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Abstract

We propose a new family of barycentric coordinates that have closed-forms for arbitrary 2D polygons. These
coordinates are easy to compute and have linear precision even for open polygons. Not only do these coordinates
have linear precision, but we can create coordinates that reproduce polynomials of a set degree m as long as degree
m polynomials are specified along the boundary of the polygon. We also show how to extend these coordinates to
interpolate derivatives specified on the boundary.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Boundary representations

1. Introduction

Barycentric coordinates are a standard interpolation tech-
nique in Computer Graphics. These coordinates solve a
boundary value interpolation problem and can be used to in-
terpolate discrete scalar fields, vector fields or even multidi-
mensional fields over irregular tessellations. While barycen-
tric coordinates were first generalized for Finite Element
Analysis [Wac75], the Graphics community has made heavy
use of these coordinates for applications such as texture
mapping [DMA02], polygon shading [HF06], spline sur-
faces [LD89] and surface deformation [JSW05].

Suppose pi ∈ R2 for i = 1 . . .n are the vertices of a poly-
gon. These points define a piecewise polynomial boundary
curve Pi(t) such that Pi(t) = (1− t)pi + t pi+1. Furthermore,
assume that each edge of this polygon has an associated
function Fi(t) ∈ R. We define a barycentric interpolant of
this function as

F̂(x) =
n

∑
i=1

∫ 1

0
Bi(x, t)Fi(t)dt

where Bi(x, t) is the barycentric coordinate function associ-
ated with the ith edge at parameter t and x ∈ R2 is a point in
the domain. If Fi(t) = (1− t) fi + t fi+1, then the interpolant
takes on the more familiar form,

F̂(x) =
n

∑
i=1

bi(x) fi

where bi(x) =
∫ 1

0 (1 − t)Bi(x, t) + tBi−1(x, t)dt are the
barycentric coordinates of x with respect to the vertices pi.

For bi(x) to be barycentric, several properties must hold.
First, barycentric coordinates should produce an interpolant
that takes on the value of Fi(t) along the boundary. There-
fore,

F̂(Pi(t)) = Fi(t).

Second, the coordinates should have linear precision. This
means that, for all linear L(x),

L(x) =
n

∑
i=1

∫ 1

0
Bi(x, t)L(Pi(t))dt.

Note that if the coordinates have linear precision, they also
form a partition of unity (∑n

i=1
∫ 1

0 Bi(x, t)dt = 1). This prop-
erty trivially follows from linear precision if L(x) = 1. While
these properties are necessary for Bi(x, t) to be barycentric,
we typically require that Bi(x, t) is also smooth in practice.

1.1. Related Work

Barycentric coordinates were originally described by
Möbius for simplices such as triangles in 2D [Möb27].
While barycentric coordinates are unique for triangles, there
are many possible solutions for polygons with more sides.
Wachspress extended the idea of barycentric basis function
to convex polygons [Wac75] for use in finite element analy-
sis, but Wachspress coordinates become undefined over the
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interior of the polygon when the polygon is concave. A gen-
eral construction for different families of barycentric coor-
dinates defined over convex polygons [FHK06] was recently
found by Floater et al. In the same paper, the authors showed
that Wachspress coordinates are a member of this family.

Until Mean Value Coordinates (MVC) [Flo03, HF06]
were discovered, no known coordinates were well defined
over concave polygons. In MVC, the weights at a point x
are calculated by integrating the values on a boundary line
over the arc spanned by the line in the polar coordinate sys-
tem around x. However, since the direction of integration is
reversed for back-facing lines, it is possible to obtain neg-
ative values for coordinates in concave polygons. Lipman
et al. [LKCOL07] modified MVC to ensure that their Pos-
itive MVC are always positive even for concave polygons.
To prevent integrating over back facing lines, they integrate
only over the lines that are visible from a point x. However,
this means that Positive MVC are not smooth.

Joshi et al. [JMD∗07] determined that Harmonic coordi-
nates are both positive and smooth. Harmonic coordinates
are the solution to Laplace’s equation subject to the bound-
ary constraints demanded by the interpolatory property of
barycentric coordinates. Although it is unclear that it makes
sense to talk about an optimal basis, the fact that Harmonic
coordinates minimize curvature of the basis function and
prevent disconnected areas from influencing each other are
desirable traits. Unfortunately, calculating Harmonic coor-
dinates requires discretizing the function domain into finite
elements and solving a large linear system. Even then, the
basis functions are approximate and cannot be evaluated ex-
actly.

Hormann and Sukumar found another form of positive
barycentric coordinates by adapting principles from statis-
tics. In their Maximum Entropy Coordinates (MEC) [HS08],
each vertex is given a probability distribution function that
approaches infinity as a sample point x approaches the edges
adjacent to that vertex. The coordinates of x are then given
by the probability of a vertex being chosen with no bias at
x. MEC get their name because finding probabilities with
minimal bias maximizes entropy, which is the mechanism
through which the probabilities are found. Since probabili-
ties must be between zero and one, MEC are guaranteed to
be positive and are probably smooth. Although MEC can be
calculated far more directly and efficiently than Harmonic
Coordinates, they have no closed form and must be solved
for through an iterative process.

Some methods have also extended barycentric coor-
dinates to curved (transfinite) boundaries. Several meth-
ods [WSHD07, SJW07] generalize barycentric coordinates
to arbitrary convex sets that can be bounded by a parameter-
ized curve. In his theoretical analysis of barycentric coordi-
nates [Bel06], Belyaev found a generalization of transfinite
coordinates, of which he found that MVC and Wachspress
coordinates are instances.

Dyken et al. [DF09] and Floater et al. [FS08] developed a
method for extending MVC to interpolate derivatives (Her-
mite data) on concave, curved boundaries. Although these
extended MVC are able to reproduce cubic functions, they
require boundary derivatives as input to do so. Our method,
however, can reproduce functions of degree m if the bound-
ary values Fi(t) are sampled from that degree m function
without using any derivatives. Another advantage of our
method is that our coordinates have a closed-form expres-
sion, whereas Hermite MVC coordinates require numeric
integration. Langer et al. [LS08] also provide a method
for modifying barycentric coordinate constructions to add
derivative information at the vertices of the polygon.

Another approach to calculating basis functions by solv-
ing a moving least squares problem. One application this has
been used for is in approximating functions from a set of
point samples [Wen01]. In Image Deformation Using Mov-
ing Least Squares (IDMLS) [SMW06], Schaefer et al. ap-
ply moving least squares interpolants to image deformation
while optionally restricting shear and scaling in their sim-
ilarity and rigid deformations. Schaefer et al. also provide
a closed form solution for finding basis functions of line
segments. We show that the affine construction of IDMLS
can be generalized to calculate barycentric coordinates for
closed (or even non-closed) polygons. We extend this con-
struction to higher degree curves/functions and show how to
incorporate derivatives along the boundary as well.

1.2. Contributions

The progression in barycentric coordinates has been to gen-
eralize from simplices to convex polygons and finally to con-
cave polygons. Our coordinates are well defined for those
polygons, but go even further. Our coordinates are well de-
fined for non-closed polygons and self-intersecting polygons
(though the latter creates discontinuities with incompatible
data at the self-intersection). Our barycentric coordinates

• create a family of barycentric coordinates that are well-
defined for arbitrary 2D polygons, closed or not,

• can handle arbitrary transfinite boundary curves for which
we provide closed-form expressions when the boundary is
piecewise linear,

• can reproduce polynomials of arbitrary degree with the
appropriate polynomial functions Fi(t) provided on the
boundary,

• allow for interpolation of cross-boundary derivatives.

2. Barycentric Coordinates

The basic approach that we use to create barycentric coordi-
nates is to find a polynomial F̂(x) that minimizes the squared
distance between F̂(Pi(t)) and Fi(t) along the boundary. If
we represent F̂(x) in the power basis, then F̂(x) = Vm(x)C,
where

Vm(x) =
(
1 x1 x2 . . . . . . x1

m x1
m−1x2 . . . x2

m)
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represents a polynomial of total degree m. The coefficients
for the functions in Vm(x) are given by C and x =

(
x1 x2

)
.

The best approximating polynomial is completely described
by the coefficients C, which are given by

argmin
C

n

∑
i=1

∫ 1

0
‖P′i (t)‖(Vm(Pi(t))C−Fi(t))

2dt.

In the integral above, ‖P′i (t)‖ gives an arc-length parameter-
ization of the curve so that any unit length of the boundary
has equal weight. Unfortunately, this simple minimization
interpolates boundary values only when the fitting error is
zero.

By weighting parts of the boundary that are closer to the
point of evaluation x such that the weights approach infinity
as x approaches the boundary, we can interpolate arbitrary
function values at the boundary. Several weight functions
have this property, but a natural choice is to make the weight
function inversely proportional to distance so that

Wi(x, t) =
‖P′i (t)‖

‖Pi(t)− x‖2α

where α controls the speed at which Wi(x, t) decays, and
‖P′i (t)‖ gives an arc-length parameterization. The moving
least squares minimization can then be formulated as

argmin
C

n

∑
i=1

∫ 1

0
Wi(x, t)(Vm(Pi(t))C−Fi(t))

2 dt. (1)

Since Equation 1 is quadratic in C, the global minimum is
found where the derivative is zero. Let

A =
n

∑
i=1

∫ 1

0
Wi(x, t)V

T
m (Pi(t))Vm(Pi(t))dt.

Then C is given by

C =
n

∑
i=1

A−1
∫ 1

0
Wi(x, t)V

T
m (Pi(t))Fi(t)dt.

If we suppose that Fi(t) can be represented in a polyno-
mial basis of degree k such as the Bernstein basis β j,k(t) =(

k
j

)
(1− t)k− jt j, then Fi(t) = ∑

k
j=0 β j,k(t) fi, j where fi, j

represents the jth coefficient of the function on the ith edge.
From our definition of F̂(x), we find that

F̂(x)=Vm(x)C

=Vm(x)
n

∑
i=1

k

∑
j=1

[
A−1

∫ 1

0
Wi(x, t)V

T
m (Pi(t))β j,k(t)dt

]
fi, j

=
n

∑
i=1

k

∑
j=1

Bi, j(x) fi, j

Notice that, if Fi(t) forms a continuous function, then there
are duplicated entries in fi, j because fi,k = fi+1,0. Therefore
this weighted sum above can be reindexed to remove dupli-
cates, which provides a simple, closed-form expression for

the barycentric coordinate functions associated with the co-
efficients fi, j. If k = 1, then this summation can be rewritten
in terms of bi(x) such that

F̂(x) =
n

∑
i=1

bi(x) fi

where bi(x) = Bi,0(x)+Bi−1,1(x) and fi are the function val-
ues specified at the vertices pi of the polygon. Note that this
construction produces an entire family of barycentric coor-
dinates corresponding to different values of α.

For linear Pi(t) and Fi(t), this method reproduces the
line segment construction for affine transformations in
IDMLS [SMW06]. The difference is that we never explic-
itly construct the affine transformation matrix and provide a
simpler form of the solution in terms of barycentric coordi-
nates. Furthermore, our construction is far more general and
Section 4 shows how to compute the integrals for m,k > 1
and for various values of α.

3. Derivatives

While the construction up to this point has focused on
building an interpolating function F̂(x) for values along the
boundary, it can also be useful to specify derivatives along
the boundary that F̂(x) should interpolate. Since F̂(x) inter-
polates the boundary, all derivatives of F̂(x) on the boundary
in the direction of the boundary curve are fully constrained.
Derivatives perpendicular to the boundary curve, however,
are unconstrained. We define the direction perpendicular to
the domain curve at a given parameter t as

P⊥i (t) =

(
−P′i,2(t) P′i,1(t)

)
‖P′i (t)‖

.

With this notation, the derivative of Vm(x) along the bound-
ary in the direction of P⊥i (t) is then

Gm(t) = P⊥i (t)

(
∂Vm
∂x1

(Pi(t))
∂Vm
∂x2

(Pi(t))

)
.

If the user provides derivatives F⊥i (t) along the boundary
in the direction of P⊥i (t), then we can find a set of coeffi-
cients C that minimize both the error in function values and
derivatives by

argmin
C

∑
n
i=1[

∫ 1
0 Wi(x, t)(Vm(Pi(t))C−Fi(t))2dt +∫ 1
0 Wi(x, t)(Gm(t)C−F⊥i (t))2dt ].

(2)

We have chosen to use the same weight function for conve-
nience of notation, but values and derivatives can have dif-
ferent weights. This minimization is still quadratic in C and
has a global minimum given by

A=
n

∑
i=1

∫ 1

0
Wi(x, t)

(
V T

m (Pi(t))Vm(Pi(t))+GT
m(t)Gm(t)

)
dt

C=
n

∑
i=1

A−1
∫ 1

0
Wi(x, t)

(
V T

m (t)Fi(t)+GT
m(t)F

⊥
i (t)

)
dt.
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(a) MLSC (b) MVC (c) Harmonic (d) Max Entropy (e) Wachspress

Figure 1: Comparison of basis functions over a convex polygon. Notice that (a), (b), and (c) look similar, while (d) pulls away
from the top boundary and (e) has a very steep slope.

If we also represent F⊥i (t) in the Bernstein basis such that
F⊥i (t) = ∑

`
j=0 β j,`(t) f⊥i, j , then value of the interpolant re-

duces to

F̂(x)=Vm(x)C

=
n

∑
i=1

[
k

∑
j=1

Bi, j(x) fi, j +
`

∑
j=1

Di, j(x) f⊥i, j

]

where f⊥i, j represents the jth Bernstein control point for the
cross-boundary derivative along the ith edge.

The functions Bi, j(x),Di, j(x) are generalized barycentric
basis functions and satisfy a modified set of properties from
Section 1 for barycentric functions. For example, Bi, j(x) sat-
isfies the partition of unity property

n

∑
i=1

k

∑
j=1

Bi, j(x) = 1

but Di, j(x) does not. Together, Bi, j(x) and Di, j(x) satisfy lin-
ear precision. That is, for any linear function L(x), there ex-
ists coefficients fi, j and f⊥i, j such that

L(x) =
n

∑
i=1

[
k

∑
j=1

Bi, j(x) fi, j +
`

∑
j=1

Di, j(x) f⊥i, j

]
.

In contrast to traditional barycentric coordinates, the deriva-
tive basis functions, Di, j(x), are required in addition to
Bi, j(x) for linear precision.

The final property, which is interpolation, is more subtle.
Certainly F̂(Pi(t)) = Fi(t) because the least squares problem
did not add any new constraints into the optimization for
values along the boundary. The derivative, however, may not
always be interpolated.

First, it is clear that the degree m of the function fit must
be greater than or equal to the order of the derivative being fit
along the boundary. If that were not the case, then the deriva-
tive function Gm(t) would be identically zero and derivatives
would be removed from the optimization.

Second, whether or not the derivative is interpolated de-

pends on the weight functions Wi(x, t) and how quickly they
approach infinity along the boundary. For α = 1, F̂(x) in-
terpolates Fi(t), but not F⊥i (t). However, when α ≥ 2, the
derivatives of F̂(x) match that of F⊥i (t) along the boundary.
While we have no algebraic proof of this statement, we have
verified this behavior numerically on many examples.

To reproduce a smooth function with the construction,
Fi(t) must be smooth. The data on the boundary must also
be specified consistently. For Fi(t), this means that intersec-
tions of boundary lines, such as at vertices, must share the
same value. For F⊥i (t), consistency means that no point on
the boundary can have more than one tangent plane. At ver-
tices pi, the two boundary curves Fi−1(t) and Fi(t) define a
unique tangent plane at pi as long as the lines Pi−1(t) and
Pi(t) are not collinear. Therefore, F⊥i (t) cannot be specified
independently of the derivatives of Fi−1(t) and Fi+1(t) at its
end-points.

4. Properties

We have already discussed some properties of these barycen-
tric coordinates such as interpolation of values and deriva-
tives along the boundary of the region. These barycentric
coordinates have a number of additional, interesting proper-
ties that we elaborate on below.

Arbitrary Precision

Our barycentric coordinates allow us to control the precision
of the polynomials we can reproduce. For all polynomial
functions H(x) of total degree m, there exists coefficients
fi, j for j = 0 . . .m (and likewise f⊥i, j if derivatives are speci-
fied) such that F̂(x) = H(x). Furthermore, fi, j (and f⊥i, j ) are
given by blossoming such that Fi(t) = H(Pi(t)). The reason
this statement is true is that we fit a function of total degree
m with the basis Vm(x). Regardless of the weights Wi(x, t),
the fitting error will be zero if the boundary data is compati-
ble with sampling from H(x). Since the error in Equations 1
and 2 must be positive, Vm(x)C =H(x) will be a global mini-
mum with an error of zero in the minimization. Furthermore,

c© 2010 The Author(s)
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this precision is independent of whether or not Pi(t) forms a
closed curve or consists of disconnected curves in R2. We
know of no other barycentric coordinate construction that
has this property.

We can compare our coordinates with the Hermite MVC
construction from Floater et al. [FS08] as well. The au-
thors show that their hermite interpolant has cubic precision
but requires a numerical integral to evaluate. Likewise, our
method (with or without derivative information specified)
will have cubic precision as long as m = 3.

Interpolation

Our method solves a least squares problem for every point x
within the boundary. For α > 0 the weight function Wi(x, t)
is finite everywhere except at the boundary point x = P(t)
where the value is infinite. This means that the weight of
the boundary point dominates the contribution from all other
points and the least squares problem must produce a function
such that F̂(x) interpolates the boundary.

Unfortunately, this argument does not hold for interpola-
tion of derivatives. The cross-boundary derivative of F̂(x)
for a point on the boundary depends on at least one other
point that is an infinitesimal distance away from the bound-
ary. The derivative therefore depends on a point that has
finite weight contribution from all points on the boundary.
Whether the derivative is interpolated therefore depends on
how quickly the weight function approaches infinity at the
boundary.

Smoothness

For points x that are not on the boundary, the weight function
Wi(x, t) changes smoothly in both x and t, and is, in fact,
C∞. This means that the integral of Wi(x, t) with respect t
maintains continuity in x and that the basis functions are C∞

over the interior of the domain.

Closed-Form

As long as the boundary curves Pi(t) are linear, our coor-
dinates have a closed-form solution regardless of the order
polynomial basis Vm(x) we solve for, the order of the bound-
ary values Fi(t), and the order of the derivatives F⊥i (t). First
note that all integrals are over rational functions. Also, al-
though the term ‖P′i (t)‖ implicitly includes a square root,
this value is constant for linear Pi(t). Notice also that, once
constants are factored out, the denominator of the rational
functions is created solely by the weight function Wi(x, t)
and has a special form. Since the denominator is the squared
magnitude of a linear function, the denominator is some
quadratic Q = a+bt + ct2 raised to the power α.

Because of the additive property of integrals, each of the
summands in the numerator can be integrated separately, so

(a) MLSC (b) MVC

(c) Harmonic (d) Max Entropy

Figure 2: Comparison of basis functions over a concave,
U-shaped polygon. MLSC uses α = 2. Notice that (b) has a
large negative region and values larger than 1, while (c) and
(d) are always positive.

that it is sufficient to consider integrals only of the form∫ t idt
Q j+1 . Although i and j can be arbitrary positive numbers,

we can use recurrence relationships for integrals of this form
to reduce the degree of the numerator and the denomina-
tor [Pei29]. To reduce the power of the numerator, we apply
the relationship∫

t idt
Q j+1 =− t i−1

(2 j− i+1)cQ j −
b( j− i+1)
c(2 j− i+1)

∫
t i−1dt
Q j+1

+
a(i−1)

c(2 j− i+1)

∫
t i−2dt
Q j+1 .

Once the numerators are all either constant or linear, the
order of the denominator can be reduced though the recur-
rences∫

t dt
Q j+1 =− 2a+bt

j(4ac−b2)Q j −
b(2 j−1)

j(4ac−b2)

∫
dt
Q j∫

dt
Q j+1 =

2ct +b
j(4ac−b2)Q j +

2c(2 j−1)
j(4ac−b2)

∫
dt
Q j .

It is then easy to verify that the base cases of the integrals
have closed-forms. Matrix inversion also has a closed-form
solution, so the entire equation for calculating coordinates
has a closed-form.

c© 2010 The Author(s)
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5. Results

Several types of barycentric coordinates have been described
in the last several years, and we will compare our results with
the most prominent types. For these comparisons, we fit lin-
ear polynomials (m = 1) and set α = 2. First, we compare
basis functions in a convex polygon with obtuse angles and
short sides in Figure 1. The vertex associated with the ba-
sis function is shown as a black dot. In the image, we show
contour lines for the basis functions at increments of 1

10 . We
draw the zero contour in black, contours in between 0 and 1
in red and negative valued contours in blue.

Among the types of coordinates shown, Harmonic co-
ordinates produce the most visually pleasing result, and
both MLSC and MVC have similar looking basis func-
tions to Harmonic coordinates. Maximum Entropy coordi-
nates exhibit high curvature contours along the short edge.
Wachspress coordinates clearly produce undesirable con-
tours in this example, because the function value changes
very quickly near the vertex of the basis function. In fact, as
the angle approaches 180 degrees at a vertex, the derivatives
of Wachspress coordinates are unbounded.

We also compare methods that are defined over concave
polygons in Figure 2. Polygons that have points in the do-
main with small Euclidean distance but large geodesic dis-
tance often prove problematic for barycentric coordinates.
Again, Harmonic coordinates are typically superior in this
situation because they depend only on geodesic distance and
minimize curvature, though at a high computational cost.
MEC now compare favorably to MLSC and MVC, because
they are guaranteed to be positive. This figure also illustrates
a tradeoff between MLSC and MVC. MVC produce basis
functions with lower curvature and more regular shapes, but
can have larger negative regions and larger maximum and
minimum values. For example, MVC have values greater
than 1 in this figure (the contour of value 1 is drawn in yel-
low). Negative values are undesirable, because interpolated
values may extend beyond the range of the boundary values
in regions where the basis functions are negative.

In Figure 3 we show an example of the basis functions
that result from derivative constraints. In this example, func-
tion values are linearly interpolated along line segments, but
cross boundary derivatives use a quadratic Bezier basis. This
quadratic basis leaves one degree of freedom for manipulat-
ing derivatives, because the values at the ends of the line seg-
ments are constrained to match the tangent plane defined by
the function values at the corners. In this figure, the top im-
ages show the bases corresponding to a single point without
derivative constraints (left) and with derivative constraints
(right) at increments of 1

10 .

When we add derivative constraints, the basis func-
tions corresponding to boundary values must create cross-
boundary derivatives with zero magnitude. As a conse-
quence, all contour lines are perpendicular to the boundary.
We have also observed that Bi, j(x) tend to be positive when

(a) Func Orig. (b) Func Deriv.

(c) Deriv Side 1 (d) Deriv Side 2

Figure 3: Basis functions of our method with derivatives
over a concave polygon with α = 2. Above: the basis func-
tion of a vertex with and without constrained derivatives.
Below: the basis functions of the middle control point of the
derivatives.

derivatives are specified. In fact, we have found no examples
in which negative values occur no matter how convoluted
the shape of Pi(t) is. This is in contrast to MVC or even
our own coordinates without derivative constraints, both of
which routinely have negative regions in the basis functions
when applied to non-convex shapes. Unfortunately, we have
not yet found a proof showing that Bi, j(x) is always greater
than zero in this case.

The bottom images show the basis functions associated
with the derivative control point at the center of the edge
in increments of 1

200 . Note that, in contrast to the basis func-
tions associated with the vertices, these derivative basis func-
tions can and will be negative, though only very slightly so.
In this example, Di,1(x)> −1

100 .

Our construction also defines many members of a family
of coordinates that are all well-defined and have closed-form
solutions. Figure 4 shows six members of this family corre-
sponding to different values of α and using different degree
polynomials m in the moving least squares optimization. In
Figure 5 (top) we also show interpolation of boundary values
with m = 1,2 where the boundary data is given by quadratic
curves . Using linear polynomials (m= 1) typically produces
basis functions with the smallest oscillations. While all of
these coordinates provide linear precision, higher values of
m provide the ability to reproduce functions up to degree m
assuming that the Fi(t) are also of degree m. When bound-
ary derivatives are specified, the utility of fitting higher or-
der polynomials becomes clear. If, for example, all of the

c© 2010 The Author(s)
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(a) m = 1,α = 1 (b) m = 1,α = 2

(c) m = 2,α = 1 (d) m = 2,α = 2

(e) m = 3,α = 1 (f) m = 3,α = 2

Figure 4: Several example basis functions are shown with
linear precision (top), quadratic precision (middle), and cu-
bic precision (bottom). For each precision, we also show the
effect of varying α by using α = 1 on the left, and α = 2 on
the right.

boundary derivatives are specified to be negative as is shown
in Figure 5 (bottom), one expects a bowl shape like the one
admitted by quadratic functions. Figure 6 shows the same
example with m = 2 except that we modify the derivatives at
the center of each edge to be different values.

Like most other types of barycentric coordinates, our co-
ordinates extend to 3D polytopes. While in 2D we fit a poly-
nomial basis Vm(x) to the values on the boundary of a curve,
in 3D we fit a polynomial basis to the values of the bound-
ary of a surface. For simplicity, we assume that the surface
is closed and has triangular faces. The coefficients C of the
basis can then be found by minimizing the following expres-
sion.

argmin
C

n

∑
i=1

∫ 1

0

∫ t

0
Wi(x,s, t)(Vm(Pi(s, t))C−Fi(s, t))

2 ds dt

Although we do not know of any closed-form for this sur-
face integral, it is possible to evaluate the integral numer-
ically. Note that we do have a closed-form for the interior

(a) m = 1 (b) m = 2

(c) m = 1, with derivatives (d) m = 2, with derivatives

Figure 5: A 3D graph of interpolation (α = 2) over a hexag-
onal boundary with m = 1 (left) and m = 2 (right) using
quadratic boundary curves. The top row performs interpola-
tion without derivatives while the bottom row uses quadratic
derivative curves with negative derivatives along the center
of each edge.

integral over s, which can be used to accelerate/improve the
numerical integral over the surface.

One application of these 3D coordinates is to calculate de-
formations of an object. If the object is enclosed in a bound-
ing polytope with vertices pi, then every position x within
the polytope can be represented by its barycentric coordi-
nates as x = ∑i bi(x)pi. Deformed positions x̂ can then be
calculated for a modified polytope with vertices p̂i from the
previously calculated coordinates as x̂ = ∑i bi(x)p̂i. Figure 7
shows an example of deformations of a 3D model performed
with this method.

6. Conclusions

In this paper we have presented a barycentric coordinate ba-
sis that we believe has several useful properties. Our con-
struction provides an entire family of barycentric coordi-
nates with closed-form solutions that are well-defined for
arbitrary polygons (even disconnected curves), reproduce
functions to a specified degree m and can interpolate deriva-
tive information for some values of α.

The current limitations of these coordinates are that they
are not guaranteed to be positive and we lack proofs for some
observed properties such as interpolation of derivatives and
for positivity of the vertex basis functions when derivatives
are interpolated. Extending our construction to interpolate
higher order derivatives also follows in a straight-forward
manner from Section 3. However, it is unclear what restric-
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(a) positive (b) negative

(c) alternating 1 (d) alternating 2

Figure 6: A hexagon with quadratic function values and
derivatives specified along the edges. The derivatives at the
end-points are constrained by the function values, but we
modify the derivative in the center of each edge. We con-
strain the derivative in the center of the edge to be either all
positive, negative, or alternating in sign.

tions on α must hold in order to guarantee interpolation and
we would like to explore this idea in the future.
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