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Figure 1: Original horse model with enclosing triangle control mesh shown in black (a). Several deformations generatedusing our 3D mean
value coordinates applied to a modified control mesh (b,c,d).

Abstract

Constructing a function that interpolates a set of values defined at
vertices of a mesh is a fundamental operation in computer graphics.
Such an interpolant has many uses in applications such as shad-
ing, parameterization and deformation. For closed polygons, mean
value coordinates have been proven to be an excellent methodfor
constructing such an interpolant. In this paper, we generalize mean
value coordinates from closed 2D polygons to closed triangular
meshes. Given such a meshP, we show that these coordinates
are continuous everywhere and smooth on the interior ofP. The
coordinates are linear on the triangles ofP and can reproduce lin-
ear functions on the interior ofP. To illustrate their usefulness, we
conclude by considering several interesting applicationsincluding
constructing volumetric textures and surface deformation.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Boundary representations; Curve,
surface, solid, and object representations; Geometric algorithms,
languages, and systems

Keywords: barycentric coordinates, mean value coordinates, vol-
umetric textures, surface deformation

1 Introduction

Given a closed mesh, a common problem in computer graphics isto
extend a function defined at the vertices of the mesh to its interior.
For example, Gouraud shading computes intensities at the vertices

of a triangle and extends these intensities to the interior using linear
interpolation. Given a triangle with vertices{p1, p2, p3} and asso-
ciated intensities{ f1, f2, f3}, the intensity at pointv on the interior
of the triangle can be expressed in the form

f̂ [v] =
∑ j w j f j

∑ j w j
(1)

wherew j is the area of the triangle{v, p j−1, p j+1}. In this formula,
note that eachweight w j is normalized by the sum of the weights,

∑ j w j to form an associatedcoordinate w j

∑ j w j
. The interpolantf̂ [v]

is then simply the sum of thef j times their corresponding coordi-
nate.

Mesh parameterization methods [Hormann and Greiner 2000;
Desbrun et al. 2002; Khodakovsky et al. 2003; Schreiner et al.
2004; Floater and Hormann 2005] and freeform deformation meth-
ods [Sederberg and Parry 1986; Coquillart 1990; MacCrackenand
Joy 1996; Kobayashi and Ootsubo 2003] also make heavy use of
interpolants of this type. Both applications require that apoint v be
represented as an affine combination of the vertices on an enclosing
shape. To generate this combination, we simply set the data val-
ues f j to be their associated vertex positionsp j. If the interpolant
reproduces linear functions, i.e.;

v =
∑ j w j p j

∑ j w j
,

the coordinate functionsw j

∑ j w j
are the desired affine combination.

For convex polygons in 2D, a sequence of papers, [Wachspress
1975], [Loop and DeRose 1989] and [Meyer et al. 2002], have pro-
posed and refined an interpolant that is linear on its boundaries
and only involves convex combinations of data values at the ver-
tices of the polygons. This interpolant has a simple, local defini-
tion as a rational function and reproduces linear functions. [War-
ren 1996; Warren et al. 2004] also generalized this interpolant to
convex shapes in higher dimensions. Unfortunately, Wachspress’s
interpolant does not generalize to non-convex polygons. Applying
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Figure 2: Interpolating hue values at polygon vertices using Wach-
spress coordinates (a, b) versus mean value coordinates (c,d) on a
convex and a concave polygon.

the construction to such a polygon yields an interpolant that has
poles (divisions by zero) on the interior of the polygon. Thetop
portion of Figure 2 shows Wachspress’s interpolant appliedto two
closed polygons. Note the poles on the outside of the convex poly-
gon on the left as well as along the extensions of the two top edges
of the non-convex polygon on the right.

More recently, several papers, [Floater 1997; Floater 1998;
Floater 2003], [Malsch and Dasgupta 2003] and [Hormann 2004],
have focused on building interpolants for non-convex 2D polygons.
In particular, Floater proposed a new type of interpolant based on
the mean value theorem [Floater 2003] that generates smoothco-
ordinates for star-shaped polygons. Given a polygon with vertices
p j and associated valuesf j, Floater’s interpolant defines a set of
weight functionsw j of the form

w j =
tan

[

α j−1

2

]

+ tan
[

α j

2

]

|p j−v|
. (2)

whereα j is the angle formed by the vectorp j − v and p j+1− v.
Normalizing each weight functionw j by the sum of all weight func-
tions yields themean value coordinates of v with respect top j.

In his original paper, Floater primarily intended this interpolant
to be used for mesh parameterization and only explored the behav-
ior of the interpolant on points in the kernel of a star-shaped poly-
gon. In this region, mean value coordinates are always non-negative
and reproduce linear functions. Subsequently, Hormann [Hormann
2004] showed that, for any simple polygon (or nested set of sim-
ple polygons), the interpolant̂f [v] generated by mean value coor-
dinates is well-definedeverywhere in the plane. By maintaining a
consistent orientation for the polygon and treating theα j as signed
angles, Hormann also shows that mean value coordinates reproduce
linear functions everywhere. The bottom portion of Figure 2shows
mean value coordinates applied to two closed polygons. Notethat
the interpolant generated by these coordinates possesses no poles
anywhere even on non-convex polygons.

Contributions Horman’s observation suggests that Floater’s
mean value construction could be used to generate a similar in-
terpolant for a wider class of shapes. In this paper, we provide

such a generalization for arbitrary closed surfaces and show that
the resulting interpolants are well-behaved and have linear preci-
sion. Applied to closed polygons, our construction reproduces 2D
mean value coordinates. We then apply our method to closed tri-
angular meshes and construct 3D mean value coordinates. (Inin-
dependent contemporaneous work, [Floater et al. 2005] havepro-
posed an extension of mean value coordinates from 2D polygons to
3D triangular meshes identical to section 3.2.) Next, we derive an
efficient, stable method for evaluating the resulting mean value in-
terpolant in terms of the positions and associated values ofvertices
of the mesh. Finally, we consider several practical applications of
such coordinates including a simple method for generating classes
of deformations useful in character animation.

2 Mean value interpolation

Given a closed surfaceP in R3, let p[x] be a parameterization of
P. (Here, the parameterx is two-dimensional.) Given an auxiliary
function f [x] defined overP, our problem is to construct a function
f̂ [v] wherev ∈ R3 that interpolatesf [x] onP, i.e.; f̂ [p[x]] = f [x] for
all x. Our basic construction extends an idea of Floater developed
during the construction of 2D mean value coordinates.

To constructf̂ [v], we project a pointp[x] of P onto the unit sphere
Sv centered atv. Next, we weight the point’s associated valuef [x]
by 1
|p[x]−v| and integrate this weighted function overSv. To ensure

affine invariance of the resulting interpolant, we divide the result
by the integral of the weight function 1

|p[x]−v| taken overSv. Putting
the pieces together, themean value interpolant has the form

f̂ [v] =

∫

xw[x,v] f [x]dSv
∫

xw[x,v]dSv
(3)

where the weight functionw[x,v] is exactly 1
|p[x]−v| . Observe that

this formula is essentially an integral version of the discrete formula
of Equation 1. Likewise, the continuous weight functionw[x,v] and
the discrete weightsw j of Equation 2 differ only in their numera-
tors. As we shall see, the tan

[α
2

]

terms in the numerators of thew j
are the result of taking the integrals in Equation 3 with respect to
dSv.

The resulting mean value interpolant satisfies three important
properties.

Interpolation: As v converges to the pointp[x] on P, f̂ [v] con-
verges tof [x].

Smoothness: The function f̂ [v] is well-defined and smooth for all
v not onP.

Linear precision: If f [x] = p[x] for all x, the interpolantf̂ [v] is
identicallyv for all v.

Interpolation follows from the fact that the weight function
w[x,v] approaches infinity asp[x]→ v. Smoothness follows because
the projection off [x] ontoSv is continuous in the position ofv and
taking the integral of this continuous process yields a smooth func-
tion. The proof of linear precision relies on the fact that the integral
of the unit normal over a sphere is exactly zero (due to symmetry).
Specifically,

∫

x

p[x]−v
|p[x]−v|

dSv = 0

since p[x]−v
|p[x]−v| is the unit normal toSv at parameter valuex. Rewrit-

ing this equation yields the theorem.

v =

∫

x

p[x]
|p[x]−v|

dSv

/

∫

x

1
|p[x]−v|

dSv



Notice that if the projection ofP onto Sv is one-to-one (i.e.;v is
in the kernel ofP), then the orientation ofdSv is non-negative,
which guarantees that the resulting coordinate functions are posi-
tive. Therefore, ifP is a convex shape, then the coordinate functions
are positive for allv insideP. However, ifv is not in the kernel ofP,
then the orientation ofdSv is negative and the coordinates functions
may be negative as well.

3 Coordinates for piecewise linear shapes

In practice, the integral form of Equation 3 can be complicated to
evaluate symbolically1. However, in this section, we derive a sim-
ple, closed form solution for piecewise linear shapes in terms of the
vertex positions and their associated function values. As asimple
example to illustrate our approach, we first re-derive mean value co-
ordinates for closed polygons via mean value interpolation. Next,
we apply the same derivation to construct mean value coordinates
for closed triangular meshes.

3.1 Mean value coordinates for closed polygons

Consider an edgeE of a closed polygonP with vertices{p1, p2}
and associated values{ f1, f2}. Our first task is to convert this dis-
crete data into a continuous form suitable for use in Equation 3. We
can linearly parameterize the edgeE via

p[x] = ∑
i

φi[x]pi

whereφ1[x] = (1− x) and φ2[x] = x. We then use this same pa-
rameterization to extend the data valuesf1 and f2 linearly alongE.
Specifically, we letf [x] have the form

f [x] = ∑
i

φi[x] fi.

Now, our task is to evaluate the integrals in Equation 3 for 0≤ x≤ 1.
Let E be the circular arc formed by projecting the edgeE onto the
unit circleSv, we can rewrite the integrals of Equation 3 restricted
to E as

∫

xw[x,v] f [x]dE
∫

xw[x,v]dE
=

∑iwi fi

∑iwi
(4)

where weightswi =
∫

x
φi[x]
|p[x]−v|dE.

Our next goal is to compute the corresponding weightswi for
edgeE in Equation 4 without resorting to symbolic integration
(since this will be difficult to generalize to 3D). Observe that the
following identity relateswi to a vector,

∑
i

wi(pi−v) = m. (5)

wherem =
∫

x
p[x]−v
|p[x]−v|dE is simply the integral of the outward unit

normal over the circular arcE. We callm themean vector of E, as
scalingm by the length of the arc yields the centroid of the circular
arc E. Based on 2D trigonometry,m has a simple expression in
terms ofp1 andp2. Specifically,

1To evaluate the integral of Equation 3, we can relate the differentialdSv

to dx via

dSv =
p⊥[x].(p[x]− v)
|p[x]− v|2

dx

where p⊥[x] is the cross product of then− 1 tangent vectors∂ p[x]
∂ xi

to P at

p[x]. Note that the sign of this expression correctly captures whetherP has
folded back during its projection ontoSv.

m = tan[α/2](
(p1−v)
|p1−v|

+
(p2−v)
|p2−v|

)

whereα denotes the angle betweenp1−v andp2−v. Hence we ob-
tainwi = tan[α/2]/

∣

∣pi−v
∣

∣ which agrees with the Floater’s weight-
ing function defined in Equation 2 for 2D mean value coordinates
when restricted to a single edge of a polygon.

Equation 4 allows us to formulate a closed form expression for
the interpolantf̂ [v] in Equation 3 by summing the integrals for all
edgesEk in P (note that we add the indexk for enumeration of
edges):

f̂ [v] =
∑k∑iw

k
i f k

i

∑k∑iw
k
i

(6)

wherewk
i and f k

i are weights and values associated with edgeEk.

3.2 Mean value coordinates for closed meshes

We now consider our primary application of mean value interpo-
lation for this paper; the derivation of mean value coordinates for
triangular meshes. These coordinates are the natural generalization
of 2D mean value coordinates.

Given triangleT with vertices{p1, p2, p3} and associated values
{ f1, f2, f3}, our first task is to define the functionsp[x] and f [x]
used in Equation 3 overT . To this end, we simply use the linear
interpolation formula of Equation 1. The resulting function f [x] is
a linear combination of the valuesfi times basis functionsφi[x].

As in 2D, the integral of Equation 3 reduces to the sum in Equa-
tion 6. In this case, the weightswi have the form

wi =
∫

x

φi[x]
|p[x]−v|

dT

whereT is the projection of triangleT ontoSv. To avoid computing
this integral directly, we instead relate the weightswi to the mean
vectorm for the spherical triangleT by inverting Equation 5. In
matrix form,

{w1,w2,w3}= m {p1−v, p2−v, p3−v}−1 (7)

All that remains is to derive an explicit expression for the mean
vectorm for a spherical triangleT . The following theorem solves
this problem.

Theorem 3.1 Given a spherical triangle T , let θi be the length of
its ith edge (a circular arc) and ni be the inward unit normal to its
ith edge (see Figure 3 (b)). Then,

m = ∑
i

1
2

θini (8)

where m, the mean vector, is the integral of the outward unit nor-
mals over T .

Proof: Consider the solid triangular wedge of the unit sphere with
cap T . The integral of outward unit normals over a closed sur-
face is always exactly zero [Fleming 1977, p.342]. Thus, we can
partition the integral into three triangular faces whose outward nor-
mals are−ni with associated areas12θi. The theorem follows since
m−∑i

1
2θini is then zero.⊥

Note that a similar result holds in 2D, where the mean vectorm
defined by Equation 3.1 for a circular arcE on the unit circle can be
interpreted as the sum of the two inward unit normals of the vectors
pi− v (see Figure 3 (a)). In 3D, the lengthsθi of the edges of the
spherical triangleT are the angles between the vectorspi−1−v and
pi+1− v while the unit normalsni are formed by taking the cross
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Figure 3: Mean vectorm on a circular arcE with edge normals
ni (a) and on a spherical triangleT with arc lengthsθi and face
normalsni.

product of pi−1− v and pi+1− v. Given the mean vectorm, we
now compute the weightswi using Equation 7 (but without doing
the matrix inversion) via

wi =
ni ·m

ni · (pi−v)
(9)

At this point, we should note that projecting a triangleT onto
Sv may reverse its orientation. To guarantee linear precision, these
folded-back triangles should produce negative weightswi. If we
maintain a positive orientation for the vertices of every triangleT ,
the mean vector computed using Equation 8 points towards thepro-
jected spherical triangleT whenT has a positive orientation and
away fromT whenT has a negative orientation. Thus, the resulting
weights have the appropriate sign.

3.3 Robust mean value interpolation

The discussion in the previous section yields a simple evaluation
method for mean value interpolation on triangular meshes. Given
point v and a closed mesh, for each triangleT in the mesh with
vertices{p1, p2, p3} and associated values{ f1, f2, f3},

1. Compute the mean vectorm via Equation 8

2. Compute the weightswi using Equation 9

3. Update the denominator and numerator off̂ [v] defined in
Equation 6 respectively by adding∑iwi and∑iwi fi

To correctly computêf [v] using the above procedure, however,
we must overcome two obstacles. First, the weightswi computed
by Equation 9 may have a zero denominator when the pointv lies on
plane containing the faceT . Our method must handle this degener-
ate case gracefully. Second, we must be careful to avoid numerical
instability when computingwi for triangleT with a small projected
area. Such triangles are the dominant type when evaluating mean
value coordinates on meshes with large number of triangles.Next
we discuss our solutions to these two problems and present the com-
plete evaluation algorithm as pseudo-code in Figure 4.

• Stability:

When the triangleT has small projected area on the unit
sphere centered atv, computing weights using Equation 8
and 9 becomes numerically unstable due to cancelling of unit
normalsni that are almost co-planar. To this end, we next
derive a stable formula for computing weightswi. First, we
substitute Equation 8 into Equation 9, using trigonometry we
obtain

wi =
θi−cos[ψi+1]θi−1−cos[ψi−1]θi+1

2sin[ψi+1]sin[θi−1]|pk
i −v|

, (10)

// Robust evaluation on a triangular mesh
for each vertexp j with valuesf j

d j ← ‖p j − x‖
if d j < ε return f j

u j ← (p j− x)/d j

totalF← 0
totalW← 0
for each triangle with verticesp1, p2, p3 and valuesf1, f2, f3

li← ‖ui+1−ui−1‖ // for i = 1,2,3
θi← 2arcsin[li/2]

h← (∑θi)/2
if π−h < ε

// x lies on t, use 2D barycentric coordinates
wi← sin[θi]di−1di+1

return(∑wi fi)/(∑wi)

ci← (2sin[h]sin[h−θi ])/(sin[θi+1]sin[θi−1])−1
si← sign[det[u1,u2,u3]]

√

1− ci
2

if ∃i, |si| ≤ ε
// x lies outside t on the same plane, ignore t
continue

wi← (θi− ci+1θi−1− ci−1θi+1)/(di sin[θi+1]si−1)

totalF+ = ∑wi fi

totalW+ = ∑wi

fx← totalF/totalW

Figure 4: Mean value coordinates on a triangular mesh

whereψi(i = 1,2,3) denotes the angles in the spherical trian-
gle T . Note that theψi are the dihedral angles between the
faces with normalsni−1 andni+1. We illustrate the anglesψi
andθi in Figure 3 (b).

To calculate the cos of theψi without computing unit normals,
we apply the half-angle formula for spherical triangles [Beyer
1987],

cos[ψi] =
2 sin[h]sin[h−θi]

sin[θi+1]sin[θi−1]
−1, (11)

whereh = (θ1+θ2+θ3)/2. Substituting Equation 11 into 10,
we obtain a formula for computingwi that only involves
lengths

∣

∣pi− v
∣

∣ and anglesθi. In the pseudo-code from Fig-
ure 4, anglesθi are computed usingarcsin, which is stable for
small angles.

• Co-planar cases: Observe that Equation 9 involves division
by ni · (pi− v), which becomes zero when the pointv lies on
plane containing the faceT . Here we need to consider two
different cases. Ifv lies on the planeinside T , the continuity
of mean value interpolation implies thatf̂ [v] converges to the
value f [x] defined by linear interpolation of thefi on T . On
the other hand, ifv lies on the planeoutside T , the weights

wi become zero as their integral definition
∫ φi[x]
|p[x]−v|dT be-

comes zero. We can easily test for the first case because the
sumΣiθi = 2π for points inside ofT . To test for the second
case, we use Equation 11 to generate a stable computation for
sin[ψi]. Using this definition,v lies on the plane outsideT if
any of the dihedral anglesψi (or sin[ψi]) are zero.

4 Applications and results

While mean value coordinates find their main use in boundary value
interpolation, these coordinates can be applied to a variety of appli-
cations. In this section, we briefly discuss several of theseapplica-
tions including constructing volumetric textures and surface defor-
mation. We conclude with a section on our implementation of these
coordinates and provide evaluation times for various shapes.



Figure 5: Original model of a cow (top-left) with hue values spec-
ified at the vertices. The planar cuts illustrate the interior of the
function generated by 3D mean value coordinates.

4.1 Boundary value interpolation

As mentioned in Section 1, these coordinate functions may beused
to perform boundary value interpolation for triangular meshes. In
this case, function values are associated with the verticesof the
mesh. The function constructed by our method is smooth, interpo-
lates those vertex values and is a linear function on the faces of the
triangles. Figure 5 shows an example of interpolating hue specified
on the surface of a cow. In the top-left is the original model that
serves as input into our algorithm. The rest of the figure shows sev-
eral slices of the cow model, which reveal the volumetric function
produced by our coordinates. Notice that the function is smooth on
the interior and interpolates the colors on the surface of the cow.

4.2 Volumetric textures

These coordinate functions also have applications to volumetric
texturing as well. Figure 6 (top-left) illustrates a model of a bunny
with a 2D texture applied to the surface. Using the texture coordi-
nates(ui,vi) as thefi for each vertex, we apply our coordinates and
build a function that interpolates the texture coordinatesspecified
at the vertices and along the polygons of the mesh. Our function
extrapolates these surface values to the interior of the shape to con-
struct a volumetric texture. Figure 6 shows several slices revealing
the volumetric texture within.

4.3 Surface Deformation

Surface deformation is one application of mean value coordinates
that depends on the linear precision property outlined in Section 2.
In this application, we are given two shapes: a model and a control
mesh. For each vertexv in the model, we first compute its mean
value weight functionsw j with respect to each vertexp j in the
undeformed control mesh. To perform the deformation, we move
the vertices of the control mesh to induce the deformation onthe
original surface. Let ˆp j be the positions of the vertices from the
deformed control mesh, then the new vertex position ˆv in the de-
formed model is computed as

v̂ =
∑ j w j p̂ j

∑ j w j
.

Notice that, due to linear precision, if ˆp j = p j, thenv̂ = v. Figures 1
and 7 show several examples of deformations generated with this

Figure 6: Textured bunny (top-left). Cuts of the bunny to expose
the volumetric texture constructed from the surface texture.

process. Figure 1 (a) depicts a horse before deformation andthe
surrounding control mesh shown in black. Moving the vertices of
the control mesh generates the smooth deformations of the horse
shown in (b,c,d).

Previous deformation techniques such as freeform deforma-
tions [Sederberg and Parry 1986; MacCracken and Joy 1996] re-
quire volumetric cells to be specified on the interior of the control
mesh. The deformations produced by these methods are depen-
dent on how the control mesh is decomposed into volumetric cells.
Furthermore, many of these techniques restrict the user to creating
control meshes with quadrilateral faces.

In contrast, our deformation technique allows the artist tospec-
ify an arbitrary closed triangular surface as the control mesh and
does not require volumetric cells to span the interior. Our tech-
nique also generates smooth, realistic looking deformations even
with a small number of control points and is quite fast. Generating
the mean value coordinates for figure 1 took 3.3s and 1.9s for fig-
ure 7. However, each of the deformations only took 0.09s and 0.03s
respectively, which is fast enough to apply these deformations in
real-time.

4.4 Implementation

Our implementation follows the pseudo-code from Figure 4 very
closely. However, to speed up computations, it is helpful topre-
compute as much information as possible.

Figure 8 contains the number of evaluations per second for var-
ious models sampled on a 3GHz Intel Pentium 4 computer. Previ-
ously, practical applications involving barycentric coordinates have
been restricted to 2D polygons containing a very small number of
line segments. In this paper, for the first time, barycentriccoor-
dinates have been applied to truly large shapes (on the orderof
100,000 polygons). The coordinate computation is a global com-
putation and all vertices of the surface must be used to evaluate
the function at a single point. However, much of the time spent is
determining whether or not a point lies on the plane of one of the
triangles in the mesh and, if so, whether or not that point is inside
that triangle. Though we have not done so, using various spatial
partitioning data structures to reduce the number of triangles that



Figure 7: Original model and surrounding control mesh shownin
black (top-left). Deforming the control mesh generates smooth de-
formations of the underlying model.

Model Tris Verts Eval/s
Horse control mesh (fig 1) 98 51 16281

Armadillo control mesh (fig 7) 216 111 7644
Cow (fig 5) 5804 2903 328

Bunny (fig 6) 69630 34817 20

Figure 8: Number of evaluations per second for various models.

must be checked for coplanarity could greatly enhance the speed of
the evaluation.

5 Conclusions and Future Work

Mean value coordinates are a simple, but powerful method forcre-
ating functions that interpolate values assigned to the vertices of a
closed mesh. Perhaps the most intriguing feature of mean value co-
ordinates is that fact that they are well-defined on both the interior
and the exterior of the mesh. In particular, mean value coordinates
do a reasonable job of extrapolating value outside of the mesh. We
intend to explore applications of this feature in future work.

Another interesting point is the relationship between meanvalue
coordinates and Wachspress coordinates. In 2D, both coordinate
functions are identical for convex polygons inscribed in the unit cir-
cle. As a result, one method for computing mean value coordinates
is to project the vertices of the closed polygon onto a circleand
compute Wachspress coordinates for the inscribed polygon.How-
ever, in 3D, this approach fails. In particular, inscribingthe vertices
of a triangular mesh onto a sphere does not necessarily yielda con-
vex polyhedron. Even if the inscribed polyhedron happens tobe
convex, the resulting Wachspress coordinates are rationalfunctions
of the vertex positionv while the mean value coordinates are tran-
scendental functions ofv.

Finally, we only consider meshes that have triangular faces. One

important generalization would be to derive mean value coordinates
for piecewise linear mesh with arbitrary closed polygons asfaces.
On these faces, the coordinates would degenerate to standard 2D
mean value coordinates. We plan to address this topic in a future
paper.
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