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Abstract

In this paper we provide an extension of barycentric co@igisa from
simplices to arbitrary convex sets. Barycentric coordinaiver convex 2D
polygons have found numerous applications in various fiakithey allow
smooth interpolation of data located on vertices. Howewerexplicit for-
mulation valid for arbitrary convex polytopes has been pemul to extend
this interpolation in higher dimensions. Moreover, theais heen no attempt
to extend these functions into the continuous domain, whargcentric co-
ordinates are related to Green'’s functions and constractifons that satisfy
a boundary value problem.

First, we review the properties and construction of baryréeicoordi-
nates in discrete domain for convex polytopes. Next, we show these
concepts extend into the continuous domain to yield baryiweroordinates
for continuous functions. We then provide a proof that ounrctions satisfy
all the desirable properties of barycentric coordinatesttrary dimensions.
Finally, we provide an example of constructing such baryeefunctions
over regions bounded by parametric curves and show how trepe used
to perform freeform deformations.

Keywords: barycentric coordinates, convex polyhedra, convex sets
Classification: 52B55 [Convex and discrete geometry]: Computational as-
pects related to convexity

1 Introduction

Introduced by Mobius in 1827 amsass points to define a coordinate-free geometry,
barycentric coordinates over simplices are a very commohitomany compu-
tations. In addition to their coordinate-free expressidmaycentric coordinates



are extremely helpful for interpolating discrete scalaldBevector fields, or arbi-
trary multidimensional fields over irregular tessellasothey naturally interpolate
values at vertices to the whole space via multilinear irglepon.

Since its inception, the graphics community has made exeense of barycen-
tric coordinates. In early work barycentric coordinateseveoutinely used for
triangles, with applications such as polygon rasteriratiexture mapping, ray-
triangle intersection in raytracing, spline patches,ripéation, etc. More recently,
barycentric coordinates for tetrahedra have been usedtipblation of 3D fields
for volume rendering and isosurface extraction, as welbasifnulation purposes
since they define convenient linear basis functions oveplsigs. More generally,
many applied fields such as computational physics and masheety heavily on
barycentric coordinates since it corresponds to lineaisldaactions in the finite
element method. Note that even higher dimensional grapblased data require
appropriate interpolation between discrete samples, asdhr lightfield applica-
tions.

A natural question arises when interpolation is needed owere complex
shapes, such as polygons or polytopes: can we extend thannait barycen-
tric coordinates to arbitrary polytopes? The common wayeal advith irregular
polygons in 2D or general polyhedra in 3D is to triangulatenthfirst, and apply
barycentric coordinates on each simplex. However thigisolis unacceptable for
many applications: the results depend on the choice ofgulation, and contain
unnecessary artifacts, mostly due to the restricfi¢eontinuity across simplices.

Despite some recent work ageneralized barycentric coordinates, valid for
arbitrary polytopes, no explicit formulation has been gider polytopes of ar-
bitrary dimension. Furthermore, there has been, to thedfesir knowledge, no
attempt at extending these coordinatesniooth convex sets. This paper addresses
these current limitations, by providing geometric and cataponally-convenient
explicit formulations along with proofs of their validity.

1.1 Convex Polytopes

Given a bounded, convex polytof® our problem is to construct one coordinate
function by(x) per vertexv of P for all x € P. These functions arbarycentric
coordinates with respect tdP if they satisfy three properties. First, the coordinate
functions arenon-negative on P,

bu(X) = O,

for all x € P. Second, the functions formpartition of unity,

Y bu(x) =1,
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for all x. Finally, the functions act as coordinates in that, givealae ofx, weight-
ing each vertex by by (x) returns back; i.e.,

> vhby(x) =x. 1)

This last property is also sometimes referred thimaear precision since the coor-
dinate functions can reproduce the linear functon

A typical application of barycentric coordinates is to npateany data (not
just positions) provided at the vertices Bf Given a set of valueg, associated
with eachv, we build a new functiom(x) defined oveP by

6x) = 3 auby(¥). )
Y
The constructed functiog(X) satisfies the property thgtv) = g,.

1.2 Convex Sets with Smooth Boundaries

Another goal of this paper is to provide an extension of bamyiic coordinates
to smooth, convex regions. Given a convex redgfowhose boundary is a smooth
(d — 1)-dimensional manifolds = dP, we define asmooth barycentric coordinate
function b(v,x) analogous to the discrete case. First, the continuous icated
function will also be non-negative an,

b(v,x) > 0,

for all v e Sandx € P. The partition of unity property for a continuous barycantr
function is stated as

/ b(v,x)dS= 1.
vesS

Finally, these coordinate functions should also satisfinealr precision property;
namely,

/ v b(v,x)dS = x.
veS

Similar to the discrete case, this coordinate function carused to build a
solution to a boundary value problem & Given a functiong(v) defined for
v € S we construct a functiog(X) defined forx € P as

609 = | __av)b(wxjas ©

whereg(v) interpolateg(v) on S



1.3 Previous Work

Most of the previous work on barycentric coordinates fosuge convex poly-
gons in the plane. For the case reéfular polygons, Loop and De Rose [13],
Kuriyama [11] and Lodha [12] propose a simple constructioat tyield smooth
basis functions. Their expressions nicely extend the wadkn area-based for-
mula for barycentric coordinates in a triangle. Unfortahgtnone of the proposed
constructions have linear precision when applied to id@goolygons.

Pinkall and Polthier [16], and later Eck et al. [1], presemaformal param-
eterization for triangulated surfaces that actually pitesi a natural extension of
barycentric coordinates to arbitrary polygons. Howeueg, Wweights they define
can be negative even when the polygon is convex [15], whidlfité&n problematic
for interpolation applications.

Sibson [17] proposes a natural neighbor interpolant basedboonoi diagram
that yields coordinate functions that are non-negative l@ngk linear precision;
note also that Gotsman and colleagues proposed a minionzdtiven barycen-
tric coordinates [8]. The drawback with these constru&ianthat the resulting
coordinate functions are not smooth.

Floater [3] gives an algorithmic construction coordinatesr star-shaped re-
gions in 2D. However, this construction suffers from thewdrack that the result-
ing coordinate functions are not smooth within the polygbmsubsequent work,
Floater and colleagues [4, 5] also present smooth coordirfat non-convex poly-
gons based on the mean value theorem. Another related abpnas presented
by Malsch [14], allowing the design of barycentric coordesafor arbitrary 2D
polygons, with or without holes, and even with interior @ t. The idea of mean
value coordinates was recently extended to 3D and proven canvenient for
shape deformation [9, 6]. Alas, this series of approachesot@nd up providing
multilinear interpolation when applied to cartesian gridssevere drawback for
multiple computational tasks.

Finally, Warren [19] presents a construction for barydentoordinates that
extend the results of Wachspress [18] to convex polytopesairary dimensions.
The functions Warren presents are smooth functions tha laar precision, are
positive on the interior of, and coincide with the natural multilinear interpolation
on cartesian grids. These functions are also rational oimaihdegree as proved
in Warren [20]. Unfortunately, no explicit formulation dfdése functions has been
provided for practical implementations.



1.4 Contributions

Despite much work in the discrete 2D case, no explicit foatiah of barycentric

coordinates for convex polytopes valid in arbitrary diniends currently avail-

able. Additionally, there has been no generalization of¢hepordinate functions
to continuous domains that the authors are aware of. In #yemp we first re-

view the coordinate functions for arbitrary convex polygemf Warren [19] and
offer a simple, computationally-convenient expressiotheke functions; we then
generalize this formulation to smooth, convex regions bfteary dimension. In

the process, we show that our weight functions for both thetgoe and the con-
tinuous case satisfy the three properties of Sections 2 dn Finally, we show
how the weight function has applications in defining (freaf) deformations over
smooth, convex regions before concluding.

2 Defining Coordinates for Convex Polytopes

2.1 Setup and Notations

A convex polytope P in RY is the convex hull ok affinely independent points
wherek > d. The polytopeP is bounded by a set did — 1) dimensional facets
with outward unit normal vectors;. Letind(v) denote the set of indicessuch
that the facet normal to; contains the vertex.

Now, a vertexv of P is simpleif |ind(v)| = d. Similarly, P is simple if every
vertex ofP is simple. Note that convex polygons are always simple wdilly a
subset of convex polyhedra are simple. For example, tetraheubes and trian-
gular prisms are simple while square pyramids and octateéraot.

In [19], Warren shows that an appropriate extension of Eriye coordinate
functionsb, (x) for simple polytopes can be defined using the concept of calg p
hedral cones. In the remainder of this section, we will fertformulate these
coordinate functions to allow practical computations.

2.2 An Explicit Formulation

We first define thaeveight function wy(X) at a simple vertex as being:

B K(v)
W) = e (V%)

wherek (v) is the volume of the parallelepiped span by the normals tal tiaeets
incident onv, expressed via a determinant as:

K(V) = |Det(Ning(v))| (5)

(4)
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wherening() is @ matrix whose rows are the vectorswherej € ind(v).

Figure 1: An example calculation of,(x) at a vertex for a trapezoid with normals
labeled (4, nz). The areas of the shaded parallelograms formed by the t®rma
correspond to the quantitet(n;) )|-

Note that this weight function depends only on the facetglarm onv. In
particular, the numerator corresponds to the volume of #rallelepiped spanned
by the outward normal vectorg associated with the facets incidentwwhile the
denominator is the product of the distances betweand thed facets adjacent to
v. Figure 1 illustrates the different quantities for a paialgram.

For non-simple vertices (wheténd(v)| > d), the weight functions are con-
structed by infinitesimally perturbing the facets touchirgyich that the non-simple
vertex is decomposed into simple vertices. The weight fands built by then
summing the weight function for the simple vertices togeth&arren [19] pro-
vides a more detailed description of non-simple verticesaaproof that the weight
functions are invariant under the decomposition of the siomple vertex: so any
pertubation does the trick.

Finally, we express the barycentric coordinate functipfx) by dividing each
weight functionw,(x) by the sum of all weight functions taken over

owy(X)
0= 5w

2.3 Equivalence to Warren’s Coordinates

At this point, we make several observations concerningtiiuetsire of these func-
tions by(x) that we just built. First, these functions are non-negatind® due to
the fact that the weight functions,(x) are, by construction, non-negative Bn
Second, these functions trivially sum to one by construacti@hird, these func-
tions have linear precision as shown in Appendix A. Finallye to the uniqueness
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theorem in [20], a simple argument on the degree of the ragulational polyno-
mial coordinate functions confirms the equivalence betwmemewly-introduced
expression and the original construction by Warren. Tloeesbur coordinates in-
herit the other secondary qualities from Warren'’s coondisiasuch as smoothness
and reproduction of tensor product coordinate functiohS]ff

2.4 Application to Interpolation

Functions that satisfy the three aforementioned propgecha be used to interpolate
data values at the vertices IBf In other words,

by(X) = A

if xis restricted to the vertices of the polytoPevhered is the Kronecker function.
To understand this phenomenon, first observe that the bariceoordinate func-
tions reproduce all linear functions (linear precisionlgsereproduction of scalar
values ofx and the fact that the functions sum to 1 generates constaatidns).
Now, consider a linear functiolg(x) that is zero at a vertexof P and strictly pos-
itive at all other vertices oP. I4(x) then implicitly defines a supporting plane that
touchesP only atg. Such a function always exists givéris convex. Therefore,

1) = 3 la(V)by(x).

Sincelq(q) =0, then
lg(q) =0= ; lq(V)by(a)
vZAq

Now eachlq(v) > 0 andby(q) > 0. Thereforepy(q) = 0 for all v# g. Since the
coordinate functions sum to big(q) = 1.

Using this result and Equation 2, we can build a functiéx) that interpolates
data values at the vertices Bf Figure 2 illustrates such an example of using dis-
crete 2D barycentric coordinates to interpolate heightator data at the vertices
of P. Along the edges of the polygon, these weight functions ceda linear in-
terpolation. Note that this last remark is a nice propertgady stressed in [19]:
these barycentric coordinates onl2a polytope reduces to their lower dimensional
(n—1)D version on any boundary face.

3 Coordinates for Smooth Convex Sets

As we have seen above, barycentric coordinates on a convgtope P blend
valuesg, assigned to the vertices &f to define a functiorg(x) over all of P.
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Figure 2: An example using barycentric coordinates to pukate both the height
and the color of the vertices of the hexagon.

In many applications, we would like to perform a similar ldérg for arbitrary

convex shapes. In particular, given a functigix) defined on the boundar$

of P, we desire a method for extendimggx) to the interior ofP that generalizes
barycentric coordinates from the polytope case.

3.1 A Geometric Expression

Our solution is to construct a continuous barycentric coate function defined
over all of P. The key to creating such a functidagv, x) that satisfies these prop-
erties is to observe that Equation 4 extends to smooth fumeiin a very natural,
geometric manner. In particular, the numeratdv) in the polytope case form a
discrete approximation to the Gaussian curvature at thtex/ekvhile the denomi-
nator is the product of the distanceafo thed different facets incident on
Following the polytope case, we construct the continuousie of this weight

function as
K(V)

() (v x)° ©
wherek (v) is the Gaussian curvature $tv (i.e; the product of the — 1 principal
curvatures av) andn(v) is the outward unit normal t8 atv. Figure 3 shows an
example calculation of the denominator of the weight fuorcti (v, x).

To complete the construction, we simply need to define a leatyic coordi-
nate functiorb(v,x) associated witkv(v,x) to have the form

w(V,X) =

o wW(vX)
P = T ow(was 0
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n(v)

N

n(v)-(v-x)

Figure 3: Calculating the denominatorwfv, x) for continuous functions.

After this normalization, these coordinate functids(s,x) are non-negative and
have unit integral. As the central result of this paper, waish the next section
that this functiorb(v,x) has linear precision.

For strictly convex shapes (those whose supporting halfep contact the
shape at a single point), a similar argument to the discrase c Section 2 al-
lows us to conclude that the barycentric coordinate functegenerates to the
Dirac delta function or&. That is,

b(v,X) =d(v—x) ¥xeS (8)
Therefore, if we compute a new functigiix] using equation 3 for this class of
shapesg(Vv) = g(v) holds for allve S
3.2 Linear precision

We now prove that the continuous coordinate funcbonx) defined in Section 1.2
has linear precision, i.e;

/ v b(v,x)dS = x.

vesS

Substituting the definition df(v,x) in terms ofw(v,x) from Equation 7 yields

x/ W(v,x)dS:/ vw(v,X)dS.
veS veS
Combining the two integrals together generates
/ (V—x)w(v,x)dS= 0.
veSs

If we let h(v,x) denote(v— x)w(V,X), applying Equation 6 yields
K(V)

(n(v) - (v=x))&"

9
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Now, our task is to prove tha_sh(v,x)dS= 0 for all x. To prove that this integral
is zero, we proceed in three steps:

e We expres$Sas an implicitly defined surfac&(x) = 0 and apply the curva-
ture formula for implicit surfaces to exprelsn terms off.

¢ We then manipulate this expression using several techl@gahas (proven
in Appendix B) and derive an equivalent expressionHan terms of cross
products and dot products.

e Finally, we convert this cross product into a differentiatrh and apply
Stoke’s theorem to show that the integral of this differ@nform overS
is zero.

In step one, we observe that the — 1) dimensional manifoldS can be ex-
pressed as the solution fgx) = 0 wheref(x) defines the signed Euclidean dis-
tance from the poink to S Observe that sincé(x) is a distance function, its
gradient]f (x) has unit length ors.

In this implicit case, Goldman [7] provides a formula for Gaian curvature.
In particular, the scalak (v) can be expressed as

Of(VH*(v)OfT
ety = O

whereH (v) is the Hessian of (v) and()* denotes the adjoint of a square matrix.
Recall that in the context of this proof]f(v)| = 1. Substituting this relation in
the left-hand side of Equation 9 yields that

Of (V)H*(v)OfT(v)
(Of(v)- (v—x))2 -

h(v,x) = (v=X) (10)

In the second step of our proof, we consider the vector-gafurctionm(v, x)
defined via

Of(v)
Of(v)- (v—x)
In Appendix B, we show that(v,x) can be equivalently expressed in terms of the
gradient ofm(v,x) with respect to coordinates of (x is treated as constant.) In
particular,h(v,x) has the form

m(v,x) =

h(v,x) = (Om(v,x))*0f T (v).

Now, let hi(v,x) denote thekth element ofh(v,x). Due to the properties of
adjoints, hi(v,x) can expressed as the cross-product ef1 rows of the matrix
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Om(v,x) dotted withOfT (v). In particular,

he(v,%) = (QD(mi(v,x))) - Of T (v) (11)
i£k
wherem; (v,x) is theit" component ofn(v, x).
In our final step of the proof, we apply a generalized versib8toke’s theo-
rem [2, p.365] of the form:

o) = [ d(w(v)
veS veP

wherew is a differential form andl is the differential operator. To construat,
we observe that the cross product in equation 11 has an ésptifarmulation as
a wedge product of differentials. In particular,

/veshk(v,x)dS: /Vesé\kd(m(v,x)). (12)

(The dot product with1fT (v) in equation 11 is absorbed during the integration
of the differential form on the right-hand side of equatidh[2, p.356].) Now,
applying Stoke’s theorem yields that

/veshk(v,x)dS:/epd(/\d(mi(v,x))).

v i£k

Due to Lemma 3 from the appendix, the integral on the rigidhside reduces
to zero, which completes the proof.

/ (v—x)w(v,x)dS:/ hk(v,x)dS= 0.
veS vesS

4 Applications to Smooth Convex Sets

We next consider two novel applications of barycentric dowates over smooth
convex sets: boundary value interpolation and freefornomeftions. To do so
we first specialize Equation 6 to parametric functions sew@uating the resulting
integrals becomes much simpler.
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Figure 4. Barycentric interpolation of the functiamx, on the unit circle: notice
how the values blend on the interior of the circle in a smooétyural manner.

4.1 Boundary value interpolation

Given a functiorg(v) defined over some manifolde Sof co-dimension one where
v e S, we desire a functiog(X) defined over the interior dthat interpolateg(v)
on S. This functiong(x) can be used to build a surface patch that interpolates a
given curve or even to extend functions such as heat disiibover a surface to
the interior of the volume.

Equation 3 already defines how to build such a functjor) fo interpolateg(v)
on S. However, to make this construction practical, we show howterpret this
barycentric coordinate function in a parametric form. Imtioalar, we provide
an explicit example of specializing this formula for twaydinsional parametric
curves.

Given a regiorP in two-dimensions bounded by a curve with parameterization
p(t) = (p1(t), p2(t)), the curvature (t) is given by

c(t) = PUOBO — B0

(P (1) + P (t)2)2
Likewise, the unit normah(t) is simply
1 ! !
t) = T (—Po(t), py(t)).
) (0,02 + p'z(t)z)i( Po(t), p1(t))

Therefore, Equation 6 for the weight functiariv, x) becomes
PLBPo(t) — PP (1)

W(t,X) = ; 1 ) /
(P1(1)2 4 Py(t)2) 2 (— P (1) (Pr(t) — Xa) + Py () (P2(t) — X2))?
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wherex = (X1,%2). Notice that when integrating a scalar function over a space
curve, we must include a factor Oy (t)2+ p,(t)2)2 to make the integral invariant
under the parameterization of the bounda(y). For example, the normalization
factor for the basis functioh(v,x) becomes:

1
hesW(uX)dS = [W(t,X)(p (t)2+ py(t)?) 2clt
_ P ()P, ()P, )Py (1)
= <p (t)—x)+Py (1) (P2(t) —%2))2 d.
When applying equation 3, a similar factor appears in thegiratl to account for
the parameterization of the boundary.

To illustrate this formula, consider the problem of intdgtimg the function
X1X2 over a patch whose boundary consists of the unit circle. Tarpaterize the
circle letp(t) = (Cos(t),Sn(t)). By construction, the weight function(t,x) has
the form

1
(x1Cos(t) +x9n(t) — 1)2°
The corresponding barycentric coordinate functignx) is then

w(t,x) =

(1—x2—x2)3
b(t.X) = 5 Cos(D) + w@n{t) D2

To construct a functiog(X) that interpolates the functioxix, on the unit cir-
cle, we must build a functiog(t) parameterized over the boundary that interpo-
latesxyxp. Notice thatg(t) = Cos(t)Sin(t) since(xg,x2) = (Cos(t),Sn(t)). Now
Equation 3 can be computed analytically and has the form

3
X1 X2 (—2+ 3%+ 3%% +2(1— %% — %?) ?)

(X2 + X22)2

9(x) =

Figure 4 shows a plot of this function restricted to the uiritle. Observe that the
functiond(x) interpolates the functior; X, on the unit circle while blending these
values on the interior of the circle in a natural manner.

4.2 Freeform deformations

Continuous barycentric coordinates can be used to perfarefdrm deformations
of images as well. Given a convex regiBrbounded by a smooth cury&t), we
wish to deformP into another regiors bounded by the curvg(t) (see Figure 5).
If we use the construction from equation 3 we obtain:

_ /g(t)b(t,x)dt
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Yy X &0
2(x)
X, X,

Figure 5:g7x1,X2) provides a map betwegg(t) andg(t). This map can be used to
perform freeform deformations.

wherex € P. The resulting functiorg ©* P — G smoothly maps points i to

points inG. Furthermore,g(x) maps points om(t) to points ong(t), that is,
d(p(t)) =g(t). Sinceb(v,x) has linear precision, if(t) = g(t), thendg(x) becomes
the identity function and generates no deformation.

In our example, we define andG as the regions bounded by closed quadratic
B-splinesp(t) andg(t) havingk control points on the periodic interval<0t < k.
Though B-splines are only piecewise polynomial, equatiatilBapplies. In fact,
any B-spline curve can be represented as a piecewise poighfunction of the
form " .

pt) = pit—i) . .

o) = g(t—iy ==
where pi(t), gi(t) are theit" polynomial functions comprising the respective B-
splines.

To compute Equation 3 we construett, x), which is also a piecewise function,
and has the form

w(t,x) =wi(t—i,x), i<t<i+1

wherewi(t,x) is formed using Equation 6 for the functigm(t). With this result
we can calculate the normalization factor in Equation 7 as

/w(t,x)dt = I_(Zj/olwi (t,x)dt.

Now we computey(X) using Equation 3 as a piecewise integral that has the

form A L
ax = Twiogar J 9OW(E, x)dt

fw(t17_x)dt YE3 fo G (t)wi (L, x)dt.
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Figure 6: Car before deformation and bounding quadratiplBs curve defining
p(t) (left). Deformed car generated by altering the control foimith bounding
curveg(t) (right).

We can explicitly calculate the integrals above, using alsylin software package
such asMathematica, to obtain a closed form solution in terms ©f,x2) and
the control points of the B-splines formirgft) andg(t). Though eachv(t,x) is a
rational polynomial function, the resultirg§x) is more complicated and is in terms
of functions such aérctan. However, the function is still fast to evaluate (since no
integrals need be computed) and image deformation can bputethin realtime.
The user performs image deformation by first placing therobpbints of the
curvep(t) about the convex area that they wish to deform (see Figuedt}, Once
the user is satisfied, the control points are duplicated nm fine curveg(t). The
user then drags on the control pointsgdf) to generate the desired deformation.
Due to the fact that barycentric coordinates interpolate libundary (as shown
in Equation 8), the deformed image will follow the boundarfygét). Figure 6
(right) shows an example deformation of the car from thegdeftion of the figure.
The entire application and source code for performing tlikefermations can be
downloaded fronhttp://www.cs.rice.edu/"sschaefe/barywhite.zip.

5 Conclusion

In this paper, we have provided an extension of barycentedinates first to con-
vex polytopes, then to smooth convex sets in arbitrary dsioen both in the form
of explicit, geometric formulas. Furthermore, we provideproof that the coordi-
nate functions are non-negative, have unit integral antbdee linear functions.
Finally, we showed how this function could be used to builldisons to boundary
value problems and perform deformations as well.

Of special interest is the similarity that our barycentraminate function
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bears towards Green’s functions. Green'’s functions aredilp used in a similar
manner to our barycentric coordinate functions to buildisohs to (typically el-
liptical) partial differential equations with boundarylwa constraints. While our
function builds solutions to boundary value problems, wevkof no differential
equation that the functions satisfy. In the future, we wdikkd to explore this
connection further. A potential approach could be to leyerdne geometric inter-
pretation of these coordinates in terms of polar duals astcintroduced in [10].

AcknowledgementsWe would like to thank Ron Goldman for his helpful discus-
sions, and for his help in creating the proof for Lemma 2.
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A Linear Precision for Convex Polytopes

As observed in the paper, proving that the coordinate fanstd,(x) have linear
precision reduces to showing that Equation 1 holds; thatasweight functions
Wy (X) satisfy:

Z(v— X)Wy (x) = 0.

Vv
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To this end, we observe that at a simple venext P, the following vector rela-
tionship holds:

Mingy (V—%) 5 &
[T (- (v—=x) &Gw [] (Ng-(v—x)
jeind(v) geind(v)
a7k

whereeg is thek-th canonical basis vector thdimensions. Multiplying the numer-
ator of both sides of this equation by]é(v), the resulting equation has the form:

nt e
X _ z ind(v) . (13)
M- (v=X)) gy [] (ha-(v=X)
jeind(v) geind(v)
a7k

V—

Now, recall that thek-th column ofni;]é(v) corresponds to the cross product of the

d — 1 rows ofnjng(y)—k (denotedCross(niygv)—k) below) divided by the determinant
of Ningv)- Applying this observation and multiplying both sides otiajon 13 by
Det(ning(v)) Yields that

Det (Ning(v)) Cross(Ning(v) k)
(V—X) v = > v (14)
(nj (V=X)) keind(v) |_| (nQ' (V—X))
jeind(v) geind(v)
a7k

Note that each of the cross products in this last equatioresponds to a vector
lying parallel to an edge d? incident tov. Taking the sum of both sides of Equation
14 over allv of P yields:

(v—x) Det(Ming(y)) _ Cross{Ning(v) k] 15
& 0 Edy ] M)
jeind(v) qe(;r;f k(V)

Now, we assume (without loss of generality) that the indioesd(v) are ordered
such that the determinant of,qy) is always positive. Since each edgePfs
shared by two vertices d?, the cross product on the right-hand side of equation
15 appears twice in the double summation, once for eachlpessiientation of
the edge. Since these vector then cancel, the left hand Eielguation 15 must
be identically zero. Observing that the fraction on the-lhefhd side of this same
equation is exactly the weight functiam,(x) defined by equation 4 completes the
proof.
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B Linear Precision for Smooth Convex Sets

Recall thath(v,x) from section 3.2 is written as
Of (VH*(v)OfT(v)
(@Of(v)- (v=x))

whereH (x) is the Hessian of (x), ()* denotes the adjoint of a square matfiX,(v)
is a row vector ana, v are column vectors.

h(v,x) = (v—Xx)

Theorem 1
h(v,x) = (Om(v,x))*0f T (v)
wherem(v,x) = Df(Dv‘;ng) :
Proof: Since
.
(Om0) DT = (O ey ) O 0

we expand the gradient of our matrix using the product rutkatain

(H(v)((Df(v)(v—x))l —(v—x)0Of(v)) — DfT(v)Df(v)>* 05T
(@f(W)(v—x))?

(V).
Applying lemma 1 reduces this expression to

(waanwxv—mn—wv—mmfw»>*mﬂ
(OFW(v—x)?

(V).

Next, we use the product rule for adjoints to rewrite the idjas

1

(OF(v)(v—x))2@- (OF (V) (v=x))I = (v—=x)TOF(v)) " H* (VO T (v).

Simplifying using lemma 2 yields

1

O a0 D WH (VDT V).

Canceling the appropriate powers generates the final fochcampletes the proof

1
(Of (V) (v—x))9

(v—x)Of(VH*(V)OfT(v).

Lemma 1 aB* = a(B+c'a)* wherea, c are row vectors wit entries.
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Proof: The proof follows by properties of the determinant and sy and appli-
cation of Kramer's rule. Thé" entry in the vectoaB* can be found as determi-
nant where thé" row in B is replaced bya. Therefore, if we consider the vector
a(B+c'a)*), theit" entry in this vector is given by the determinant®#-c'a
with the it" row replaced witha. Sincec’a adds a scalar multiple af to each
row of B, cTais linearly dependent oa. Thereforec’a will not contribute to the
determinant andB* = a(B+c'a)*.

Lemma 2 a'b(ab")"? = ((ab")l —ab)* wherea, b are row vectors an8 is a
matrix.

Proof: The adjoint is a matrix of cofactors, each of which is a deteant of a
sub-piece of the matrix. Therefore, we instead prove atabolut determinates of
matrices of the given form that trivially extends to yiel@ thdjoint rule above.

Claim: Det(al —a'b) = a"— a"1Tr(a"b) andDet(al; —a'b) = —a"tajb;
wherea is a scalar] is the identity matrix]; is the identity matrix with thé" row
uniformly zero.

Proof: The proof is inductive on the size of the vecton. (
Base Casen=1
Det(a —aiby) = al — a%ab; = a —ajb;
Det(all — albl) = —aoalbl = —ab;

Inductive Step:
Starting with the first identity, we assume tteb are vectors withn entries
and expand the determinant in terms of a sum of determinésizen — 1.

Det(al —a'b) = (a —ajb;)Det((@'b)1 1) — _i(—l)‘lalbi Det((a'b)y;)

whereMV,; ; yields the matrixvl with row i and columnj deleted. Using the induc-
tive hypothesis and rearranging rows in the matrices wearmbta

n

(a —aiby)(a™ "~ anz_iaibi) = _g(—l)iflalbi (a"2aby (1) 1).

Simplifying this expression yields the final result

n
a"—a" 1y ab.
2
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The second recurrence follows in a similar manner. Firstiemgite the deter-
minant as a sum of determinants of sire 1

=}

Det(al; —a'b) = —aibiDet((a'b)11) — 3 (—1)'*aubiDet((a"b)1)).

Applying the inductive hypothesis generates

n

—agby (@ - a”‘z_iabi) - _;(—1)‘-1a1bi (@™ 2aiby(—1)' ).

Finally, simplifying this expression yields the desiredut

”flalbl.

—a
Lemma 3 d(Aj=; ,d(fi)) =0 for all f1...f,.
Proof: The proof is inductive on the number of entries

Base Casen= 1. d(d(f;)) = 0 since the derivative of the derivative of a differen-
tial form is zero.

Inductive Step: First, we use the product rule for wedge products [2, p.293}
to expand outd(d(f1) A (Ai—o ,d(fi))) to

d(d(f))A( A d(f))) —d(f) Ad( /\ d(fi)).

i=2.n i=2.n

Using the fact thatl(d(f1)) = 0 and the inductive hypothesis, we simplify this
expression to

oA ( /\ d(fi)))—d(f))A0=0.
i=2..n
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