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Figure 1: Deformation using Moving Least Squares. Origimage with control points shown in blue (a). Moving Least &es deforma-
tions using af ne transformations (b), similarity transfeations (c) and rigid transformations (d).

Abstract

We provide an image deformation method based on Moving Least

Squares using various classes of linear functions inctudime,
similarity and rigid transformations. These deformatiams real-
istic and give the user the impression of manipulating veaiid
objects. We also allow the user to specify the deformatiaisgu
either sets of points or line segments, the later useful éotrol-
ling curves and pro les present in the image. For each ofdhes
techniques, we provide simple closed-form solutions thetyfast
deformations, which can be performed in real-time.

CR Categories: 1.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Boundary representations;veur
surface, solid, and object representations; Geometriarighgns,
languages, and systems

Keywords: Deformations, moving least squares, rigid transforma-
tions

1 Introduction

Image deformation has a number of uses from animation, te mor
phing [Smythe 1990] and medical imaging [Warren et al. 2003]
To perform these deformations the user selects some setnef ha
dles to control the deformation. These handles may takecitme f

of points [Bookstein 1989], lines [Beier and Neely 1992],eoen
polygon grids [MacCracken and Joy 1996]. As the user modi es
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the position and orientation of these handles, the imageldlute-
form in an intuitive fashion.

We view this deformation as a functidnthat maps points in the
undeformed image to the deformed image. Applying the famncti
f to each pointv in the undeformed image creates the deformed
image. Now consider an image with a set of hangiiéisat the user
moves to new positiong. For f to be useful for deformations it
must satisfy the following properties:

Interpolation The handles should map directly tq under
deformation. (i.ef(pi) = q).

Smoothnessf should produce smooth deformations

Identity. If the deformed handlegare the same as thg then
f should be the identity function. (i.g; = pi) f(v)= V).

These properties are very similar to those used in scattitd
interpolation. The rst two properties simply state thae tfunc-
tion f interpolates the scattered data values and is smooth. $he la
property is sometimes referred to as linear precision irmfpFoxi-
mation eld. It states that if data is sampled from a lineandtion,
then the interpolant reproduces that linear function. Gitrese
similarities, it comes as no surprise that many deformatith-
ods borrow techniques from scattered data interpolation.

Previous Work

Previous work on image deformation has focused on specify-
ing deformations using different types of handles. Griddzh
techniques such as free-form deformations [Sederberg amy P
1986; Lee et al. 1995] parameterize the image using bieacialbic
splines to creat€? deformations. Typically these methods require
aligning grid lines corresponding to the control pointsta# spline
with features of the image, which can be cumbersome for tee us

Beier et al. [Beier and Neely 1992] improve upon these grid-
based techniques and allow the user to specify the defamati
using sets of lines. This method is based on Shepard's inter-
polant [Shepard 1968] and creates smooth deformations etfaw
the authors note that their method produces complicatepsxbat



Figure 2: Deformation of the test shape from gure 1 usingthi
plate splines (left). The deformation is smooth but lacksisen.
On the right we use the method by Igarashi et al. shown with tri
angulation (right). The lack of smoothness is clearly \V&sin the
wood grain.

can sometimes suffer from “ghosts”, undesirable foldinthim de-
formation. Koba et al. [Kobayashi and Ootsubo 2003] laterege
alized this technique to surface deformations.

Very few deformation methods investigate the type of transf
mations that are desirable for performing deformation. Gutable
exception is worked based on thin-plate splines [Booksi€ig9]
that attempts to minimize the amount of bending in the defarm
tion. Bookstein presents a deformation algorithm usingstine-
plest deformation handle, a point, that uses radial basistifons
with thin-plate splines. Figure 2 (left) shows an examplethef
deformation created with thin-plate splines for our exasipl g-
ure 1. The deformation appears very similar to the af netmdtin
gure 1. In both cases, the test shape undergoes local ndarom
scaling and shearing, which is undesirable in many apjdicst

Our paper builds primarily on a recent paper by Igarashi et
al. [lgarashi et al. 2005] that proposes a point-based indiafer-
mation technique for cartoon-like images in which the résglde-
formations are as “rigid-as-possible”. Such deformatiamehthe
property that amount of local scaling and shearing is minédi
(The concept of rigid-as-possible transformations wasfitest in-
troduced in Alexa [Alexa et al. 2000].)

To produce rigid-as-possible deformations, Igarashi .etran-
gulate the input image and solve a linear system of equatibose
size is equal to the number of vertices in the triangulatiorcon-
trast, our method creates deformations by solving a snmahli
system (2 2) at each point in a uniform grid (see Section 4 for de-
tails). Since, we solve much smaller systems of equatiops;an
create very fast deformations of grids consisting of tenshofi-
sands of vertices in real-time whereas Igarashi et al. tepat
their methods slows at 300 vertices on a 1 GHz machine. Due to
the relatively small number of vertices, the deformatiorsdpced
by lgarashi et al. may contain noticeable discontinuitest@own
in gure 2. Figure 7 shows an equivalent deformation with our
technique, which appears smooth.

Contributions

In this paper, we propose an image deformation method based o
linear Moving Least Squares. To construct deformationsrtha-
imize the amount of local scaling and shear, we restrict theses
of transformations used in Moving Least Squares to sintyland
rigid-body transformations. By using MLS, we avoid the n¢ed
triangulate the input image (as done in Igarashi et al.) andyze
deformations that are globally smooth.)

Next, we derive closed-form formulas for both similaritydan
rigid MLS deformations. These formula are simple, easy tolém
ment and provide real-time deformations. This derivatiglies on
a surprising and little-known relationship between sinitjetrans-

formations and rigid transformations that minimize a comreast
squares problem. As opposed to Igarashi et al., our fornuldasot
require the use of a general linear solver.

As a natural extension of our point-based method, we extand o
MLS deformation method from sets of points to sets of line-seg
ments and again provide closed-form expressions for thétisg
deformation method.

2 Moving Least Squares Deformation

Here we consider building image deformations based onatailes
of points with which the user controls the deformation. kpdbe

a set of control points and the deformed positions of the con-
trol points p. We construct a deformation functidnsatisfying the
three properties outlined in the introduction using Movibeast
Squares [Levin 1998]. Given a poiwatin the image, we solve for
the best af ne transformatioly(x) that minimizes

A wilv(p) i (1)

wherep; andg; are row vectors and the weights have the form

w; = 1 .
E

Because the weights; in this least squares problem are dependent

on the point of evaluatior, we call this aMoving Least Squares

minimization. Therefore, we obtain a different transfotimal, (x)

for eachv.

Now we de ne our deformation functiori to be f(v) = Iy(V).
Observe that as approaches;, w; approaches in nity and the
function f interpolates, (i.ef(p;) = gi). Furthermore, ifg; = pj,
then eachy(x) = x for all x and, thereforef is the identity trans-
formation f(v) = v. Finally, this deformation functiorf has the
property that it is smooth everywhere (except at the comoatts
pi whena 1).

Now sincely(X) is an af ne transformation,(x) consists of two
parts: a linear transformation matii% and a translatiof .

lv(X)= xM+ T 2
We can actually remove the translatidn from this minimiza-
tion problem further simplifying these equations. Equatb is
quadratic inT. Since the minimizer is where the derivatives with
respect to each of the free variabled,ifx) are zero, we can solve
directly for T in terms of the matriM. Taking the partial deriva-
tives with respect to the free variableslirproduces a linear system
of equations. Solving for yields that

T=q pM

wherep andqg are weighted centroids.

& Wip;
Lai Wi
aiWigi
aj Wi

q

With this observation we can substitule into equation 2 and
rewritely(x) in terms of the linear matriM.

@)

Based on this insight, the least squares problem of equéatzan
be rewritten as

() =(x p)M+q

awipM Gj* 4)
I



wherepi= pi p anddi = g g . Notice that Moving Least
Squares is very general in that the matkxdoes not have to be
a fully af ne transformation. In fact, this framework all@ws to
investigate different classes of transformation matridesin par-
ticular, we are interested in the case whbtds a rigid transfor-
mation. However, we rst examine the case whatdas an af ne
transformation as the derivation is the simplest. Next westroict
deformations with similarity transformations and show hilvese
solutions can be used to nd closed-form solutions to Moviegist
Square deformations with rigid transformations.

2.1 A ne Deformations

Finding an af ne deformation that minimizes equation 4 raight-
forward using the classic normal equations solution.

by

M= & wp  &wp] G
i i

Though this solution requires the inversion of a matrix, riegtrix

is a constant size (2 2) and is fast to invert. With this closed-form
solution forM we can write a simple expression for the deformation
function fa(v).

'

faW=(v p) afwp AwpG+a: (5
i i

Applying this deformation function to each point in the ineagye-
ates a new, deformed image.

While the user creates these deformations by manipulatiag t
pointsq, the pointsp are xed. Since thep do not change during
deformation, much of equation 5 can be precomputed yielding
fast deformations. In particular, we can rewrite equatian e
form

faV)= & AjGj+q :
J

whereA is a single scalar given by

'

Aj=(v p) apwp  wp:
]

Notice that, given a point, everything inAj can be precomputed
yielding a simple, weighted sum. Table 1 provides timinguhss
for the examples in this paper, which shows that these defioons
may be performed over 500 times per second in our examples.

Figure 1 (b) illustrates this af ne Moving Least Squaresatef
mation applied to our test image. Unfortunately, the defdiam
does not appear very desirable due to the stretching in the and
torso. These artifacts are created because af ne tranattwns in-
clude deformations such as non-uniform scaling and shealifh-
inate these undesirable deformations we need to considgicte
ing the linear transformatiok,(x). In particular, we modify the
class of deformationk,(x) produces by restricting the transforma-
tion matrixM from being fully linear to similarity and rigid-body
transformations.

2.2 Similarity Deformations

While af ne transformations include effects such as noifarm

scaling and shear, many objects in reality do not undergo these
simple transformations. Similarity transformations arspecial
subset of af ne transformations that only include trarisiat ro-
tation and uniform scaling.

To alter our deformation technique to only use similarigys-
formations, we constrain the matri to have the property that
MTM = | 2| for some scalaf . If M is a block matrix of the form

M= Mj_ Mz

whereM;, M, are column vectors of length 2, then restrictivig
to be a similarity transform requires thét/ My = MIM, = | 2
andM{ M = 0. This constraint implies thafl, = M where? is
an operator on 2 vectors such thaix;y)? =( y;x). Though re-
stricted, the minimization problem from equation 4 is stilladratic
in M1 and can be rephrased as nding the column vebfigrthat
minimizes

o pi T2

aw 2 Mi G

i pi
This quadratic function has a unique minimizer, which yéette
optimal transformation matriki

1, f)i AT 2T
M= — A N | 7 6
maw e (4 g (6)
where

m= 4 wipip:
i

Similar to the af ne deformations, the user manipulates ghe

produce the deformation while theremain xed. Using this ob-
servation we write the deformation functidig(v) in a form that
allows us to precompute as much information as possifalg) is

then

£ = & 6(A)*

whereny and A depend only on thej, v and can be precomputed
andA is
pi v p T

A N

7

As expected, similarity MLS deformations preserves angies
the original image better than af ne MLS deformations. ({isor-
mations that strictly preserve angle are called conformeaistfor-
mations and have been studied extensively in [Gu and Yau]3003
While approximate (or exact) angle preservation is a dekgnarop-
erty in many cases, allowing local scaling can often leadndeu
sirable deformations. Figure 1 (c) shows an example of apgly
the similarity Moving Least Squares deformation to our iestge.
The result is a much more realistic looking deformation tfian
However, this deformation scales the size of the upper ariisis
stretched. To remove this scaling, we consider buildingchea-
tions using only rigid transformations.

2.3 Rigid Deformations

Recently, several works [Alexa et al. 2000; Igarashi et 805}
have shown that, for realistic shapes, deformations shbelés
rigid as possible; that is, the space of deformations shootieven
include uniform scaling. Traditionally researchers inatefation
have been reluctant to a;lqproach this problem directly dugaego
non-linear constraint tha#l' M = |. However, we note that closed-
form solutions to this problem are known from the Iteratedsekt
Point community [Horn 1987]. Horn shows that the optimaldig
transformation can be found in terms of eigenvalues ancheae
tors of a covariance matrix involving the poirgsandg;. We show
that these rigid deformations are related to the similatéforma-
tions from section 2.2 via the following theorem.



Figure 3: Original image (left) and its deformation using tigid
MLS method (right). After deformation, the face is thinnedashe
is smiling.

Theorem 2.1 Let C be the matrix that minimizes the following sim-
ilarity functional
min_§ wjpM  Gj*:

MTM=12

If C is written in the forml R where R is a rotation matrix and is
a scalar, the rotation matrix R minimizes the rigid functabn
. o P ’ 2
min wijpiM i<
v, al i) Bi diJ

Proof: See Appendix A.

This theorem is valid in arbitrary dimension, however, ivésy
easy to apply in B. Using this theorem, we nd that the rigid
transformation is exactly the same as equation 6 excepivhate
a different constanty in the solution so thati™M = | given by

u 1 2 H 2
m= awap + awap’
i i

Unlike the similarity deformatiorfs(v), we cannot precompute as
much information for the rigid deformation functidia(v). How-
ever, the deformation process can still be made very eftcieat

Tr(v) = é. GiA
I

whereA is de ned in equation 7, which may be precomputed. This

vectorT;(v) is a rotated and scaled version of the vestorp . To

computef, (v) we normalizef;, scale by the length of p (which
also can be precomputed), and translate by

. Tr(v)
Pl

This method is slower than the similarity deformation dughe
normalization; however, these deformations are still Viast as
shown in table 1.

fr(V) = jv q: 8)

Figure 1 (d) shows this rigid deform applied to the test image

in (a). As opposed to the other methods, this deformationiteq
realistic and almost feels as if the user is manipulatingbabject.
Figures 3 and 4 show additional examples of this rigid de&diom

method. In the gure with the Mona Lisa, we deform the image to

create a thinner facial pro le and make her smile. In the guvith
the horse, we stretch the horses legs and neck to createfi@ gira
Due to the use of rigid transformations, the deformationmaéins
rigidity and scale locally so that the body and head of theséor
retain their relative shape.

Figure 4: Original image (left) and its deformation using tigid
MLS method (right).

3 Deformation with Line Segments

So far we have considered creating deformations with Moving
Least Squares using only sets of points to control the deftiom.
In applications where precise control over curves such@sesrin
the image is needed, points may be insuf cient for speciyimese
deformations. One solution that allows the user to contnoves
precisely is to convert these curves to dense sets of paidtsyp-
ply a point-based deformation [Wolberg 1998]. The disatkga
of this approach is that the computation time of the defoionais
proportional to the number of control points used and cngdtirge
numbers of control points adversely affects performance.
Alternatively, we desire a generalization of these Movireast
Squares deformations from section 2 to arbitrary curvesha t
plane. First, assumg(t) is theit" control curve andj (t) is the de-
formed curve corresponding 1g(t). We generalize the quadratic
function in equation 1 by integrating over each control eyn\(t)
where we assume2 [0; 1].

Z
a o WOIROM+T Gi(1)j?

9)

wherew;(t) is
1310)
jpi(t) vj#@a
andpXt) is the derivative ofj(t). (This factor of p{t)j makes the
integrals independent of the parameterization of the ciyx(g.)

Now notice that, despite the integral, equation 9 is stildpatic in
T and can be solved for in terms of the matkix

wi(t) =

T=q pM
wherep andqg are again weighted centroids.

R
PO 0L

p = 2 R
i o Wi(t)dt
q 3, S (10)
& owi(dt
Therefore, we rewrite equation 9 only in termshdfas
Z;
a wOisoOM GO (11)
I
where R
B = @ p
Gt) = a() q:



Figure 5: Deformation of the Leaning Tower of Pisa. From tefright: original image, Af ne MLS, Similarity MLS and Rigi MLS

deformations.

Until now, pi(t) andg;(t) have been arbitrary curves. However,

the integrals in equation 11 may be dif cult to evaluate fduitrary

functions. Instead, we restrict these functions to be legrsents
and derive closed-form solutions for the deformations imteof
the end-points of these segments. Similar to section 2, atecon-
sider af ne transformations due to its relatively simpleridation

and then move to similarity transformations, which we useréate
closed-form solutions to the equivalent problem usingdrigody
transformations.

3.1 Ane Lines

As before, we write the deformation functida(v) as

o Cj
fa(v) = a Aj dJ] +q
J

whereAjisal 2 matrix of the form

. 1
T A.
W 2i

bj

> D
RS

.
Aj=(v p) A Wi
I

o
o

During the deformation, the end-poirgisandb; of the line segment

Sincepi(t), Gi(t) are line segments, we can represent these curves p;j(t) are xed while the user manipulates the end-poigtandd;

as matrix products

ey g
p= 1t t g
GH= 1t t 4

wherea;, bj are the end-points gfi(t) andd;, d; are the end-points
of gi(t). Equation 11 is then written as

Z,

o & Gi
1t t s M - 12
&, ) g (12)
whose minimizer is
|

P ~ 1 A T A

= 8 @ g g 4 G

M al' b W o] aj' bj Wi o]

whereW is a weight matrix given by

mOO 0(01
W = ot dll
I

and thed are integrals of the weight functiom;(t) multiplied by
the different quadratic polynomials.

@ = Hwoa ot
= Rolwi(t)(l t)tdt
il = wi(bt3dt

These integrals have closed-form solutions for variousasbfa.
In appendix B we provide a closed-form solution fo= 2 though
other solutions can be computed with the aid of a symbolegira-
tion package. Note that these integrals can also be usedlitaty
p andg from equation 10.

év a(d00+ d01)+ b|(d01+ dll)
p - d00+ 2d01+ g1l

al c.(d°°+ d01)+ d (d(51+ dll)
q - & d00+ 2d01+ dll

of the line segmentg; (t). SinceA; is independent of; andd;, Aj
can be precomputed.

Figure 5 shows an example deformation performed with lige se
ments where we modify the Leaning Tower of Pisa to lean the op-
posite direction and shrink the tower. The Af ne MLS defortina
shears the tower to the side instead of being rotated andrdies
appear to be realistic. To remove this shear effect, weicestie
matrix in equation 11 to be a similarity or rigid-body tramsha-
tion.

3.2 Similarity Lines

Restricting equation 12 to similarity transforms requirdst
MTM = | 2| for some scalaf . As noted in section 2.2 can
be parameterized using a single column veberyielding

1 1¢ 0 t o é'é,? &
a OltOt%%6i§M1 dfrg
I B,,
1

This error function is quadratic iM;. To nd the minimizer, we
differentiate with respect to the free variablesMa and solve the
linear system of equations to obtain the matvix

0 4
g; !

1.8 & ¢ T
= —a § W TodT (13)

whereW, is a weight matrix

0 1
d© o d* o
0 d° 0 d*
a0 gt 0
(]) 01 6 gl



Figure 6: Comparison of the line deformation method of Beier
al. (left) with the Rigid MLS deformation (right).

andm is again a scaling constant, which has the form
m=§ & d+ 245/ d”+ bib o™
i
This deformation function has a very similar structure te th

point-based similarity deformation. Using this matrix weites
fs(v) explicitly as

.1
fsv=ace¢ di ) A)+a
i m
whereAjisa4 2 matrix.
0 . 1
aj7 T
a vV p
A: = W% | §
mNe b v p)

b’)

: (14)
i

Figure 5 shows the tower deformed using this similarityelohs
method. In contrast to the af ne method, the tower actughiyears
to be rotated, not sheared, to the left resulting in a morkstiza
deformation. Similarity transformations contain unifoswoaling,
which is apparent from the way in which the tower shrinks vt
line segment. Rigid transformations remove this uniforalisg.

3.3 Rigid Lines

Using the solution from section 3.2 and Theorem 2.1, we imme-
diately have a closed form solution for rigid-body transfiations.
The transformation matrix is, therefore, the same as equadtB
except we choose a different scaling constgnso thatMTM = |.
|
iT (2T q
A b; b; Wi d'JJ'
j ]
This deformation is non-linear, but we can compute it in a-sim
ple fashion using equation 8. This equation uses the rotageibr

Figure 1 Figure 4 Figure 5
Method 7 goints) (1lgpoints) (7glines)
Afne MLS 1.5ms 2.2ms 1.5ms
Similarity MLS 2.3ms 3.4ms 1.6 ms
Rigid MLS 2.6ms 3.8ms 3.3ms
[Bookstein 1989] 2ms 2.7ms N/A
[Beier and Neely 1992] N/A N/A 1.6ms

Table 1: Deformation times for the various methods.

Tr(v), scales the vector so that its lengthjis p j and translates
by g . For this deformation using line segments, the rotatedovect
is given by

V= aC¢ di)A
J

whereA; is from equation 14.

Figure 5 (right) shows a deformation of the tower using tlgjilr
method. In this deformation, the tower is rotated but do¢sionk
as the similarity deformation does. Instead the effectnsost the
same as non-uniform scaling along the direction of the lieg-s
ment.

Figure 6 also shows a comparison of the rigid deformatioh-tec
nigue (right) with the line deformation method of Beier et{Bleier
and Neely 1992] (left). The warps created with Beier et adéthod
fold and pull in unrealistic ways whereas the rigid methodglnot
suffer from these same defects.

4 Implementation

To implement these deformations, we precompute as much-info
mation as possible for the deformation functioi{s). When we
apply the deformation to an image, we typically do not apfiy)

to every pixel in the image. Instead we approximate the invete

a grid and apply the deformation function to each vertex éngtid.
We then Il the resulting quads using bilinear interpolatisee g-
ure 7).

Figure 7: Deforming an image with a uniform grid (5&0). Orig-
inal image (left) and rigid MLS deformation (right) usindibear
interpolation in each quad.

In practice, this approximation technique produces deftions
indistinguishable from the more expensive process of apglthe
deformation to every pixel in the image. For all of the exaaspl
in this paper, the images were approximately 5EDO pixels. To
compute the deformations, we used grids on the order of 101D
vertices. If desired, more accurate deformations may beweth
with denser grids and the deformation time is linear in thenber
of vertices of these grids.



Table 1 shows the amount of time taken to deform each of the the simple, Euclidean distance used as our weight factoini&®ed
images using various methods on a 3 GHz Intel machine. Each de to explore this issue in future work.

formation uses a grid of size 100100. The rigid transformations
take the longest due to the square root in the deformatioctifum
but are still quite fast.

Figure 8: Foldback caused during deformations.

5 Conclusions and Future Work

We have provided a method for creating smooth deformatidéns o
images using either points or lines as handles to controdthe
formation. Using Moving Least Squares we created defomati
using af ne, similarity and rigid transformations while quiding
closed-form expressions for each of these techniques. grhthe
least squares minimization with rigid transformationste@ non-
linear minimization, we showed how these solutions coulddre-
puted directly from the closed-form deformation using &amify
transformations thereby bypassing the non-linear miratron.

In terms of limitations, our method may suffer from fold-kac
like most other space warping approaches. These situations
cur when the sign of the Jacobian bithanges. For many defor-
mations, these fold backs may not be noticeable though regtre
deformations will certainly cause such fold-backs to hap(see
gure 8). For some deformations, fold-backs are acceptalriee
these 2D images are meant to represent 3D objects. Igataahi e
take advantage of the explicit topology of the image and iga
simple method for rendering these deformations. Our ladkpdl-
ogy makes this technique dif cult though topological infieation
may be added to our method.

In other applications, fold-backs are not desirable andtrbes
eliminated. There is a generic approach available for xihgse
fold-backs provided by Tiddeman et al. [Tiddeman et al. 2001
Given a warp, Tiddeman et al. create a subsequent warp sath th
the product of the two warps results in a non-negative Jacobi
Since we provide simple equations for our deformations,nienid
to explore the possibility of constructing closed-formednfulas
for the Jacobian for use with Tiddeman et al.'s method.

Our warping technique also deforms the entire plane thanhthe
age lies in without regard to the topology of the shape intiege.
This lack of topology is both a bene t and a limitation. Onetloé
advantages of our approach is the lack of such topology, wdrie-
ates a simple warping function. Other techniques such aasba
et al. [Igarashi et al. 2005] construct triangulations thaiine the
boundary of the shape and build deformations dependenten th
speci ed topology. This topological information can credtetter
deformations by separating parts of the images such asdbefe
the horse in gure 4 that are geometrically close togethentidé
that our method is general enough to accommodate diffeiient d
tance metrics dependent on the topology of the shape rdtaer t

Finally, in the future we would like to explore generalizithgse
deformation methods toCBto deform surfaces. Such a generaliza-
tion has potential applications in the motion capture eldese an-
imation data can take the form of points in space for eachdram
animation. However, the similarity transformation in $ect2.2 no
longer leads to a quadratic minimization, but an eigenveatob-
lem and we are looking into methods to ef ciently compute the
solution to this minimization.

References

ALEXA, M., COHEN-OR, D., AND LEVIN, D. 2000. As-
rigid-as-possible shape interpolation. Pmoceedings of ACM
SIGGRAPH 2000ACM Press/Addison-Wesley Publishing Co.,
New York, NY, USA, 157-164.

BEIER, T., AND NEELY, S. 1992. Feature-based image metamor-
phosis. INSIGGRAPH '92: Proceedings of the 19th annual con-
ference on Computer graphics and interactive technigd€v
Press, New York, NY, USA, 35-42.

BOOKSTEIN, F. L. 1989. Principal warps: Thin-plate splines and
the decomposition of deformation$EEE Trans. Pattern Anal.
Mach. Intell. 11 6, 567-585.

Gu, X., AND YAU, S.-T. 2003. Global conformal surface param-
eterization. INSGP '03: Proceedings of the 2003 Eurograph-
ics/ACM SIGGRAPH symposium on Geometry proces$ing
rographics Association, Aire-la-Ville, Switzerland, Szérland,
127-137.

HORN, B. 1987. Closed-form solution of absolute orientatiomgsi
unit quaternionsJournal of the Optical Society of America A 4
4 (April), 629-642.

IGARASHI, T., MOSCoVICH, T., AND HUGHES, J. F. 2005. As-
rigid-as-possible shape manipulatiohCM Trans. Graph. 243,
1134-1141.

KoBAYASHI, K. G.,AND O0TSsuUBO, K. 2003. t-ffd: free-form de-
formation by using triangular mesh. 8M '03: Proceedings of
the eighth ACM symposium on Solid modeling and applications
ACM Press, 226-234.

LEE, S.-Y., HWA, K.-Y., AND SHIN, S. Y. 1995. Image meta-
morphosis using snakes and free-form deformations.SIB-
GRAPH '95: Proceedings of the 22nd annual conference on
Computer graphics and interactive technigua€M Press, New
York, NY, USA, 439-448.

LEvIN, D. 1998. The approximation power of moving least-
squaresMathematics of Computation 6224, 1517-1531.

MACCRACKEN, R., AND Jov, K. I. 1996. Free-form deforma-
tions with lattices of arbitrary topology. IRroceedings of ACM
SIGGRAPH 1996ACM Press, 181-188.

SEDERBERG T. W., AND PARRY, S. R. 1986. Free-form de-
formation of solid geometric models. Froceedings of ACM
SIGGRAPH 1986ACM Press, 151-160.

SHEPARD, D. 1968. A two-dimensional interpolation function for
irregularly-spaced data. IRroceedings of the 1968 23rd ACM
national conferenceACM Press, 517-524.



SMYTHE, D. 1990. A two-pass mesh warping algorithm for object The integrals then have the closed-form solution
transformation and image interpolation. Tech. Rep. 108M |

Computer Graphics Department, Lucas Im, San Rafael, Calif ROIWi (1 t)2dt = jaéD?ij %2; bi;q
TIDDEMAN, B., DUFFY, N., AND RABEY, G. 2001. A general Rolwi(t)t(l t)dt = jai'ZD?ij 1 bf;q

method for overlap control in image warpingcomputers and R, Y

Graphics 251, 59-66. owtddt = B P A

WARREN, J., U, T., EICHELE, G., THALLER, C., CHIU, W.,
AND CARSON, J. 2003. A geometric database for gene ex-
pression data. IBGP '03: Proceedings of the 2003 Eurograph-
ics/ACM SIGGRAPH symposium on Geometry proces&ibg-
176.

Whenv is on the line segment de ned kg andb;, these integrals
do not need to be evaluated because the fundt{e) interpolates
the line segments. However,\fis on the extension of one of these
line segments); = 0 and these integrals reduce to

ja_bij®
3((v b)(b a)N((a _v)(b a)T)?

6((v b)(b q)T)Z((é V(b &)T)?
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A Appendix

Here we provide a proof of Theorem 2.1.

Theorem 2.1Let C be the matrix that minimizes the following sim-
ilarity functional
. o N ~ 2
min w; jpiM i
MTM:IZIai' i ] i diJ
If C is written in the forml R where R is a rotation matrix and is
a scalar, the rotation matrix R minimizes the rigid functabn

in 3 wipM Gj%:
MrTnl\}lrll a| Wi ] Bi di)

Proof: First, we expand both of the above error functions into their
guadratic forms yielding

Mingrre1 &iWi | 2pipl 21 piRGT + GGl
Mingrr=; &iWi BiPT  26iMGT + Gial

These minimization problems are very similar. We nd the ritats
that minimize these error functions by differentiating thections
with respect to the free variableg in R.

&iw 2l pifrgl =0
aiwi Zﬁi%@hT =0

Now, unless/ = 0, which implies a degenerate transformation,
these equations are equal. Sice | R, this implies that Rmini-
mizes the quadratic function using rigid transformatiofise nega-
tive solution corresponds to a maximum while the positivetian

is the minimum. QED

B Appendix

In section 3 we derive closed-form solutions for Moving Lteas
Squares deformations using line segments. In order to aimpl
the derivation, we need closed-form solutions for integdlthree
quadratic polynomials times the weight functier(t) over the line
segments. Led;, by be the endpoints of the line segment described
by pi(t) and let

D = (a V(@ bt
= tanl GVB AT 1 @ V@ b)

G = CEVHCIDM @ v’ @ bt
b = (a va V!
bt = (& V(v b)T
bt = (v b)(v b)T:



