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Abstract

In this paper we provide an extension of barycentric coordinates from
simplices to arbitrary convex sets. Barycentric coordinates over convex 2D
polygons have found numerous applications in various fieldsas they allow
smooth interpolation of data located on vertices. However,no explicit for-
mulation valid for arbitrary convex polytopes has been proposed to extend
this interpolation in higher dimensions. Moreover, there has been no attempt
to extend these functions into the continuous domain, wherebarycentric co-
ordinates are related to Green’s functions and construct functions that satisfy
a boundary value problem.

First, we review the properties and construction of barycentric coordi-
nates in discrete domain for convex polytopes. Next, we showhow these
concepts extend into the continuous domain to yield barycentric coordinates
for continuous functions. We then provide a proof that our functions satisfy
all the desirable properties of barycentric coordinates inarbitrary dimensions.
Finally, we provide an example of constructing such barycentric functions
over regions bounded by parametric curves and show how they can be used
to perform freeform deformations.
Keywords: barycentric coordinates, convex polyhedra, convex sets
Classification: 52B55 [Convex and discrete geometry]: Computational as-
pects related to convexity

1 Introduction

Introduced by Möbius in 1827 asmass points to define a coordinate-free geometry,
barycentric coordinates over simplices are a very common tool in many compu-
tations. In addition to their coordinate-free expressions, barycentric coordinates
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are extremely helpful for interpolating discrete scalar fields, vector fields, or arbi-
trary multidimensional fields over irregular tessellations: they naturally interpolate
values at vertices to the whole space via multilinear interpolation.

Since its inception, the graphics community has made extensive use of barycen-
tric coordinates. In early work barycentric coordinates were routinely used for
triangles, with applications such as polygon rasterization, texture mapping, ray-
triangle intersection in raytracing, spline patches, interpolation, etc. More recently,
barycentric coordinates for tetrahedra have been used for interpolation of 3D fields
for volume rendering and isosurface extraction, as well as for simulation purposes
since they define convenient linear basis functions over simplices. More generally,
many applied fields such as computational physics and mechanics rely heavily on
barycentric coordinates since it corresponds to linear basis functions in the finite
element method. Note that even higher dimensional graphics-related data require
appropriate interpolation between discrete samples, suchas for lightfield applica-
tions.

A natural question arises when interpolation is needed overmore complex
shapes, such as polygons or polytopes: can we extend this notion of barycen-
tric coordinates to arbitrary polytopes? The common way to deal with irregular
polygons in 2D or general polyhedra in 3D is to triangulate them first, and apply
barycentric coordinates on each simplex. However this solution is unacceptable for
many applications: the results depend on the choice of triangulation, and contain
unnecessary artifacts, mostly due to the restrictiveC0 continuity across simplices.

Despite some recent work ongeneralized barycentric coordinates, valid for
arbitrary polytopes, no explicit formulation has been given for polytopes of ar-
bitrary dimension. Furthermore, there has been, to the bestof our knowledge, no
attempt at extending these coordinates tosmooth convex sets. This paper addresses
these current limitations, by providing geometric and computationally-convenient
explicit formulations along with proofs of their validity.

1.1 Convex Polytopes

Given a bounded, convex polytopeP, our problem is to construct one coordinate
function bv(x) per vertexv of P for all x ∈ P. These functions arebarycentric
coordinates with respect toP if they satisfy three properties. First, the coordinate
functions arenon-negative on P,

bv(x) ≥ 0,

for all x ∈ P. Second, the functions form apartition of unity,

∑
v

bv(x) = 1,
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for all x. Finally, the functions act as coordinates in that, given a value ofx, weight-
ing each vertexv by bv(x) returns backx; i.e.,

∑
v

v bv(x) = x. (1)

This last property is also sometimes referred to aslinear precision since the coor-
dinate functions can reproduce the linear functionx.

A typical application of barycentric coordinates is to interpolateany data (not
just positions) provided at the vertices ofP. Given a set of valuesgv associated
with eachv, we build a new function ˆg(x) defined overP by

ĝ(x) = ∑
v

gvbv(x). (2)

The constructed function ˆg(x) satisfies the property that ˆg(v) = gv.

1.2 Convex Sets with Smooth Boundaries

Another goal of this paper is to provide an extension of barycentric coordinates
to smooth, convex regions. Given a convex regionP whose boundary is a smooth
(d −1)-dimensional manifoldS = ∂P, we define asmooth barycentric coordinate
function b(v,x) analogous to the discrete case. First, the continuous coordinate
function will also be non-negative onV ,

b(v,x) ≥ 0,

for all v ∈ S andx ∈ P. The partition of unity property for a continuous barycentric
function is stated as

∫

v∈S
b(v,x)dS = 1.

Finally, these coordinate functions should also satisfy a linear precision property;
namely,

∫

v∈S
v b(v,x)dS = x.

Similar to the discrete case, this coordinate function can be used to build a
solution to a boundary value problem onS. Given a functiong(v) defined for
v ∈ S, we construct a function ˆg(x) defined forx ∈ P as

ĝ(x) =
∫

v∈S
g(v)b(v,x)dS (3)

where ˆg(v) interpolatesg(v) on S.
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1.3 Previous Work

Most of the previous work on barycentric coordinates focuses on convex poly-
gons in the plane. For the case ofregular polygons, Loop and De Rose [13],
Kuriyama [11] and Lodha [12] propose a simple construction that yield smooth
basis functions. Their expressions nicely extend the well known area-based for-
mula for barycentric coordinates in a triangle. Unfortunately, none of the proposed
constructions have linear precision when applied to irregular polygons.

Pinkall and Polthier [16], and later Eck et al. [1], present aconformal param-
eterization for triangulated surfaces that actually provides a natural extension of
barycentric coordinates to arbitrary polygons. However, the weights they define
can be negative even when the polygon is convex [15], which isoften problematic
for interpolation applications.

Sibson [17] proposes a natural neighbor interpolant based on Voronoi diagram
that yields coordinate functions that are non-negative andhave linear precision;
note also that Gotsman and colleagues proposed a minimization-driven barycen-
tric coordinates [8]. The drawback with these constructions is that the resulting
coordinate functions are not smooth.

Floater [3] gives an algorithmic construction coordinatesover star-shaped re-
gions in 2D. However, this construction suffers from the drawback that the result-
ing coordinate functions are not smooth within the polygon.In subsequent work,
Floater and colleagues [4, 5] also present smooth coordinates for non-convex poly-
gons based on the mean value theorem. Another related approach was presented
by Malsch [14], allowing the design of barycentric coordinates for arbitrary 2D
polygons, with or without holes, and even with interior vertices. The idea of mean
value coordinates was recently extended to 3D and proven very convenient for
shape deformation [9, 6]. Alas, this series of approaches donot end up providing
multilinear interpolation when applied to cartesian grids, a severe drawback for
multiple computational tasks.

Finally, Warren [19] presents a construction for barycentric coordinates that
extend the results of Wachspress [18] to convex polytopes inarbitrary dimensions.
The functions Warren presents are smooth functions that have linear precision, are
positive on the interior ofV , and coincide with the natural multilinear interpolation
on cartesian grids. These functions are also rational of minimal degree as proved
in Warren [20]. Unfortunately, no explicit formulation of these functions has been
provided for practical implementations.
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1.4 Contributions

Despite much work in the discrete 2D case, no explicit formulation of barycentric
coordinates for convex polytopes valid in arbitrary dimension is currently avail-
able. Additionally, there has been no generalization of these coordinate functions
to continuous domains that the authors are aware of. In this paper, we first re-
view the coordinate functions for arbitrary convex polytopes of Warren [19] and
offer a simple, computationally-convenient expression ofthese functions; we then
generalize this formulation to smooth, convex regions of arbitrary dimension. In
the process, we show that our weight functions for both the polytope and the con-
tinuous case satisfy the three properties of Sections 1.2 and 1.1. Finally, we show
how the weight function has applications in defining (free-form) deformations over
smooth, convex regions before concluding.

2 Defining Coordinates for Convex Polytopes

2.1 Setup and Notations

A convex polytope P in Rd is the convex hull ofk affinely independent points
wherek > d. The polytopeP is bounded by a set of(d − 1) dimensional facets
with outward unit normal vectorsn j. Let ind(v) denote the set of indicesj such
that the facet normal ton j contains the vertexv.

Now, a vertexv of P is simple if |ind(v)| = d. Similarly, P is simple if every
vertex ofP is simple. Note that convex polygons are always simple whileonly a
subset of convex polyhedra are simple. For example, tetrahedra, cubes and trian-
gular prisms are simple while square pyramids and octahedraare not.

In [19], Warren shows that an appropriate extension of barycentric coordinate
functionsbv(x) for simple polytopes can be defined using the concept of dual poly-
hedral cones. In the remainder of this section, we will further formulate these
coordinate functions to allow practical computations.

2.2 An Explicit Formulation

We first define theweight function wv(x) at a simple vertexv as being:

wv(x) =
κ(v)

∏ j∈ind(v)(n j · (v− x))
(4)

whereκ(v) is the volume of the parallelepiped span by the normals to thed facets
incident onv, expressed via a determinant as:

κ(v) = |Det(nind(v))| (5)
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wherenind(v) is a matrix whose rows are the vectorsn j where j ∈ ind(v).

Figure 1: An example calculation ofwv(x) at a vertex for a trapezoid with normals
labeled (n1, n2). The areas of the shaded parallelograms formed by the normals
correspond to the quantity|Det(ni(v))|.

Note that this weight function depends only on the facets incident onv. In
particular, the numerator corresponds to the volume of the parallelepiped spanned
by the outward normal vectorsn j associated with the facets incident onv while the
denominator is the product of the distances betweenx and thed facets adjacent to
v. Figure 1 illustrates the different quantities for a parallelogram.

For non-simple vertices (where|ind(v)| > d), the weight functions are con-
structed by infinitesimally perturbing the facets touchingv such that the non-simple
vertex is decomposed into simple vertices. The weight function is built by then
summing the weight function for the simple vertices together. Warren [19] pro-
vides a more detailed description of non-simple vertices and a proof that the weight
functions are invariant under the decomposition of the non-simple vertex: so any
pertubation does the trick.

Finally, we express the barycentric coordinate functionbv(x) by dividing each
weight functionwv(x) by the sum of all weight functions taken overP:

bv(x) =
wv(x)

∑v wv(x)
.

2.3 Equivalence to Warren’s Coordinates

At this point, we make several observations concerning the structure of these func-
tions bv(x) that we just built. First, these functions are non-negativeon P due to
the fact that the weight functionswv(x) are, by construction, non-negative onP.
Second, these functions trivially sum to one by construction. Third, these func-
tions have linear precision as shown in Appendix A. Finally,due to the uniqueness
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theorem in [20], a simple argument on the degree of the resulting rational polyno-
mial coordinate functions confirms the equivalence betweenour newly-introduced
expression and the original construction by Warren. Therefore our coordinates in-
herit the other secondary qualities from Warren’s coordinates, such as smoothness
and reproduction of tensor product coordinate functions ([19]).

2.4 Application to Interpolation

Functions that satisfy the three aforementioned properties can be used to interpolate
data values at the vertices ofP. In other words,

bv(x) = δvx

if x is restricted to the vertices of the polytopeP whereδ is the Kronecker function.
To understand this phenomenon, first observe that the barycentric coordinate func-
tions reproduce all linear functions (linear precision yields reproduction of scalar
values ofx and the fact that the functions sum to 1 generates constant functions).
Now, consider a linear functionlq(x) that is zero at a vertexq of P and strictly pos-
itive at all other vertices ofP. lq(x) then implicitly defines a supporting plane that
touchesP only atq. Such a function always exists givenP is convex. Therefore,

lq(x) = ∑
v

lq(v)bv(x).

Sincelq(q) = 0, then
lq(q) = 0 = ∑

v6=q

lq(v)bv(q)

Now eachlq(v) > 0 andbv(q) ≥ 0. Therefore,bv(q) = 0 for all v 6= q. Since the
coordinate functions sum to 1,bq(q) = 1.

Using this result and Equation 2, we can build a function ˆg(x) that interpolates
data values at the vertices ofP. Figure 2 illustrates such an example of using dis-
crete 2D barycentric coordinates to interpolate height andcolor data at the vertices
of P. Along the edges of the polygon, these weight functions reduce to linear in-
terpolation. Note that this last remark is a nice property already stressed in [19]:
these barycentric coordinates on anD polytope reduces to their lower dimensional
(n−1)D version on any boundary face.

3 Coordinates for Smooth Convex Sets

As we have seen above, barycentric coordinates on a convex polytope P blend
valuesgv assigned to the vertices ofP to define a function ˆg(x) over all of P.
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Figure 2: An example using barycentric coordinates to interpolate both the height
and the color of the vertices of the hexagon.

In many applications, we would like to perform a similar blending for arbitrary
convex shapes. In particular, given a functiong(x) defined on the boundaryS
of P, we desire a method for extendingg(x) to the interior ofP that generalizes
barycentric coordinates from the polytope case.

3.1 A Geometric Expression

Our solution is to construct a continuous barycentric coordinate function defined
over all ofP. The key to creating such a functionb(v,x) that satisfies these prop-
erties is to observe that Equation 4 extends to smooth functions in a very natural,
geometric manner. In particular, the numeratorκ(v) in the polytope case form a
discrete approximation to the Gaussian curvature at the vertex v while the denomi-
nator is the product of the distance ofx to thed different facets incident onv.

Following the polytope case, we construct the continuous version of this weight
function as

w(v,x) =
κ(v)

(n(v) · (v− x))d (6)

whereκ(v) is the Gaussian curvature ofS atv (i.e; the product of thed−1 principal
curvatures atv) andn(v) is the outward unit normal toS at v. Figure 3 shows an
example calculation of the denominator of the weight function w(v,x).

To complete the construction, we simply need to define a barycentric coordi-
nate functionb(v,x) associated withw(v,x) to have the form

b(v,x) =
w(v,x)

∫

v∈S w(v,x)dS
. (7)
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Figure 3: Calculating the denominator ofw(v,x) for continuous functions.

After this normalization, these coordinate functionsb(v,x) are non-negative and
have unit integral. As the central result of this paper, we show in the next section
that this functionb(v,x) has linear precision.

For strictly convex shapes (those whose supporting half-spaces contact the
shape at a single point), a similar argument to the discrete case in Section 2 al-
lows us to conclude that the barycentric coordinate function degenerates to the
Dirac delta function onS. That is,

b(v,x) = δ (v− x) ∀x ∈ S. (8)

Therefore, if we compute a new function ˆg(x) using equation 3 for this class of
shapes, ˆg(v) = g(v) holds for allv ∈ S.

3.2 Linear precision

We now prove that the continuous coordinate functionb(v,x) defined in Section 1.2
has linear precision, i.e;

∫

v∈S
v b(v,x)dS = x.

Substituting the definition ofb(v,x) in terms ofw(v,x) from Equation 7 yields

x
∫

v∈S
w(v,x)dS =

∫

v∈S
v w(v,x)dS.

Combining the two integrals together generates
∫

v∈S
(v− x)w(v,x)dS = 0.

If we let h(v,x) denote(v− x)w(v,x), applying Equation 6 yields

h(v,x) = (v− x)
κ(v)

(n(v) · (v− x))d . (9)
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Now, our task is to prove that
∫

v∈S h(v,x)dS = 0 for all x. To prove that this integral
is zero, we proceed in three steps:

• We expressS as an implicitly defined surfacef (x) = 0 and apply the curva-
ture formula for implicit surfaces to expressh in terms of f .

• We then manipulate this expression using several technicallemmas (proven
in Appendix B) and derive an equivalent expression forh in terms of cross
products and dot products.

• Finally, we convert this cross product into a differential form and apply
Stoke’s theorem to show that the integral of this differential form overS
is zero.

In step one, we observe that the(d − 1) dimensional manifoldS can be ex-
pressed as the solution tof (x) = 0 where f (x) defines the signed Euclidean dis-
tance from the pointx to S. Observe that sincef (x) is a distance function, its
gradient∇ f (x) has unit length onS.

In this implicit case, Goldman [7] provides a formula for Gaussian curvature.
In particular, the scalarκ(v) can be expressed as

κ(v) =
∇ f (v)H∗(v)∇ f T (v)

|∇ f (v)|d+1

whereH(v) is the Hessian off (v) and()∗ denotes the adjoint of a square matrix.
Recall that in the context of this proof,|∇ f (v)| = 1. Substituting this relation in
the left-hand side of Equation 9 yields that

h(v,x) = (v− x)
∇ f (v)H∗(v)∇ f T (v)
(∇ f (v) · (v− x))d . (10)

In the second step of our proof, we consider the vector-valued functionm(v,x)
defined via

m(v,x) =
∇ f (v)

∇ f (v) · (v− x)
.

In Appendix B, we show thath(v,x) can be equivalently expressed in terms of the
gradient ofm(v,x) with respect to coordinates ofv. (x is treated as constant.) In
particular,h(v,x) has the form

h(v,x) = (∇m(v,x))∗∇ f T (v).

Now, let hk(v,x) denote thekth element ofh(v,x). Due to the properties of
adjoints,hk(v,x) can expressed as the cross-product ofd − 1 rows of the matrix
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∇m(v,x) dotted with∇ f T (v). In particular,

hk(v,x) = (
⊗

i6=k

∇(mi(v,x))) ·∇ f T (v) (11)

wheremi(v,x) is theith component ofm(v,x).
In our final step of the proof, we apply a generalized version of Stoke’s theo-

rem [2, p.365] of the form:
∫

v∈S
ω(v) =

∫

v∈P
d(ω(v))

whereω is a differential form andd is the differential operator. To constructω ,
we observe that the cross product in equation 11 has an equivalent formulation as
a wedge product of differentials. In particular,

∫

v∈S
hk(v,x)dS =

∫

v∈S

∧

i6=k

d(mi(v,x)). (12)

(The dot product with∇ f T (v) in equation 11 is absorbed during the integration
of the differential form on the right-hand side of equation 12 [2, p.356].) Now,
applying Stoke’s theorem yields that

∫

v∈S
hk(v,x)dS =

∫

v∈P
d(

∧

i6=k

d(mi(v,x))).

Due to Lemma 3 from the appendix, the integral on the right-hand side reduces
to zero, which completes the proof.

∫

v∈S
(v− x)w(v,x)dS =

∫

v∈S
hk(v,x)dS = 0.

4 Applications to Smooth Convex Sets

We next consider two novel applications of barycentric coordinates over smooth
convex sets: boundary value interpolation and freeform deformations. To do so
we first specialize Equation 6 to parametric functions sinceevaluating the resulting
integrals becomes much simpler.
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Figure 4: Barycentric interpolation of the functionx1x2 on the unit circle: notice
how the values blend on the interior of the circle in a smooth,natural manner.

4.1 Boundary value interpolation

Given a functiong(v) defined over some manifoldv∈ S of co-dimension one where
v ∈ S, we desire a function ˆg(x) defined over the interior ofS that interpolatesg(v)
on S. This function ˆg(x) can be used to build a surface patch that interpolates a
given curve or even to extend functions such as heat distribution over a surface to
the interior of the volume.

Equation 3 already defines how to build such a function ˆg(x) to interpolateg(v)
on S. However, to make this construction practical, we show how to interpret this
barycentric coordinate function in a parametric form. In particular, we provide
an explicit example of specializing this formula for two-dimensional parametric
curves.

Given a regionP in two-dimensions bounded by a curve with parameterization
p(t) = (p1(t), p2(t)), the curvatureκ(t) is given by

κ(t) =
p
′

1(t)p
′′

2(t)− p
′

2(t)p
′′

1(t)

(p
′

1(t)
2 + p

′

2(t)
2)

3
2

.

Likewise, the unit normaln(t) is simply

n(t) =
1

(p′

1(t)
2 + p′

2(t)
2)

1
2

(−p
′

2(t), p
′

1(t)).

Therefore, Equation 6 for the weight functionw(v,x) becomes

w(t,x) =
p
′

1(t)p
′′

2(t)− p
′

2(t)p
′′

1(t)

(p′

1(t)
2 + p′

2(t)
2)

1
2 (−p′

2(t)(p1(t)− x1)+ p′

1(t)(p2(t)− x2))2
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wherex = (x1,x2). Notice that when integrating a scalar function over a space
curve, we must include a factor of(p

′

1(t)
2+ p

′

2(t)
2)

1
2 to make the integral invariant

under the parameterization of the boundaryp(t). For example, the normalization
factor for the basis functionb(v,x) becomes:

∫

v∈S w(v,x)dS =
∫

w(t,x)(p
′

1(t)
2 + p

′

2(t)
2)

1
2 dt

=
∫ p

′

1(t)p
′′

2 (t)−p
′

2(t)p
′′

1 (t)

(−p
′
2(t)(p1(t)−x1)+p

′
1(t)(p2(t)−x2))2

dt.

When applying equation 3, a similar factor appears in the integral to account for
the parameterization of the boundary.

To illustrate this formula, consider the problem of interpolating the function
x1x2 over a patch whose boundary consists of the unit circle. To parameterize the
circle let p(t) = (Cos(t),Sin(t)). By construction, the weight functionw(t,x) has
the form

w(t,x) =
1

(x1Cos(t)+ x2Sin(t)−1)2 .

The corresponding barycentric coordinate functionb(t,x) is then

b(t,x) =
(1− x2

1− x2
2)

3
2

2π(x1Cos(t)+ x2Sin(t)−1)2 .

To construct a function ˆg(x) that interpolates the functionx1x2 on the unit cir-
cle, we must build a functiong(t) parameterized over the boundary that interpo-
latesx1x2. Notice thatg(t) = Cos(t)Sin(t) since(x1,x2) = (Cos(t),Sin(t)). Now
Equation 3 can be computed analytically and has the form

ĝ(x) =
x1 x2

(

−2+3x1
2 +3x2

2 +2
(

1− x1
2− x2

2
)

3
2

)

(x1
2 + x2

2)2 .

Figure 4 shows a plot of this function restricted to the unit circle. Observe that the
function ĝ(x) interpolates the functionx1 x2 on the unit circle while blending these
values on the interior of the circle in a natural manner.

4.2 Freeform deformations

Continuous barycentric coordinates can be used to perform freeform deformations
of images as well. Given a convex regionP bounded by a smooth curvep(t), we
wish to deformP into another regionG bounded by the curveg(t) (see Figure 5).
If we use the construction from equation 3 we obtain:

ĝ(x) =
∫

v
g(t)b(t,x)dt
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Figure 5: ˆg(x1,x2) provides a map betweenp(t) andg(t). This map can be used to
perform freeform deformations.

wherex ∈ P. The resulting function ˆg : P → G smoothly maps points inP to
points in G. Furthermore, ˆg(x) maps points onp(t) to points ong(t), that is,
ĝ(p(t)) = g(t). Sinceb(v,x) has linear precision, ifp(t) = g(t), thenĝ(x) becomes
the identity function and generates no deformation.

In our example, we defineP andG as the regions bounded by closed quadratic
B-splinesp(t) andg(t) havingk control points on the periodic interval 0≤ t ≤ k.
Though B-splines are only piecewise polynomial, equation 3still applies. In fact,
any B-spline curve can be represented as a piecewise polynomial function of the
form

p(t) = pi(t − i)
g(t) = gi(t − i)

, i ≤ t ≤ i+1

where pi(t), gi(t) are theith polynomial functions comprising the respective B-
splines.

To compute Equation 3 we constructw(t,x), which is also a piecewise function,
and has the form

w(t,x) = wi(t − i,x), i ≤ t ≤ i+1

wherewi(t,x) is formed using Equation 6 for the functionpi(t). With this result
we can calculate the normalization factor in Equation 7 as

∫

w(t,x)dt =
k−1

∑
i=0

∫ 1

0
wi(t,x)dt.

Now we compute ˆg(x) using Equation 3 as a piecewise integral that has the
form

ĝ(x) = 1
∫

w(t,x)dt

∫

g(t)w(t,x)dt

= 1
∫

w(t,x)dt ∑k−1
i=0

∫ 1
0 gi(t)wi(t,x)dt.
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Figure 6: Car before deformation and bounding quadratic B-spline curve defining
p(t) (left). Deformed car generated by altering the control points with bounding
curveg(t) (right).

We can explicitly calculate the integrals above, using a symbolic software package
such asMathematica, to obtain a closed form solution in terms of(x1,x2) and
the control points of the B-splines formingp(t) andg(t). Though eachwi(t,x) is a
rational polynomial function, the resulting ˆg(x) is more complicated and is in terms
of functions such asArctan. However, the function is still fast to evaluate (since no
integrals need be computed) and image deformation can be computed in realtime.

The user performs image deformation by first placing the control points of the
curvep(t) about the convex area that they wish to deform (see Figure 6, left). Once
the user is satisfied, the control points are duplicated to form the curveg(t). The
user then drags on the control points ofg(t) to generate the desired deformation.
Due to the fact that barycentric coordinates interpolate the boundary (as shown
in Equation 8), the deformed image will follow the boundary of g(t). Figure 6
(right) shows an example deformation of the car from the leftportion of the figure.
The entire application and source code for performing thesedeformations can be
downloaded fromhttp://www.cs.rice.edu/~sschaefe/barywhite.zip.

5 Conclusion

In this paper, we have provided an extension of barycentric coordinates first to con-
vex polytopes, then to smooth convex sets in arbitrary dimension, both in the form
of explicit, geometric formulas. Furthermore, we provideda proof that the coordi-
nate functions are non-negative, have unit integral and reproduce linear functions.
Finally, we showed how this function could be used to build solutions to boundary
value problems and perform deformations as well.

Of special interest is the similarity that our barycentric coordinate function
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bears towards Green’s functions. Green’s functions are typically used in a similar
manner to our barycentric coordinate functions to build solutions to (typically el-
liptical) partial differential equations with boundary value constraints. While our
function builds solutions to boundary value problems, we know of no differential
equation that the functions satisfy. In the future, we wouldlike to explore this
connection further. A potential approach could be to leverage the geometric inter-
pretation of these coordinates in terms of polar duals as recently introduced in [10].

AcknowledgementsWe would like to thank Ron Goldman for his helpful discus-
sions, and for his help in creating the proof for Lemma 2.
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A Linear Precision for Convex Polytopes

As observed in the paper, proving that the coordinate functionsbv(x) have linear
precision reduces to showing that Equation 1 holds; that is the weight functions
wv(x) satisfy:

∑
v

(v− x)wv(x) = 0.
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To this end, we observe that at a simple vertexv of P, the following vector rela-
tionship holds:

nind(v)(v− x)

∏
j∈ind(v)

(n j · (v− x))
= ∑

k∈ind(v)

ek

∏
q∈ind(v)

q6=k

(nq · (v− x))

whereek is thek-th canonical basis vector ind dimensions. Multiplying the numer-
ator of both sides of this equation byn−1

ind(v), the resulting equation has the form:

v− x

∏
j∈ind(v)

(n j · (v− x))
= ∑

k∈ind(v)

n−1
ind(v)ek

∏
q∈ind(v)

q6=k

(nq · (v− x))
. (13)

Now, recall that thek-th column ofn−1
ind(v) corresponds to the cross product of the

d−1 rows ofnind(v)−k (denotedCross(nind(v)−k) below) divided by the determinant
of nind(v). Applying this observation and multiplying both sides of equation 13 by
Det(nind(v)) yields that

(v− x)
Det(nind(v))

∏
j∈ind(v)

(n j · (v− x))
= ∑

k∈ind(v)

Cross(nind(v)−k)

∏
q∈ind(v)

q6=k

(nq · (v− x))
(14)

Note that each of the cross products in this last equation corresponds to a vector
lying parallel to an edge ofP incident tov. Taking the sum of both sides of Equation
14 over allv of P yields:

∑
v∈P

(v− x)Det(nind(v))

∏
j∈ind(v)

(n j · (v− x))
= ∑

v∈P
∑

k∈ind(v)

Cross[nind(v)−k ]

∏
q∈ind(v)

q6=k

(nq · (v− x))
. (15)

Now, we assume (without loss of generality) that the indicesin ind(v) are ordered
such that the determinant ofnind(v) is always positive. Since each edge ofP is
shared by two vertices ofP, the cross product on the right-hand side of equation
15 appears twice in the double summation, once for each possible orientation of
the edge. Since these vector then cancel, the left hand side of equation 15 must
be identically zero. Observing that the fraction on the left-hand side of this same
equation is exactly the weight functionwv(x) defined by equation 4 completes the
proof.
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B Linear Precision for Smooth Convex Sets

Recall thath(v,x) from section 3.2 is written as

h(v,x) = (v− x)
∇ f (v)H∗(v)∇ f T (v)
(∇ f (v) · (v− x))d

whereH(x) is the Hessian off (x), ()∗ denotes the adjoint of a square matrix,∇ f (v)
is a row vector andx,v are column vectors.

Theorem 1:
h(v,x) = (∇m(v,x))∗∇ f T (v)

wherem(v,x) = ∇ f (v)
∇ f (v)(v−x) .

Proof: Since

(∇m(v,x))∗∇ f T (v) = (∇(
∇ f T (v)

∇ f (v)(v− x)
))∗∇ f T (v),

we expand the gradient of our matrix using the product rule and obtain

(

H(v)((∇ f (v)(v− x))I − (v− x)∇ f (v))−∇ f T (v)∇ f (v)
(∇ f (v)(v− x))2

)∗

∇ f T (v).

Applying lemma 1 reduces this expression to
(

H(v)((∇ f (v)(v− x))I − (v− x)∇ f (v))
(∇ f (v)(v− x))2

)∗

∇ f T (v).

Next, we use the product rule for adjoints to rewrite the adjoint as

1

(∇ f (v)(v− x))2(d−1)
((∇ f (v)(v− x))I − (v− x)∇ f (v))∗H∗(v)∇ f T (v).

Simplifying using lemma 2 yields

1

(∇ f (v)(v− x))2(d−1)
(∇ f (v)(v− x))d−2(v− x)∇ f (v)H∗(v)∇ f T (v).

Canceling the appropriate powers generates the final form and completes the proof

1

(∇ f (v)(v− x))d)
(v− x)∇ f (v)H∗(v)∇ f T (v).

Lemma 1: aB∗ = a(B + cT a)∗ wherea,c are row vectors withn entries.
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Proof: The proof follows by properties of the determinant and is simply and appli-
cation of Kramer’s rule. Theith entry in the vectoraB∗ can be found as determi-
nant where theith row in B is replaced bya. Therefore, if we consider the vector
a(B + cT a)∗), the ith entry in this vector is given by the determinant ofB + cT a
with the ith row replaced witha. SincecT a adds a scalar multiple ofa to each
row of B, cT a is linearly dependent ona. Therefore,cT a will not contribute to the
determinant andaB∗ = a(B + cT a)∗.

Lemma 2: aT b(abT )n−2 = ((abT )I − aT b)∗ wherea,b are row vectors andB is a
matrix.

Proof: The adjoint is a matrix of cofactors, each of which is a determinant of a
sub-piece of the matrix. Therefore, we instead prove a result about determinates of
matrices of the given form that trivially extends to yield the adjoint rule above.

Claim: Det(αI − aT b) = αn −αn−1Tr(aT b) and Det(αI1 − aT b) = −αn−1a1b1

whereα is a scalar,I is the identity matrix,Ii is the identity matrix with theith row
uniformly zero.

Proof: The proof is inductive on the size of the vectors (n).

Base Case: n = 1

Det(α −a1b1) = α1−α0a1b1 = α −a1b1

Det(αI1−a1b1) = −α0a1b1 = −a1b1

Inductive Step:
Starting with the first identity, we assume thata,b are vectors withn entries

and expand the determinant in terms of a sum of determinants of sizen−1.

Det(αI −aT b) = (α −a1b1)Det((aT b)1,1)−
n

∑
i=2

(−1)i−1a1biDet((aT b)1,i)

whereMi, j yields the matrixM with row i and columnj deleted. Using the induc-
tive hypothesis and rearranging rows in the matrices we obtain

(α −a1b1)(αn−1−αn−2
n

∑
i=2

aibi)−
n

∑
i=2

(−1)i−1a1bi(αn−2aib1(−1)i−1).

Simplifying this expression yields the final result

αn −αn−1
n

∑
i=1

aibi.

20



The second recurrence follows in a similar manner. First, werewrite the deter-
minant as a sum of determinants of sizen−1

Det(αI1−aT b) = −a1b1Det((aT b)1,1)−
n

∑
i=2

(−1)i−1a1biDet((aT b)1,i).

Applying the inductive hypothesis generates

−a1b1(αn−1−αn−2
n

∑
i=2

aibi)−
n

∑
i=2

(−1)i−1a1bi(αn−2aib1(−1)i−1).

Finally, simplifying this expression yields the desired result

−αn−1a1b1.

Lemma 3: d(
∧

i=1..n d( fi)) = 0 for all f1...fn.

Proof: The proof is inductive on the number of entriesn.

Base Case: n = 1. d(d( f1)) = 0 since the derivative of the derivative of a differen-
tial form is zero.

Inductive Step: First, we use the product rule for wedge products [2, p.292–293]
to expand outd(d( f1)∧ (

∧

i=2..n d( fi))) to

d(d( f1))∧ (
∧

i=2..n

d( fi)))−d( f1)∧d(
∧

i=2..n

d( fi))).

Using the fact thatd(d( f1)) = 0 and the inductive hypothesis, we simplify this
expression to

0∧ (
∧

i=2..n

d( fi)))−d( f1)∧0 = 0.
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