investigate methods to derive
parameters for other deformations models for use with flex-
ible shapes. Skeletal deformation works well for controlling
shapes that have an underlying biological skeleton or behave
in a nearly rigid manner. However, for flexible shapes such as
cloth, a skeletal model is not intuitive or appropriate. Our al-
gorithm can be used to derive a skeleton for such shapes, but
interacting with the skeleton may prove difficult. Other de-
formation methods such as Free-Form Deformations [SP86]
may be more appropriate due to their ability to create prov-
ably smooth deformations though we must still develop tech-
niques for estimating the parameters for these methods from
a set of examples.

In some cases, the resulting skeleton is not exactly what a
human would produce. Sometimes the clustering finds rigid
pieces whose movement is not independent of other bones.
For example, when the figures of the hand bend, the skin on
the underside of the palm near the joint or on the knuckle
moves as well. The motion of the skin in these regions is not
the same as the motion of the finger so clustering may de-
cide that this region should be a bone. However, in reality,
the motion of these parts should be dependent on the only
the finger bone and not be posable as separate bones. These
extra bones do not affect the quality of the deformation, but
may require more work from the user since there are more
bones to control. Figure9 shows an example on the hand
where the clustering extracted a bone for the knuckle even

Figure 10: New poses created from the hand example
spelling out “SGP” in sign language.

though its motion is solely dependent on the finger bone in
the examples. One solution would be to detect these depen-
dent movements and remove this degree of freedom from the
user so that the skin moves automatically with the finger.

For symmetric shapes, most users would expect that the
skeletons as well as the vertex weights should reflect the ge-
ometric symmetry of the model. In the armadillo man ex-
ample (see Figure6), the model is symmetric even though
the skeleton is clearly not. Currently we do not perform any
symmetry detection and our current optimization is based
solely on how the object actually moves in the examples.
For the armadillo man, the two halves of the object behave
very differently in the examples and, hence, the skeleton is
not symmetric. A more extreme example might be a person
that has suffered partial paralysis on one side of their body
due to a stroke. Even though the geometry of the object is
symmetric, we would expect different skeletons based on its
movement. However, if symmetry is desired, we could ex-
plore detecting and enforcing such symmetry in the skeleton
and vertex weights.

We would also like to develop a system that allows the
user to input additional information into the training process
for our algorithm. For instance, if the user disagrees with
the connectivity of the skeleton that our method develops,
they should be able exclude these edges in the connectivity
graph from the optimization and have the algorithm recreate
a new skeleton that satisfies these constraints. This type of
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discussion process with the user should lead to an extremely
robust algorithm that requires little user input.
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