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Figure 1: Original horse model with enclosing triangle cohimesh shown in black (a). Several deformations generagin) our 3D mean

value coordinates applied to a modified control mesh (h,c,d)

Abstract

Constructing a function that interpolates a set of valudmee at
vertices of a mesh is a fundamental operation in computghigs.
Such an interpolant has many uses in applications such & sha
ing, parameterization and deformation. For closed polggamean
value coordinates have been proven to be an excellent méhod
constructing such an interpolant. In this paper, we geizerahean
value coordinates from closed 2D polygons to closed trikargu
meshes. Given such a mebh we show that these coordinates
are continuous everywhere and smooth on the interid?.offhe
coordinates are linear on the trianglesFond can reproduce lin-
ear functions on the interior &. To illustrate their usefulness, we
conclude by considering several interesting applicationkiding
constructing volumetric textures and surface deformation

CR Categories. 1.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Boundary representations;v€ur
surface, solid, and object representations; Geometriarighgns,
languages, and systems

Keywords: barycentric coordinates, mean value coordinates, vol-
umetric textures, surface deformation

1 Introduction
Given a closed mesh, a common problem in computer graphtias is

extend a function defined at the vertices of the mesh to i&iont
For example, Gouraud shading computes intensities at thiees

of a triangle and extends these intensities to the intesimrgulinear
interpolation. Given a triangle with verticéps, po, p3} and asso-
ciated intensitieg f1, f, 3}, the intensity at point on the interior
of the triangle can be expressed in the form
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wherew; is the area of the triangle, pj_1, pj+1}. In this formula,
note that eachveight wj is normalized by the sum of the weights,

¥ jW; to form an associatecbordinate zv»v\iv,-' The interpolantf[v]
is then simply the sum of thg times their corresponding coordi-
nate.

Mesh parameterization methods [Hormann and Greiner 2000;
Desbrun et al. 2002; Khodakovsky et al. 2003; Schreiner .et al
2004; Floater and Hormann 2005] and freeform deformatiothme
ods [Sederberg and Parry 1986; Coquillart 1990; MacCraekeh
Joy 1996; Kobayashi and Ootsubo 2003] also make heavy use of
interpolants of this type. Both applications require thpbatv be
represented as an affine combination of the vertices on doséng
shape. To generate this combination, we simply set the ddia v
uesf; to be their associated vertex positions If the interpolant
reproduces linear functions, i.e.;
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the coordinate function&‘:iwj are the desired affine combination.

For convex polygons in2, a sequence of papers, [Wachspress
1975], [Loop and DeRose 1989] and [Meyer et al. 2002], hawe pr
posed and refined an interpolant that is linear on its boueslar
and only involves convex combinations of data values at #ve v
tices of the polygons. This interpolant has a simple, loedind
tion as a rational function and reproduces linear functidigar-
ren 1996; Warren et al. 2004] also generalized this intargoio
convex shapes in higher dimensions. Unfortunately, Waelss{s
interpolant does not generalize to non-convex polygonglyipg
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Figure 2: Interpolating hue values at polygon verticesgisiach-
spress coordinates (a, b) versus mean value coordinatgsdo,a
convex and a concave polygon.

the construction to such a polygon yields an interpolant tizes
poles (divisions by zero) on the interior of the polygon. Tbp
portion of Figure 2 shows Wachspress's interpolant apptettvo
closed polygons. Note the poles on the outside of the conolyx p
gon on the left as well as along the extensions of the two tgesd
of the non-convex polygon on the right.

More recently, several papers, [Floater 1997; Floater 1998
Floater 2003], [Malsch and Dasgupta 2003] and [Hormann R004
have focused on building interpolants for non-convex 23ygohs.

In particular, Floater proposed a new type of interpolarsteldaon
the mean value theorem [Floater 2003] that generates sntoeth
ordinates for star-shaped polygons. Given a polygon wittices

pj and associated valudg, Floater’s interpolant defines a set of
weight functionsw; of the form

ai_ a;
tan['Tl} +tan[7’]
Ipj — Vi

whereaj is the angle formed by the vect@; — v and pj 1 —v.
Normalizing each weight function;j by the sum of all weight func-
tions yields themean value coordinates of v with respect tg;.

In his original paper, Floater primarily intended this iptelant
to be used for mesh parameterization and only explored thavbe
ior of the interpolant on points in the kernel of a star-sttapely-
gon. In this region, mean value coordinates are always egative
and reproduce linear functions. Subsequently, Hormanmrftdan
2004] showed that, for any simple polygon (or nested setrof si
ple polygons), the interpolaritjv] generated by mean value coor-
dinates is well-definedverywhere in the plane. By maintaining a
consistent orientation for the polygon and treatingdhes signed
angles, Hormann also shows that mean value coordinatesdueq®
linear functions everywhere. The bottom portion of Figushaws
mean value coordinates applied to two closed polygons. ttaie
the interpolant generated by these coordinates possesgadas
anywhere even on non-convex polygons.

Contributions Horman’s observation suggests that Floater’'s
mean value construction could be used to generate a simiar i
terpolant for a wider class of shapes. In this paper, we geovi

wj =
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such a generalization for arbitrary closed surfaces and ghat
the resulting interpolants are well-behaved and have Hipesci-
sion. Applied to closed polygons, our construction repoatu2D
mean value coordinates. We then apply our method to closed tr
angular meshes and construct 3D mean value coordinatefm-(In
dependent contemporaneous work, [Floater et al. 2005] pave
posed an extension of mean value coordinates from 2D posygon
3D triangular meshes identical to section 3.2.) Next, wévdean
efficient, stable method for evaluating the resulting meslne/in-
terpolant in terms of the positions and associated valugsrtites
of the mesh. Finally, we consider several practical appiboa of
such coordinates including a simple method for generatiasses
of deformations useful in character animation.

2 Mean value interpolation

Given a closed surface in R®, let p[x] be a parameterization of
P. (Here, the parameteris two-dimensional.) Given an auxiliary
function f[X] defined ovelP, our problem is to construct a function
f]v] wherev e R that interpolated [x] onP, i.e.; f[p[x]] = f[x] for

all x. Our basic construction extends an idea of Floater devdlope
during the construction of 2D mean value coordinates.

To constructf [v], we project a poinp[x] of P onto the unit sphere
S, centered av. Next, we weight the point’s associated valtjg]
by m and integrate this weighted function o\&: To ensure
affine invariance of the resulting interpolant, we divide tiesult
by the integral of the weight functiom taken overS,. Putting
the pieces together, taean value interpolant has the form

f\[V] _ fXW[X7 V] f [X]dSI
[wx.vjdS,

where the weight functiow[x, V] is exactlylp[x]%vl. Observe that
this formula is essentially an integral version of the déseformula
of Equation 1. Likewise, the continuous weight functiex, v| and
the discrete weightes; of Equation 2 differ only in their numera-
tors. As we shall see, the ta§ | terms in the numerators of tie
are the result of taking the Iintegrals in Equation 3 with eg$go
ds,.

The resulting mean value interpolant satisfies three inaport
properties.

@)

Interpolation: As v converges to the poinp[x] on P, f[v] con-
verges tof [x].

Smoothness: The functionf[v] is well-defined and smooth for all
v not onP.

Linear precision: If f[x = p[x| for all x, the interpolantf[v] is
identicallyv for all v.

Interpolation follows from the fact that the weight funetio
w[x, v] approaches infinity ag[x] — v. Smoothness follows because
the projection off [x] onto S, is continuous in the position afand
taking the integral of this continuous process yields a gmboc-
tion. The proof of linear precision relies on the fact that ifitegral
of the unit normal over a sphere is exactly zero (due to symynet

Specifically,
pX —v
————dS,; =0
/x Ip(X =V
since ‘SK{:X‘ is the unit normal t&5, at parameter value Rewrit-

ing this equation yields the theorem.

V:/xm[sl[xlw i,/ [ S



Notice that if the projection oP onto S, is one-to-one (i.e.y is

in the kernel ofP), then the orientation oflS, is non-negative,
which guarantees that the resulting coordinate functioaspasi-
tive. Therefore, iPP is a convex shape, then the coordinate functions
are positive for al insideP. However, ifvis not in the kernel oP,
then the orientation alS, is negative and the coordinates functions
may be negative as well.

3 Coordinates for piecewise linear shapes

In practice, the integral form of Equation 3 can be compédaio
evaluate symbolicallﬂ‘. However, in this section, we derive a sim-
ple, closed form solution for piecewise linear shapes imseof the
vertex positions and their associated function values. Asnple
example to illustrate our approach, we first re-derive meduesco-
ordinates for closed polygons via mean value interpolatidaxt,
we apply the same derivation to construct mean value comtebn
for closed triangular meshes.

3.1 Mean value coordinates for closed polygons

Consider an edge of a closed polygorP with vertices{ p1, p2}
and associated valuddq, fo}. Our first task is to convert this dis-
crete data into a continuous form suitable for use in EqnaidVe
can linearly parameterize the edgevia

P =Y @lXp

where@[X] = (1—x) and @ [x] = x. We then use this same pa-
rameterization to extend the data valdesnd f, linearly alongE.
Specifically, we letf [x] have the form

M =Y @

Now, our task is to evaluate the integrals in Equation 3 fan0< 1.
Let E be the circular arc formed by projecting the edgento the
unit circle S, we can rewrite the integrals of Equation 3 restricted
toE as B
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‘[XW[X, V} dE YiWi (4)

where weightsv; = [, m([i]—[)ﬂwdﬁ'

Our next goal is to compute the corresponding weight$or
edgeE in Equation 4 without resorting to symbolic integration
(since this will be difficult to generalize to 3D). Observathhe
following identity relatesw; to a vector,

Swi(p—v) =m (5)

wherem= [, ‘SK{:V‘ dE is simply the integral of the outward unit

normal over the circular arf€. We callmthemean vector of E, as
scalingm by the length of the arc yields the centroid of the circular
arc E. Based on 2D trigonometryn has a simple expression in
terms ofp; and p,. Specifically,

170 evaluate the integral of Equation 3, we can relate themifftialdS,
to dx via
P [X.(p[X —v)
Ip[x] —v[2
where pt[x] is the cross product of the— 1 tangent vectorg%[ix]to P at

p[x]. Note that the sign of this expression correctly capturesthdrP has
folded back during its projection ony.

dx

ds, =

(pL—V) (pz—V))
[p1—V| ~ [p2—V|

wherea denotes the angle betwepp—vandp, —v. Hence we ob-
tainw; =tana /2] /| p; — v| which agrees with the Floater's weight-
ing function defined in Equation 2 for 2D mean value coordisat
when restricted to a single edge of a polygon.

Equation 4 allows us to formulate a closed form expression fo
the interpolantf[v] in Equation 3 by summing the integrals for all
edgesEi in P (note that we add the index for enumeration of
edges):

m=tana/2)(

DKW

TRTiWE

wherewk and f* are weights and values associated with eBige

f[v (6)

3.2 Mean value coordinates for closed meshes

We now consider our primary application of mean value irderp
lation for this paper; the derivation of mean value coortlisgor
triangular meshes. These coordinates are the naturalajeagion
of 2D mean value coordinates.

Given triangleT with vertices{ p1, p2, ps} and associated values
{f1, f2, f3}, our first task is to define the functiongx] and f[x]
used in Equation 3 oveF. To this end, we simply use the linear
interpolation formula of Equation 1. The resulting functib[x] is
a linear combination of the valudstimes basis functiong [X].

As in 2D, the integral of Equation 3 reduces to the sum in Equa-
tion 6. In this case, the weightg have the form

o aNx =
W= [ T

whereT is the projection of triangl& ontoS,. To avoid computing
this integral directly, we instead relate the weightsto the mean
vector m for the spherical triangld@ by inverting Equation 5. In
matrix form,

@)

All that remains is to derive an explicit expression for theam
vectorm for a spherical triangld. The following theorem solves
this problem.

{W17W27W3} =m {pl —V,p2—V,p3 7\/}71

Theorem 3.1 Given a spherical triangle T, let 6, be the length of
itsit" edge (a circular arc) and n; be the inward unit normal to its
it edge (see Figure 3 (b)). Then,

"2

where m, the mean vector, is the integral of the outward unit nor-
malsover T .

en (8)

NI =

Proof: Consider the solid triangular wedge of the unit sphere with
capT. The integral of outward unit normals over a closed sur-
face is always exactly zero [Fleming 1977, p.342]. Thus, & c
partition the integral into three triangular faces whosevaud nor-
mals are—n; with associated area@%. The theorem follows since
m—¥; 36 is then zero.L

Note that a similar result holds in 2D, where the mean vettor
defined by Equation 3.1 for a circular &an the unit circle can be
interpreted as the sum of the two inward unit normals of ttetors
pi — Vv (see Figure 3 (a)). In 3D, the lengtAsof the edges of the
spherical triang|d are the angles between the vectprs; —vand
pi+1 — Vv while the unit normalsy are formed by taking the cross
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Figure 3: Mean vectom on a circular arE with edge normals
n; (@) and on a spherical triangle with arc lengthsg and face
normalsn;.

product ofp;_; —v and pj;1 —v. Given the mean vectan, we
now compute the weights; using Equation 7 (but without doing
the matrix inversion) via

ni-m
ni-(pi—Vv)

At this point, we should note that projecting a triangleonto
S, may reverse its orientation. To guarantee linear precistmse
folded-back triangles should produce negative weights If we
maintain a positive orientation for the vertices of evergrigleT,
the mean vector computed using Equation 8 points towardsrthe
jected spherical triangl®@ whenT has a positive orientation and
away fromT whenT has a negative orientation. Thus, the resulting
weights have the appropriate sign.

W =

9)

3.3 Robust mean value interpolation

The discussion in the previous section yields a simple atiain
method for mean value interpolation on triangular mesheserG
point v and a closed mesh, for each triandlen the mesh with
vertices{ p1, pz, p3} and associated valugs,, fo, f3},

1. Compute the mean vectorvia Equation 8

2. Compute the weights; using Equation 9

3. Update the denominator and numerator féf] defined in

Equation 6 respectively by addirgyw; and y;w; fi

To correctly compute‘A [v] using the above procedure, however,
we must overcome two obstacles. First, the weighitsomputed
by Equation 9 may have a zero denominator when the pdies on
plane containing the face. Our method must handle this degener-
ate case gracefully. Second, we must be careful to avoid ricahe
instability when computingy; for triangleT with a small projected
area. Such triangles are the dominant type when evaluateanm
value coordinates on meshes with large number of trianglest
we discuss our solutions to these two problems and preseobth-
plete evaluation algorithm as pseudo-code in Figure 4.

e Stability:

When the triangleT has small projected area on the unit
sphere centered at computing weights using Equation 8
and 9 becomes numerically unstable due to cancelling of unit
normalsn; that are almost co-planar. To this end, we next
derive a stable formula for computing weights First, we
substitute Equation 8 into Equation 9, using trigonometey w
obtain

_ 6 —codyi;1]6 1 —codyi 1]6 11
' 2sin{yi 1] sin(6 ]| pk — ]

» (10

/I Robust evaluation on a triangular mesh
for each vertexp; with valuesf;
dj — [Ip = x|
if dj < e returnf;
uj — (pj —x)/d;
totalF— 0
totalW— 0
for each triangle with verticeps, p2, ps and valuesf, fo, f3
li— ||Uire — Uizl /lfori=1,2,3
6 2arcsirl; /2]
h—(36)/2
if t—h<e
/I x lieson t, use 2D barycentric coordinates
Wi — Sin[@]d;_10; 1
return (s wi ) /(3 W)
G (2sirih] sinfh— 8])/(sin @] sin6_]) — 1
s+ signjdet[uy,up, u3]]\/1 -2
if Ji,|s|<e
/I x lies outside t on the same plane, ignoret
continue
Wi— (68 —Ciy16_1—Ci-161)/(disinB1]s-1)
totalF+ = yw;f;
totalW+ = yw;
fy— total F /totalW

Figure 4: Mean value coordinates on a triangular mesh

wherey; (i = 1,2, 3) denotes the angles in the spherical trian-
gle T. Note that they; are the dihedral angles between the
faces with normals;_1 andn;1. We illustrate the angles;
and@ in Figure 3 (b).

To calculate the cos of thg without computing unit normals,
we apply the half-angle formula for spherical trianglesy&e
1987],

2 sinh]sinh— 6]

SinG1sinG 1]

cogyi] = (11)
whereh = (6 + 6,+ 63)/2. Substituting Equation 11 into 10,
we obtain a formula for computingy; that only involves
Iengths| pi fv] and angle$. In the pseudo-code from Fig-
ure 4, angle®; are computed usingrcsin, which is stable for
small angles.

e Co-planar cases: Observe that Equation 9 involves division
by n;j - (pi — v), which becomes zero when the poinlies on
plane containing the fac€. Here we need to consider two
different cases. I lies on the planénside T, the continuity
of mean value interpolation implies thajv] converges to the
value f[x defined by linear interpolation of th onT. On
the other hand, if/ lies on the planeutside T, the weights

w; become zero as their integral definitigi p?i][i]w dT be-

comes zero. We can easily test for the first case because the

sumZ;6 = 2 for points inside ofT. To test for the second

case, we use Equation 11 to generate a stable computation for

sini]. Using this definitiony lies on the plane outside if
any of the dihedral angleg; (or siny]) are zero.

4 Applications and results

While mean value coordinates find their main use in boundaltyev
interpolation, these coordinates can be applied to a vesfeppli-

cations. In this section, we briefly discuss several of tlaggdica-

tions including constructing volumetric textures and goef defor-
mation. We conclude with a section on our implementatiomese
coordinates and provide evaluation times for various shape



Figure 5: Original model of a cow (top-left) with hue valugses-
ified at the vertices. The planar cuts illustrate the intedbthe
function generated by 3D mean value coordinates.

4.1 Boundary value interpolation

As mentioned in Section 1, these coordinate functions maysbd
to perform boundary value interpolation for triangular mes In

this case, function values are associated with the vero€ehe

mesh. The function constructed by our method is smoothrdote
lates those vertex values and is a linear function on thesfatthe

triangles. Figure 5 shows an example of interpolating heeifipd

on the surface of a cow. In the top-left is the original modhett
serves as input into our algorithm. The rest of the figure shesv-
eral slices of the cow model, which reveal the volumetriccfion

produced by our coordinates. Notice that the function isatimon

the interior and interpolates the colors on the surface ettw.

4.2 Volumetric textures

These coordinate functions also have applications to vettim
texturing as well. Figure 6 (top-left) illustrates a modéhdounny
with a 2D texture applied to the surface. Using the textui@dio
nates(u;, vi) as thef; for each vertex, we apply our coordinates and
build a function that interpolates the texture coordinatescified

at the vertices and along the polygons of the mesh. Our fumcti
extrapolates these surface values to the interior of thgesttacon-
struct a volumetric texture. Figure 6 shows several sliegsaling
the volumetric texture within.

4.3 Surface Deformation

Surface deformation is one application of mean value coatds
that depends on the linear precision property outlined ttiSe 2.

In this application, we are given two shapes: a model and &raon
mesh. For each vertexin the model, we first compute its mean
value weight functionsvj with respect to each verte; in the
undeformed control mesh. To perform the deformation, weenov
the vertices of the control mesh to induce the deformatiothen
original surface. Letpj be the positions of the vertices from the
deformed control mesh, then the new vertex positidn the de-
formed model is computed as

>iWibj
2iWj

Notice that, due to linear precision,pf = pj, thenv=v. Figures 1
and 7 show several examples of deformations generated hgth t

V=

Figure 6: Textured bunny (top-left). Cuts of the bunny to ase
the volumetric texture constructed from the surface textur

process. Figure 1 (a) depicts a horse before deformatiorttend
surrounding control mesh shown in black. Moving the vegioé
the control mesh generates the smooth deformations of tiee ho
shown in (b,c,d).

Previous deformation techniques such as freeform deforma-
tions [Sederberg and Parry 1986; MacCracken and Joy 1996] re
quire volumetric cells to be specified on the interior of tleatcol
mesh. The deformations produced by these methods are depen-
dent on how the control mesh is decomposed into volumettis.ce
Furthermore, many of these techniques restrict the useetding
control meshes with quadrilateral faces.

In contrast, our deformation technique allows the artistgec-
ify an arbitrary closed triangular surface as the controsimand
does not require volumetric cells to span the interior. Gaht
nigue also generates smooth, realistic looking deformatieven
with a small number of control points and is quite fast. Gatieg
the mean value coordinates for figure 1 tooBs3and 19s for fig-
ure 7. However, each of the deformations only tod¥98 and D3s
respectively, which is fast enough to apply these defonatin
real-time.

4.4 Implementation

Our implementation follows the pseudo-code from Figure dyve
closely. However, to speed up computations, it is helpfubre-
compute as much information as possible.

Figure 8 contains the number of evaluations per second fer va
ious models sampled on a 3GHz Intel Pentium 4 computer. Previ
ously, practical applications involving barycentric cdioiates have
been restricted to 2D polygons containing a very small nurobe
line segments. In this paper, for the first time, barycentdor-
dinates have been applied to truly large shapes (on the ofder
100000 polygons). The coordinate computation is a global com-
putation and all vertices of the surface must be used to at@alu
the function at a single point. However, much of the time $p&n
determining whether or not a point lies on the plane of onéef t
triangles in the mesh and, if so, whether or not that poinhs&die
that triangle. Though we have not done so, using variousapat
partitioning data structures to reduce the number of tiemthat



Figure 7: Original model and surrounding control mesh shawn
black (top-left). Deforming the control mesh generatesaimale-
formations of the underlying model.

Model Tris | Verts | Evalls
Horse control mesh (fig 1) 98 51 16281
Armadillo control mesh (fig 7)] 216 111 7644
Cow (fig 5) 5804 | 2903 328
Bunny (fig 6) 69630 | 34817 20

Figure 8: Number of evaluations per second for various nsodel

must be checked for coplanarity could greatly enhance thedspf
the evaluation.

5 Conclusions and Future Work

Mean value coordinates are a simple, but powerful methodrtsr
ating functions that interpolate values assigned to theécesr of a
closed mesh. Perhaps the most intriguing feature of meae ca-
ordinates is that fact that they are well-defined on both titerior
and the exterior of the mesh. In particular, mean value ¢oatels
do a reasonable job of extrapolating value outside of thenméske
intend to explore applications of this feature in future kvor

Another interesting point is the relationship between medne
coordinates and Wachspress coordinates. In 2D, both cwdedi
functions are identical for convex polygons inscribed i@ timit cir-
cle. As a result, one method for computing mean value coatein
is to project the vertices of the closed polygon onto a ciesid
compute Wachspress coordinates for the inscribed polybjow-
ever, in 3D, this approach fails. In particular, inscribthg vertices
of a triangular mesh onto a sphere does not necessarily yiebd-
vex polyhedron. Even if the inscribed polyhedron happeniseto
convex, the resulting Wachspress coordinates are rafionetions
of the vertex positiorv while the mean value coordinates are tran-
scendental functions of

Finally, we only consider meshes that have triangular faCee

important generalization would be to derive mean valuedioates
for piecewise linear mesh with arbitrary closed polygongaass.
On these faces, the coordinates would degenerate to sthabar
mean value coordinates. We plan to address this topic inuaefut
paper.
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