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Abstract—We propose a robust normal estimation method for both point clouds and meshes using a low rank matrix approximation
algorithm. First, we compute a local isotropic structure for each point and find its similar, non-local structures that we organize into a
matrix. We then show that a low rank matrix approximation algorithm can robustly estimate normals for both point clouds and meshes.
Furthermore, we provide a new filtering method for point cloud data to smooth the position data to fit the estimated normals. We show
the applications of our method to point cloud filtering, point set upsampling, surface reconstruction, mesh denoising, and geometric
texture removal. Our experiments show that our method generally achieves better results than existing methods.

Index Terms—3D Geometry filtering, Point cloud filtering, Mesh denoising, Point upsampling, Surface reconstruction, Geometric
texture removal.
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1 INTRODUCTION

F ILTERING in 2D data like images is prevalent nowadays
[1], [2], [3], [4], and 3D geometry (e.g., point clouds,

meshes) filtering and processing has recently attracted more
and more attention in 3D vision [5], [6], [7]. Normal estima-
tion for point cloud models or mesh shapes is important
since it is often the first step in a geometry processing
pipeline. This estimation is often followed by a filtering
process to update the position data and remove noise [8].
A variety of computer graphics applications, such as point
cloud filtering [9], [10], [11], point set upsampling [12], sur-
face reconstruction [13], mesh denoising [8], [14], [15] and
geometric texture removal [16] rely heavily on the quality of
estimated normals and subsequent filtering of position data.

Current state of the art techniques in mesh denoising [8],
[14], [15] and geometric texture removal [16] can achieve
impressive results. However, these methods are still limited
in their ability to recover sharp edges in challenging regions.
Normal estimation for point clouds has been an active area
of research in recent years [12], [17], [18]. However, these
methods perform suboptimally when estimating normals in
noisy point clouds. Specifically, [17], [18] are less robust in
the presence of considerable noise. The bilateral filter can
preserve geometric features but sometimes may fail due to
the locality of its computations and lack of self-adaption of
parameters.

Updating point positions using the estimated normals in
point clouds has received sparse treatment so far [9], [10].
However, those position update approaches using the L0
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or L1 norms are complex to solve and hard to implement.
Moreover, they restrict each point to only move along its
normal orientation potentially leading to suboptimal results
or slow convergence.

To address the issues shown above, we propose a new
normal estimation method for both meshes and point clouds
and a new position update algorithm for point clouds. Our
method benefits various geometry processing applications,
directly or indirectly, such as point cloud filtering, point set
upsampling, surface reconstruction, mesh denoising, and
geometric texture removal (Figure 1). Given a point cloud
or mesh as input, our method first estimates point or face
normals, then updates the positions of points or vertices
using the estimated normals. We observe that: (1) non-local
methods could be more accurate than local techniques; (2)
there usually exist similar structures of each local isotropic
structure (Section 3.1) in geometry shapes; (3) the matrix
constructed by similar structures should be low-rank (Sec-
tion 3.2). Motivated by these observations, we propose a
novel normal estimation technique which consists of two
sub-steps: (i) non-local similar structures location and (ii)
weighted nuclear norm minimization. We adopt the former
to find similar structures of each local isotropic structure. We
employ the latter [3] to handle the problem of recovering
low-rank matrices. We also present a fast and effective
point update algorithm for point clouds to filter the point
positions to better match the estimated normals. Extensive
experiments and comparisons show that our method gener-
ally outperforms current methods.

The main contributions of this paper are:

• a novel normal estimation technique for both point
cloud shapes and mesh models;

• a new position update algorithm for point cloud
data;

• analysis of the convergence of the proposed normal
estimation technique and point update algorithm,
experimentally or theoretically.
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Fig. 1. Overview of our approach and its benefited applications. Our
method can be applied to various geometry processing tasks directly or
indirectly.

2 RELATED WORK

In this section, we only review the research works that are
most related to this work. We first review the previous re-
search on normal estimation. Then we review some previous
works which employed the nuclear norm minimization or
its weighted version.

2.1 Normal Estimation

Normal estimation for geometric shapes can be classified
into two types: (1) normal estimation for point clouds, and
(2) normal estimation for mesh shapes.

Normal estimation for point clouds. Hoppe et al. [19]
estimated normals by computing the tangent plane at each
data point using principal component analysis (PCA) of the
local neighborhood. Later, a variety of variants of PCA have
been proposed [20], [21], [22], [23], [24] to estimate normals.
Nevertheless, the normals estimated by these techniques
tend to smear sharp features. Researchers also estimate
normals using Voronoi cells or Voronoi-PCA [25], [26]. Min-
imizing the L1 or L0 norm can preserve sharp features
as these norms can be used to measure sparsity in the
derivative of the normal field [9], [10]. Yet, the solutions are
complex and computationally expensive. Li et al. [27] esti-
mated normals by using robust statistics to detect the best
local tangent plane for each point. Another set of techniques
attempted to better estimate normals near edges and corners
by point clustering in a neighborhood [28], [29]. Later they
presented a pair consistency voting scheme which outputs
multiple normals per feature point [30]. Boulch and Marlet
[17] use a robust randomized Hough transform to estimate
point normals. Convolutional neural networks have recently
been applied to estimate normals in point clouds [18]. Such
estimation methods are usually less robust for point clouds
with considerable amount of noise. Bilateral smoothing of
PCA normals [12], [13] is simple and effective, but it suffers
from inaccuracy due to the locality of its computations and
may blur edges with small dihedral angles. Mattei et al.
[31] presented a moving RPCA method for point cloud
denoising, based on the inspiration of sparsity. They mod-
eled the RPCA problem in a local sense by specifying the
output rank of 2, rather than considering similar structures.
The computed normals are only used to compute similarity
weights.

Normal estimation for mesh shapes. Most methods
focus on the estimation of face normals in mesh shapes.
One simple, direct way is to compute the face normals by
the cross product of two edges in a triangle face. However,
such normals can deviate from the true normals significantly
even in the presence of small position noise. There exist

a considerable amount of research work to smooth these
face normals. One approach uses the bilateral filter [14],
[32], [33], inspired by the founding works [34], [35]. Mean,
median and alpha-trimming methods [36], [37], [38] are also
used to estimate face normals. Sun et al. [8], [39] present
two different methods to filter face normals. Recently, re-
searchers have presented filtering methods [15], [40], [41],
[42], [43] based on mean shift, total variation, guided nor-
mals, L1 median, and normal voting tensor. Wang et al. [44]
estimated face normals via cascaded normal regression.

2.2 Nonlocal Methods for Point Clouds and Nuclear
Norm Minimization
Previous researchers proposed non-local methods for point
clouds. For example, Zheng et al. [45] applied non-local
filtering to 3D buildings that exhibit large scale repetitions
and self-similarities. Digne presented a non-local denoising
framework to unorganized point clouds by building an
intrinsic descriptor [46], and recently proposed a shape
analysis approach with colleagues based on the non-local
analysis of local shape variations [47].

The nuclear norm of a matrix is defined as the sum of the
absolute values of its singular values (see Eq. (4)). It has been
proved that most low-rank matrices can be recovered by
minimizing their nuclear norm [48]. Cai et al. [49] provided
a simple solution to the low-rank matrix approximation
problem by minimizing the nuclear norm. The nuclear norm
minimization has been broadly employed to matrix com-
pletion [48], [49], robust principle component analysis [50],
low-rank representation for subspace clustering [51] and
low-rank textures [52]. Gu et al. [3], [4] presented a weighted
version of the nuclear norm minimization, which has been
adopted to image processing applications such as image
denoising, background subtraction and image inpainting.

3 NORMAL ESTIMATION

In this section, we take point clouds, consisting of positions
as well as normals, as input and further extend to meshes
later. As with [10], [11], [12], the normals are initialized by
the classical PCA method [19], which is robust and easy
to use (we use the implementation in [12]). First of all,
we present an algorithm to locate and construct non-local
similar structures for each local isotropic structure of a point
(Section 3.1). We then describe how to estimate normals via
weighted nuclear norm minimization on non-local similar
structures (Section 3.2).

3.1 Non-local Similar Structures
Local structure. We define each point pi has a local struc-
ture Si which consists of klocal nearest neighbors. Locating
structures similar to a specific local structure is difficult due
to the irregularity of points.

Tensor voting. We assume each local structure embeds a
representative normal. To do so, we first define the tensor at
a point pi as

Tij = η(‖pi − pj‖)φ(θij , σθ)nTj nj , (1)

where pj (1×3 vector) is one of the klocal nearest neighbors
of pi, which we denote as j ∈ Si, and nj (1 × 3 vector)
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(a) Local structure (b) Local isotropic
structure

(c) Similar structures

Fig. 2. (a) The local structures (green points) of the centered red points,
respectively. (b) The local isotropic structures (green) of the correspond-
ing red points. (c) The similar local isotropic structures of the consistent
local isotropic structures denoted by the red points. Each blue or cyan
point denotes its isotropic structure.

is the normal of pj . η and φ are the weights induced
by spatial distances and angles (θij) of two neighboring
normals, which are given by [12], [14]: η(x) = e

−( xσp )
2

,

φ(θ, σθ) = e
−( 1−cos(θ)

1−cos(σθ)
)2 . σp and σθ are the scaling param-

eters, which are empirically set to two times the maximal
distance between any two points in the klocal nearest neigh-
bors within the local structure and 30◦, respectively.

For each local structure Si, we can derive the accumu-
lated tensor by aggregating all the induced tensor votes
{Tij |j ∈ Si}. This final tensor encodes the local structure,
which provides a reliable, representative normal that will be
later used to compute the local isotropic structure and locate
similar structures.

Ti =
∑
j∈Si

Tij (2)

Let λi1 ≥ λi2 ≥ λi3 be the eigenvalues of Ti with the
corresponding eigenvectors ei1, ei2 and ei3. In tensor voting
[53], λi1 − λi2 indicates surface saliency with a normal di-
rection ei1; λi2−λi3 indicates curve saliency with a tangent
orientation ei3; λi3 denotes junction saliency. Therefore, we
take ei1 as the representative normal for the local structure
Si of point pi.

Local isotropic structure. We assume that each local
structure has a subset of points that are on the same isotropic
surface with the representative normal. We call this subset
of points the local isotropic structure. Surface patches with
small variation in its dihedral angles are usually considered
isotropic (Figure 2(b)) surfaces. To obtain a local isotropic
structure Sisoi from a local structure Si and locate similar
local isotropic structures for Sisoi , we present a simple yet
effective scheme. Here we also employ the defined function
φ(θ, σθ) in Eq. (1), with setting σθ to θth. θ is the angle of

two normals and θth is the angle threshold. Specifically, to
obtain Sisoi , we

• compute the angles θ between each point normal and
the representative normal within a local structure Si;

• add the current point to Sisoi if φ(θ, θth) ≥
e
−( 1−cos(θth)

1−cos(θth) )
2

(i.e., φ(θ, θth) ≥ e−1).

For simplicity, we will call “similar local isotropic struc-
tures” as “similar structures” throughout the paper, unless
otherwise stated (e.g., Figure 6). Given an isotropic structure
Sisoi , we identify its non-local similar structures by com-
puting φ(θ, θth) between the representative normal of each
structure and that of Si. If φ(θ, θth) ≥ e−1 (we use the same
θth for simplicity), we define the two isotropic structures
to be similar. The underlying rationale of our similarity
search is: the point normals in a local isotropic structure
are bounded by the representative normal, indicating these
points are on the same isotropic surface; the similar struc-
tures search is also bounded by the representative normals,
implying the similar structures are on the similar isotropic
surfaces. These similar structures will often overlap on the
same isotropic surface as shown in Figure 2. In the figure, we
show the local structure (a), the local isotropic structure (b),
and the similar structures (c). Each representative normal
is computed based on its entire neighbors with different
weights respect to the current point (Eq. (1) and (2)). It
indicates that the representative normal is isotropic with the
current point normal, and there is no need to iteratively
refine the representative normal by using the local isotropic
neighbors. Note that the non-local similar structures are
searched in the context of isotropic surfaces rather than
anisotropic surfaces (see more analysis in Rotation-invariant
similarity of Section 5.1).

(a) without reshaping (b) with reshaping

Fig. 3. A normal estimation comparison without or with matrix reshap-
ing.

3.2 Weighted Nuclear Norm Minimization
For each non-local similar structure Sisol for the isotropic
structure Sisoi associated with the point pi, we append the
point normals of Sisol as rows to a matrix M. Note that the
dimensions of this matrix are r̂×3, where r̂ is the number of
rows and 3 is the number of columns. This matrix already
has a maximal rank of 3 and is a low rank matrix. Therefore,
the low rank matrix approximation from rank 3 or 2 to rank
2 or 1 is less meaningful than from a high rank to a low
rank, in terms of “smoothing”. To make the low rank matrix
approximation more meaningful, we reshape the matrix M
to be close to a square matrix. Figure 3 illustrates a normal
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estimation comparison without and with matrix reshaping,
and shows that the initial r̂×3 matrix M requires reshaping
to obtain more effective smoothing results. It also shows that
the reconstruction error between the initially reshaped ma-
trix and the low rank optimized matrix is typically greater
than the error computed without reshaping, which further
validates a more effective smoothing of reshaping. As such,
it is necessary for reshaping M.

M =



x1 y1 z1
x2 y2 z2
x3 y3 z3
x4 y4 z4
x5 y5 z5
x6 y6 z6
x7 y7 z7
x8 y8 z8


⇒ Z′ =


x1 x7 y5 z3
x2 x8 y6 z4
x3 y1 y7 z5
x4 y2 y8 z6
x5 y3 z1 z7
x6 y4 z2 z8


(3)

We do so by finding dimensions r and c of a new matrix
Z′ where r̂ × 3 = r × c and we minimize |r − c|. Given
that the structure in M is isotropic, removing one or more
points does not affect this structure significantly. Therefore,
we first find r and c to minimize ‖r−c‖ (r ≥ c) and measure
if |r − c| ≥ 6 and c = 3 are both satisfied, where 6 is an
empirical value and c = 3 tests if the reshaping failed. If
so, we remove a point normal from M and solve for r and
c again. We repeat such a process until the conditions are
not satisfied (r is not required to be a multiple of 3). Then
we simply copy the column entries in M to Z′ filling each
column of Z′ before continuing to the next column.

We take the size 8 × 3 for M as a simple example, and
the reshaping process is illustrated in Eq. (3). The reshaped
matrix Z′ has a size of 6 × 4 and a higher rank than M
in general. It is known that the rank of a matrix is the
number of linearly independent columns. Intuitively, the
resulting matrix Z′ should be low rank since all normals
come from similar isotropic structures and each point may
involve multiple normals, and the x, y and z values are re-
spectively gathered in columns. In Z′, most columns consist
of coordinates from a single dimension (only x coordinates,
for example). There are at most two columns involving
both x and y, or both y and z (Eq. (3)), which negligibly
affects the rank and the smoothing results (Figure 13(a)).
Experimentally, we followed the above rules to construct
matrices of similar local isotropic structures for planar and
curved surfaces in Figure 2, and observed the matrices are
indeed low rank (i.e., a considerable number of negligible
singular values). Figure 4 shows the histograms of singular
values of two reshaped matrices from Figure 2, and confirms
the low-rank property.

We then cast the normal estimation problem as a low-
rank matrix approximation problem. We attempt to recover
a low-rank matrix Z from Z′ using nuclear norm minimiza-
tion. We first present some fundamental knowledge about
nuclear norm minimization and then show how we estimate
normals with weighted nuclear norm minimization.

Nuclear norm. The nuclear norm of a matrix is defined
as the sum of the absolute values of its singular values,
shown in Eq. (4).

‖Z‖∗ =
∑
m

|δm|, (4)
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Fig. 4. Histograms of singular values of two reshaped matrices from
Figure 2. Horizontal axis denotes the singular values, and vertical axis
denotes the number of singular values falling into corresponding ranges.

where δm is the m-th singular value of matrix Z. ‖Z‖∗
indicates the nuclear norm of Z.

Nuclear norm minimization. Nuclear norm minimiza-
tion is frequently used to approximate the known matrix,
Z′, by a low-rank matrix, Z, while minimizing the nuclear
norm of Z. Cai et al. [49] demonstrated that the low-rank
matrix Z can be easily solved by adding a Frobenius-norm
data term.

min
Z
α‖Z‖∗ + ‖Z′ − Z‖2F , (5)

where α is the weighting parameter. The minimizing matrix
Z is then

Z = Uψ(S, α)VT , (6)

where Z′ = USVT denotes the SVD of Z′ and Sm,m is
the m-th diagonal element in S. ψ is the soft-thresholding
function on S and the parameter α, i.e., ψ(Sm,m, α) =
max(0,Sm,m−α). Soft thresholding effectively clamps small
singular values to 0, thus creating a low rank approxima-
tion.

Nuclear norm minimization treats and shrinks each sin-
gular value equally. However, in general, larger singular
values should be shrunk less to better approximate the
known matrix and preserve the major components. The
weighted nuclear norm minimization solves this issue [3].

Weighted nuclear norm minimization. The weighted
nuclear norm of a matrix Z is

‖Z‖∗,w =
∑
m

|wmδm|, (7)

where wm is the non-negative weight imposed on the m-
th singular value and w = {wm}. We can then write the
low-rank matrix approximation problem as

min
Z
‖Z‖∗,w + ‖Z′ − Z‖2F (8)

Suppose the singular values {δm} are sorted in a non-
ascending order, the corresponding weights {wm} should
be in a non-descending order. Hence, we define the weight
function as a Gaussian function.

wm = βe−(
2δm
δ1

)2 (9)

β denotes the regularized coefficient which defaults to 1.0.
δ1 is the first singular value after sorting {δm} in a non-
increasing order. We did not use the original weight def-
inition in [3] since it needs noise variance which should
be unknown in normal estimation. Also, we found their
weight determination is not suitable for normal-constructed
matrices. Then we solve Eq. (8) by the generalized soft
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ALGORITHM 1: Weighted nuclear norm minimization

Input: non-local similar structures of each local isotropic
structure

Output: New matrices {Z}
for each local isotropic structure Siso

i do
• construct a matrix Z′

• compute the SVD of Z′

• compute the weights via Eq. (9)
• recover Z via Eq. (10)

end

thresholding operation on the singular values with weights
[3].

Z = Uψ(S, {wm})VT , (10)

where ψ(Sm,m, wm) = max(0,Sm,m−wm). Here ψ changes
to the generalized soft-thresholding function by assign-
ing weights to singular values, and Eq. (10) becomes the
weighted version of Eq. (6).

Notice that the truncated SVD can also solve the low-
rank matrix approximation problem. However, we found it
is less effective here for two reasons. First, the truncated
SVD uses a fixed number, K to determine top singular
values. However, the value K is usually shape dependent.
Second, truncated SVD treats each selected singular value
equally. In contrast, our method treats singular values dif-
ferently to enable adaptivity. Refer to the supplementary
material for a comparison between truncated SVD and our
method.

3.3 Algorithm
Each point may have multiple normals in the recovered
matrices {Z}, as the similar structures often overlap. We
first reshape {Z} to matrices like {M} (each row in each
matrix is a normal), and compute the final normal of each
point by simply averaging the corresponding normals in
{Z} after calling Algorithm 1. To achieve quality normal
estimations, we iterate non-local similar structures searching
(Section 3.1) and the weighted nuclear norm minimization
in Algorithm 1.

Extension to mesh models. Our algorithm can be easily
extended to handle mesh models. One natural way is to take
the vertices/normals of a mesh as points/normals in a point
cloud. However, to achieve desired results, face normals are
frequently used to update vertex positions [8], [14], [15].
Hence, we use the centers of faces and the corresponding
normals as points. Moreover, we use the mesh topology to
compute neighbors in Section 3.1.

4 POSITION UPDATE

Besides normal estimation, we also present algorithms to
update point or vertex positions to match the estimated
normals, which is typically necessary before applying other
geometry processing algorithms.

Vertex update for mesh models. We use the algorithm
[8] to update vertices of mesh models, which minimizes the
square of the dot product between the normal and the three
edges of each face.

Point update for point clouds. Compared to the vertex
update for mesh models, updating point cloud positions is

more difficult due to the absence of topological information.
Furthermore, the local neighborhood information may vary
during this position update. We propose a modification of
the edge recovery algorithm in [10] to update points in a
feature-aware way and minimize∑

i

∑
j∈Si

|(pi − pj)n
T
j |2 + |(pi − pj)n

T
i |2. (11)

pi and pj are unknown, and ni and nj are computed
by our normal estimation algorithm. Eq. (11) encodes the
sum of distances to the tangent planes defined by the
neighboring points {pj} and the corresponding normals
{nj}, as well as the sum of distances to the tangent planes
defined by {pi} and {ni}. The differences between [10] and
our method are: (1) [10] utilized a least squares form for
alleviating artifacts on the intersection of two sharp edges;
(2) [10] only considered the distance to all the planes defined
by each neighboring point and the point’s corresponding
normal.

We use gradient descent to solve Eq. (11), by assuming
the point pi and its neighboring points {j ∈ Si|pj} in the
previous iteration are known. Here we use ball neighbors
instead of k nearest neighbors to ensure the convergence of
our point update. Therefore, the new position of pi can be
computed by

p′i = pi + γi
∑
j∈Si

(pj − pi)(n
T
j nj + nTi ni), (12)

where p′i is the new position. γi is the step size, which is set
to 1

3|Si| to ensure the convergence (see Section 5).

2 22 42 62 82 102
Number of Iterations

0

0.003

0.006

0.009

0.012

0.015

M
SA

E

Bilateral filter
Our method

(a)

10 40 70 100 130 160 190 220 250 280
K Nearest Neighbors

0

1

2

3

4

5

6

M
SA

E

#10-3

Local KNN
Non-local KNN

(b)

Fig. 5. (a) Normal errors of our method and the bilateral filter [12]. (b)
Greater klocal or knon leads to smaller normal errors.

5 METHOD ANALYSIS

In this section, we analyze both the normal estimation and
point update steps of our method.

5.1 Analysis of Normal Estimation
Convergence. As is true with previous techniques [8], [14],
[15], we also cannot guarantee the convergence of our
normal estimation method. Figure 5(a) shows the normal
approximation error using the bilateral filter [12] and our
method. Both demonstrate similar behavior where the error
decreases significantly and then increases with the iteration
count. However, this experiment indicates our method is
more accurate. Figure 11 shows the normal estimation re-
sults after 1, 5 and 20 iterations.

Rotation-invariant similarity. As discussed in [54], non-
local rotation-invariant similarity does not preserve sharp
features. Figure 7 shows the comparisons of [54] and
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(a) (b) (c)

(d) (e) (f)

Fig. 6. (a) PCA normals [19]. (b) Non-local similar local structures of
the local structure denoted by the red point. (c) Non-local similar local
isotropic structures of the local isotropic structure denoted by the red
point. (d) Normal estimation by low-rank minimization on (b). (e) Normal
estimation by low-rank minimization on (c). (f) Normal estimation by our
method. Blue lines indicate point normals.

(a) Noisy (b) [54] (c) Ours

Fig. 7. Comparison with [54].

(a) [55] (b) Ours (c) [55] (d) Ours

Fig. 8. Comparison with PCPNET [55].

(a) (b) (c)

Fig. 9. Three ways of matrix construction: (a) random permutation, (b)
permute matrix M with the order of x, y and z of one by one normal, (c)
ours: permute matrix M with the order of x of all normals, then y of all
normals and finally z. Blue lines indicate point normals.

(a) Average (b) β = 20 (c) β = 1

(d) Average (e) β = 20 (f) β = 1

Fig. 10. First row: recovered normals of a matrix constructed by similar
local isotropic structures, using the averaging method (i.e., averaging
the normal vectors of similar local isotropic structures) and our method
with different β. Second row: results after performing several normal
estimation iterations on the same input. The mean square angular errors
for (d-f) are (×10−2): 3.50, 2.58 and 0.41, respectively.

our method. [54] smooths out sharp features because the
method does not consider the anisotropic and isotropic
issues involved in 3D data. We tested two variants of
our normal estimation method: non-local similarity based
on local structures and non-local similarity based on local
isotropic structures. The similarity metrics are defined by
the Frobenius norm of Eq. (2), using local structures and lo-
cal isotropic structures, respectively. We have the following
observations from Figure 6: (1) the similar structures from
both variants lie on or close to sharp features area (Figure
6(b,c)); (2) the estimated normals based on local structures
are smooth everywhere and blur the sharp features (Figure
6(d)); (3) the estimated normals based on local isotropic
structures are anisotropic around sharp features but some-
times do not preserve discontinuities/edges well (Figure
6(e)). We suspect this effect in (e) is because the searched
similar structures of a structure owned by an edge point
provide insufficient information to preserve the discontinu-
ities (i.e., sharp edges). As such, we did not choose either of
the two above variants. In comparison, our method can well
preserve sharp features (Figure 7(c) and 6(f)).

Comparison with learning based methods. We com-
pared our method with the learning based technique [54].
Figure 8 exhibits two normal estimation results for [55]
and our method. Our method performs better than [55],
which has difficulty in smoothing regions without features
or preserving sharp features. We also show that our method
outperforms another learning based method [18] (see Sec-
tion 6.1).

Matrix ordering. We investigated the ordering of the
constructed matrix as well. We found that the ordering of
points significantly influences the minimization result (Fig-
ure 9). We suspect this is due to the neighboring information
and three coordinates of each normal in different ordering
matrices, which is more complicated than the regular single-
channel grayscale images. Our ordering scheme does not
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TABLE 1
Comparison of tensor voting and the bilateral scheme. The MSAE

numbers are ×10−3.

Iterations 5 10 15 20 25 30

Bilateral 13.452 8.753 6.881 5.712 4.828 4.109
Tensor voting 12.016 7.855 6.182 5.133 4.340 3.694

(a) (b) (c) (d)

Fig. 11. (a) PCA normals [19]. (b-d) The normal estimation after 1, 5 and
20 iterations, respectively.

require x, y or z of the involved normals to exactly fill up
an integer number of columns. For example in Eq. (3), after
filling x in some columns, the remaining x only fill up a
part of the next column and y would fill up the remaining
part of the column and fill up other columns in a similar
fashion. We tested our ordering scheme with the arranged
scheme (i.e., each column includes an individual type of
normal coordinates only) and found similar performances
(Figure 13(a)).

β and averaging. We tested the effect of β and com-
pared our low-rank matrix minimization with the simple
averaging method. We found that β is related to the number
of ranks after the generalized soft-thresholding. A smaller
β leads to more ranks retained, which also indicates more
noise is left behind. For instance, the numbers of ranks for
the sphere example in Fig. 10 with β = 1.0 and β = 20.0
are 85 and 1, respectively. We also observed that the number
of ranks is related to capturing changes in the surface: a
greater β captures less surface changes (e.g., Figure 10(b,e)).
We found no relations between averaging and the most low-
rank method (i.e., with the largest singular value retained).
The most low-rank method may also recover normals of
a matrix with different directions (Figure 10(a,b)). Figure
10 (d-f) show that our default β is more robust than both
averaging and the most low-rank method.

Representative normal and irregular sampling. The
orientation of the representative normal computed by tensor

(a) Input (b) [12] (c) Ours

Fig. 12. Normal estimation for irregularly sampled data. (a) The points on
the right side are significantly denser than the points on top. (b) and (c)
are shown in a different view from (a). Blue lines indicate point normals.
The mean square angular error (MSAE, in radians) of (b) and (c) are
1.87× 10−3 and 3.90× 10−4, respectively.

voting might be positive or negative. We use its original
normal to constrain the orientation (i.e., their dot product is
positive). We also compared the representative orientation
computed by tensor voting with the bilateral scheme. For
fair comparisons, we ensure the same weighting functions
and neighbors of each point for both schemes. Table 1 shows
that the tensor voting scheme outperforms the bilateral
scheme. As shown in Figure 12, our normal estimation
technique is more accurate and robust than the bilateral
filter [12] when handling irregularly sampled data.

5.2 Analysis of Point Update
Convergence. Lemma: The proposed point update algorithm is
convergent.
Proof. The point update is convergent in the sense that the
total energy E =

∑
i

∑
j∈Si |(pi−pj)n

T
j |22+ |(pi−pj)n

T
i |22

decreases in each iteration. Assuming we use ball neighbors,
we obtain

E = PQPT , (13)

where P is a 1 × 3|i| vector concatenated with all point
positions and |i| is the number of points. Q is a 3|i| × 3|i|
matrix which consists of |i| × |i| blocks (3× 3). We use Qi,j

to denote the (i, j) blocks: Qi,i = 2
∑
j(n

T
i ni + nTj nj) and

Qi,j = Qj,i = −2(nTi ni + nTj nj).
From Eq. (12), we can compute the new positions P′ =

P(I − OG). I is the identity matrix, O = 1
2Q and G is

a diagonal block matrix with each 3 × 3 diagonal block as
Gi,i = γiI . Based on P′, we have E′ = P′QP′T = P(Q −
QGO−OGQ+OGQGO)PT . Thus, we obtain

E−E′=PQPT−P(Q−QGO−OGQ+OGQGO)PT

= 2POG(2G−1 −O)GOPT

(14)
To demonstrate the convergence of the point update,E−

E′ should be non-negative. O and G are both symmetric
positive semidefinite matrices, and we should prove 2G−1−
O is a symmetric positive semidefinite matrix.

Obviously, 2G−1−O is a symmetric matrix. 2G−1−O is
a positive semidefinite matrix in the sense that its eigenval-
ues are non-negative. We denote λ as one of its eigenvalues,
and X the corresponding eigenvector. Without loss of gen-
erality, we assume |xl| (i.e., |xl| ≥ |xk|) is the greatest in X.
λ can be computed by

λ =

∑
k(2g

′
l,k − ol,k)xk
xl

=
∑
k

2g′l,k
xk
xl
−

∑
k

ol,k
xk
xl

= 2g′l,l −
∑
k

ol,k
xk
xl

(15)

where g′l,l = 1
γl

and g′l,k = 0 are the elements of G−1.
We can easily demonstrate that the sum of the absolute
values of each row in nTi ni or nTj nj is equal or less
than 1+

√
3

2 . Since g′l,l = 1
γl

= 3|Sl| and
∑
k ol,k

xk
xl
≤∑

k |ol,k|
|xk|
|xl| ≤

∑
k |ol,k| ≤ 2(1 +

√
3)|Sl|, we obtain

λ ≥ 2g′l,l − 2(1 +
√
3)|Sl| ≥ 0. Consequently, 2G−1 − O

is a symmetric positive semidefinite matrix and E−E′ ≥ 0.
Figure 13 (b) shows one example of the decreasing energy
of Eq. (11).
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Neighbor information. While the neighboring infor-
mation for point updating should be recomputed in each
iteration, doing so can lead to artifacts. As illustrated in
Figure 15(a), our point update method enhances edges
by automatically driving neighboring points to edges but
also leads to obvious gaps near edges. This effect happens
because the optimization will drive points to sharp edges.
Points further away from these features will only have
neighbors in that region, and points at sharp edges only
have neighbors at sharp edges. As a result, points at sharp
edges will stay at sharp edges and points further away
from these features will stay further away leading to gaps
near sharp edges. Furthermore, the upsampling application
could fail when the number of points is low (Figure 15(b)).
To alleviate this issue, we simply keep the neighboring
information unchanged in all iterations, which has the side-
effect of reducing the computation in each iteration. Figure
15 shows a comparison. Though we cannot guarantee that
our point update method preserves the volume of the shape,
we found insignificant volume changes in our experiments.

Comparison of other update methods. We compared
two other point update methods with our algorithm. One
method constrains the movement of a point to be along
its normal direction. That is, the update equation is ad-
justed by removing nTj nj in Eq. (12). The other update
method adopts local isotropic neighbors from local isotropic
structures (Section 3) in Eq. (12). However, we found both
methods incapable of automatically forming sharp edges:
the volume shrinks significantly and points fly away from
sharp edges (Figure 14 (a,b)). This effect happens because
neither method takes anisotropic neighbors into account,
thus leading to no constraints around sharp edges. On the
contrary, our point update algorithm can automatically form
the sharp edges (Figure 14(c)).
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Fig. 13. (a) Performance comparison of the coordinates unseparated
ordering scheme and our ordering scheme. (b) The changes of the
engergy defined in Eq. (11) with increasing iterations.

TABLE 2
Normal errors (mean square angular error in radians) of two scanned
models. Dod vir is a virtual scan of a noise-free model as opposed to

Figure 21, which is corrupted with synthetic noise.

Methods [19] [17] [12] [18] Ours

Dod vir 0.0150 0.0465 0.0054 0.0553 0.0023
Fig. 24 0.0118 0.1274 0.0060 0.1208 0.0036

(a) (b) (c)

Fig. 14. (a) Point update by moving only along the current normal
direction (removing nT

j nj in Eq. (12)). (b) Point update by using local
isotropic neighbors (Section 3) in Eq. (12). (c) Our method (Eq. (12)).

(a) (b) (c) (d)

Fig. 15. Comparison of with and without updating neighboring informa-
tion in each iteration. (a) Position update with updating neighboring infor-
mation. (b) The upsampling of (a). (c) Position update without updating
neighboring information. (d) The upsampling of (c).

(a) (b) (c) (d)

Fig. 16. (a) and (b): two overly-sharpened results (more unique colors
around the upper corner) by fixing θth. (c) the smeared result (smoothly
changed colors around the lower corner) by using a greater θinit

th . (d)
The result by using a smaller θinit

th . Zoom in to clearly observe the
differences.
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(a) Cube
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(b) Dodecahedron

Fig. 17. Normal errors (mean square angular error in radians) of the
Cube and Dodecahedron point sets corrupted with different levels of
noise (proportional to the diagonal length of the bounding box).

(a) [19] (b) [17] (c) [12] (d) [18] (e) Ours

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0
0.017
0.034
0.05
0.067
0.083
0.1

(f)

Fig. 18. Position accuracies for Fig. 20. The root mean square errors
are (×10−2): (a) 8.83, (b) 9.05, (c) 5.14, (d) 9.64, (e) 3.22. The rmse
of the corresponding surface reconstructions are (×10−2): 7.73, 6.45,
3.28, 7.71 and 2.41, respectively. (f) is the error bar for here and 19.
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(a) [19] (b) [17] (c) [12] (d) [18] (e) Ours

Fig. 19. Position accuracies for Fig. 24. The root mean square errors
are (×10−3): (a) 8.59, (b) 6.84, (c) 6.80, (d) 6.82, (e) 6.57. The rmse
of the corresponding surface reconstructions are (×10−3): 8.60, 6.75,
6.68, 6.74 and 6.40, respectively.

6 APPLICATIONS AND EXPERIMENTAL RESULTS

In this section, we demonstrate some geometry processing
applications that benefit from our approach directly or indi-
rectly including mesh denoising, point cloud filtering, point
cloud upsampling, surface reconstruction, and geometric
texture removal. Moreover, we also compared state of the art
methods with our approach in each application. We utilize
freely available source code for each comparable method or
obtained implementations from the original authors.

Parameter setting. As with image denoising [3], we set a
“window” size (i.e., non-local searching range) for similar
structures searching, which provides a trade-off between
accuracy and speed. The main parameters of our normal
estimation method are the local neighborhood size klocal,
the angle threshold θth, the non-local searching range knon,
and the maximum iterations for normal estimation nnor . For
the position update procedure, our parameters are the local
neighborhood size klocal or 1-ring neighbors (mesh models)
and the number of iterations for the position update npos.

To more accurately find similar local isotropic structures,
we set one initial value and one lower bound to θth, namely
θinitth and θlowth . We reduce the start value θinitth towards θlowth
at a rate of 1.1n in the n-th iteration. We show the tests of
our parameters in Figure 5 and 16. In general, normal errors
decrease with an increasing number of normal estimation
iterations, but excessive iterations can cause normal errors to
increase (Figure 5(a)). The estimated normals of models with
sharp features are more accurate with the increasing local
neighborhood klocal or non-local search range knon (Figure
5(b)). Fixed θth are likely to inaccurately locate similar local
isotropic structures and further generate erroneous normal
estimations (Figure 16(a-b)). Larger start values of θinitth

smear geometric features (Figure 16(c)).
Based on our parameter tests and observations, for

point clouds we empirically set: klocal = 60, knon = 150,
θinitth = 30.0, and θlowth = 15.0 for models with sharp
features, but set θinitth = 20.0 and θlowth = 8.0 for models with
low dihedral angle features. For mesh models, we replace
the local neighborhood with the 2-ring of neighboring faces.
We use 2 to 10 iterations for normal estimation and 5 to 30
iterations for the position update.

To make fair comparisons, we used the same local neigh-
borhood for all methods and tune the remaining parameters
of the other methods to achieve the best visual results.
Specifically, to tune one parameter, we fixed the other pa-
rameters and searched based on the suggested range and the
meaning of parameters in the original papers. We observed
that the other methods often take more iterations in normal

smoothing than ours. The methods [17], [18] have multiple
solutions, and we took the best results for comparison. For
the position update, we used the same parameters for the
compared normal estimation methods for each model.

Accuracy. Since we used the pre-filter [56] for meshes
with large noise, there exist few flipped normals in the
results so that different methods have limited difference in
normal accuracy. However, the visual differences are easy to
observe. Therefore, we compared the accuracy of normals
and positions over point cloud shapes. Note that state of
the art methods compute normals on edges differently: the
normals on edges are either sideling (e.g., [18], [19]) or
perpendicular to one of the intersected tangent planes (e.g.,
[12] and our method). The latter is more suitable for feature-
aware position update. For fair comparisons, we have two
ground truth models for each point cloud: the original
ground truth for [18], [19] and the other ground truth for
[12] and our method. The latter ground truth is generated by
adapting normals on edges to be perpendicular to one of the
intersected tangent planes. The ground truth model, which
has the smaller mean square angular error (MSAE) [56]
among the two kinds of ground truth models, is selected as
the ground truth for [17]. Figure 17 shows the normal errors
of different levels of noise on the cube and dodecahedron
models. We also compared our method with state of the
art techniques in Table 2. The ground truth for the Dod vir
model (Table 2) for [18], [19] is achieved by averaging the
neighboring face normals in the noise-free model. The other
kind of ground truth for [12] and our method is produced by
further adapting normals on edges to one of the intersected
tangent planes. We compute ground truth for Figure 24 and
17 in a similar way. The normal error results demonstrate
that our approach outperforms the state of the art methods.
We speculate that this performance is due to the use of non-
local similar structures as opposed to only local information.

In addition, we compared the position errors of different
techniques, see Figure 18 and 19. The position error is
measured using the average distance between points of the
ground truth and their closest points of the reconstructed
point set [11]. For visualization purpose, we rendered the
colors of position errors on the upsampling results. The
root mean square error (RMSE) of both the upsampling
and reconstruction results show that our approach is more
accurate than state of the art methods.

6.1 Point Cloud Filtering

We compare our normal estimation method with several
state of the art normal estimation techniques. We then per-
form the same number of iterations of our position update
algorithm with the estimated normals of all methods.

Figure 20 and 21 show two point cloud models corrupted
with heavy, synthetic noise. The results demonstrate that
our method performs better than the state of the art ap-
proaches in terms of sharp feature preservation and non-
feature smoothness. Figure 22, 23, 24, and 25 show the
methods applied to a variety of real scanned point cloud
models. Our approach outperforms other methods in terms
of the quality of the estimated normals. We demonstrate
our technique on point clouds with more complicated fea-
tures. Figure 28 shows that our method produces slightly
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(a) [19] (b) [17] (c) [12] (d) [18] (e) Ours

Fig. 20. The first row: normal results of the Cube point cloud (synthetic noise: 3.0% of the diagonal length of the bounding box). The second row:
upsampling results of the filtered results by updating position with the normals in the first row. The third row: the corresponding surface reconstruction
results.

(a) [19] (b) [17] (c) [12] (d) [18] (e) Ours

Fig. 21. The first row: normal results of the Dodecahedron point cloud (synthetic noise: 2.0% of the diagonal length of the bounding box). The
second row: upsampling results of the filtered results by updating position with the normals in the first row. The third row: the corresponding surface
reconstruction results.
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(a) [19] (b) [17] (c) [12] (d) [18] (e) Ours

Fig. 22. The first row: normal results of the scanned Car point cloud. The second row: upsampling results of the filtered results by updating position
with the normals in the first row. The third row: the corresponding surface reconstruction. Comparing with other methods, [12] and our method are
better in sharp edges preservation and hereby generate more sharpened results.

(a) [19] (b) [17] (c) [12] (d) [18] (e) Ours

Fig. 23. The first row: normal results of the scanned House point cloud. The second row: upsampling results of the filtered results by updating
position with the normals in the first row. The third row: the corresponding surface reconstruction results.
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(a) [19] (b) [17] (c) [12] (d) [18] (e) Ours

Fig. 24. The first row: normal results of the scanned Iron point cloud. The second row: upsampling results of the filtered results by updating position
with the normals in the first row. The third row: the corresponding surface reconstruction results.

(a) [19] (b) [17] (c) [12] (d) [18] (e) Ours

Fig. 25. The first row: normal results of the scanned Toy point cloud. The second row: upsampling results of the filtered results by updating position
with the normals in the first row. The third row: the corresponding surface reconstruction results.
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(a) Noisy input (b) [8] (c) [14] (local) (d) [14] (global) (e) [15] (f) Ours

Fig. 26. Denoised results of the Bunny (synthetic noise: 0.2 of the average edge length), the scanned Pyramid and Wilhelm.

(a) [24] (b) RIMLS over
(a)

(c) [57] (d) RIMLS over
(c)

Fig. 27. Upsampling and reconstruction results over [24], [57]. The input
is the same as Figure 21.

lower normal errors than [12]. Figure 28 (f) and (g) show
our method with different parameters, which leads to a
less/more sharpened version of the input. We also show
some results using [24], [57], which do not preserve sharp
features (Figure 27). Besides, we show some filtering results
by [58] which can preserve sharp features to some extent,
with introducing obvious outliers on surfaces (Figure 29).
Our method can even successfully handle a larger noise
(Figure 20 and 21), which we found is difficult for [58].

6.2 Point Cloud Upsampling

As described in Section 6.1, the point cloud filtering also
consists of a two-step procedure: normal estimation and
point update. However, unlike mesh shapes, point cloud
models often need to be resampled to enhance point density
after filtering operations have been applied.

We apply the edge-aware point set resampling technique
[12] to all the results after point cloud filtering and contrast

(a) [12] (b) Ours (c) [12] (d) Ours

(e) [12] (f) Ours (g) Ours

Fig. 28. Normal estimation results on David (a,b), a female statue (c,d)
and monkeys (e,f,g). The mean square angular errors of (a-g) are
respectively (×10−2): 10.684, 10.636, 9.534, 9.423, 5.004, 4.853 and
4.893. (b,d,f) used smaller knon and klocal, and (g) used the default
knon and klocal.

the different upsampling results. For fair comparisons, we
upsample the filtered point clouds of each model to reach
a similar number of points. Figure 20 to 25 display various
upsampling results on state of the art normal estimation
methods and different point cloud models. The figures show
that the upsampling results on our filtered point clouds are
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(a) [58] (b) [58]

Fig. 29. Filtering results by [58]. The input noise is 0.15% for (a) and
0.1% for (b). Red circles indicate outliers.

substantially better than those filtered by other methods in
preserving sharp features. Bilateral normal smoothing [12]
usually produces good results, but this method sometimes
blur edges with low dihedral angles.

(a) [54] (b) [59] (c) [60] (d) [54] (e) [59] (f) [60]

(g) [54] (h) [59] (i) [60]

Fig. 30. Mesh denoising results of [54], [59], [60]. Only close-up views
are shown to highlight the differences.

6.3 Surface Reconstruction

One common application for point cloud models is to recon-
struct surfaces from the upsampled point clouds in Section
6.2 before use in other applications. Here, we select the
edge-aware surface reconstruction technique–RIMLS [13].
For fair comparisons, we use the same parameters for all
the upsampled point clouds of each model.

Figure 20 to 25 show a variety of surface reconstruction
results on different point cloud models. The comparison
results demonstrate that the RIMLS technique over our
method produces the best surface reconstruction results, in
terms of sharp feature preservation.

6.4 Mesh Denoising

Many state of the art mesh denoising methods involve
a two-step procedure which first estimates normals and
then updates vertex positions. We selected several of these
methods [8], [14], [15] for comparisons in Figure 26. Note
that [14] provides both a local and global solution, and
we provide comparisons for both. We also compared our
method with other mesh denoising techniques [54], [59],

[60]. Consistent with Figure 26, the corresponding blown-
up windows of these three methods are shown in Figure
30.

When the noise level is high, many of these methods
produce flipped face normals. For the Bunny model (Figure
26), which involves frequent flipped triangles, we utilize
the technique in [56] to estimate a starting mesh from the
original noisy mesh input for all involved methods. The
comparison results show that our method outperforms the
selected state of the art mesh denoising methods in terms
of sharp feature preservation. Similar to the above analysis,
this is because that other methods are mostly local tech-
niques while our method takes into account the information
of similar structures (i.e., more useful information). Specifi-
cally, [8], [14], [15], [59], [60] are local methods ( [15] and the
global mode of [14] are still based on local information). [54]
does not take sharp features information into account and
thus cannot preserve sharp features well.

6.5 Geometric Texture Removal
We also successfully applied our method to geometric de-
texturing, the task of which is to remove features of different
scales [16]. Our normal estimation algorithm is feature-
aware in the above applications because each matrix con-
sists only of similar local isotropic structures. On the other
hand, by larger values of θth, the constructed matrix can
include local anisotropic structures and the low rank matrix
approximation result becomes smoother, thus smoothing
anisotropic surfaces to isotropic surfaces.

Figure 31 shows comparisons of different methods
that demonstrate that our method outperforms other ap-
proaches. Note that [16] is specifically designed for geomet-
ric texture removal. However, that method cannot preserve
sharp edges well. Figure 32 shows the results of removing
different scales of geometric features on a mesh. We pro-
duced Figure 32 (d) by applying the pre-filtering technique
[56] in advance, since the vertex update algorithm [14] could
generate frequent flipped triangles when dealing with such
large and steep geometric features. As an alternative, our
normal estimation method can be combined with the vertex
update in [16] to handle such challenging mesh models.
Figure 33 shows the geometric texture removal on two
different point clouds, which are particularly challenging
due to a lack of topology.

TABLE 3
Timing statistics for different normal estimation techniques over point

clouds (in seconds).

Methods [19] [17] [12] [18]
Ours
SVD

Ours
RSVD

Fig. 20
#6146

0.57 141.5 0.48 8 95.6 65.1

Fig. 24
#100k

18.7 2204 17.2 115 3147 2458

Fig. 23
#127k

10.8 3769 12.5 141 3874 2856

6.6 Timings
Table 3 summarizes the timings of different normal estima-
tion methods on several point clouds. While our method



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. Y, JULY 2019 15

(a) Input (b) Laplacian (c) [14] (local) (d) [61] (e) [16] (f) Ours

Fig. 31. Geometric texture removal results of the Bunny and Cube. Please refer to the zoomed rectangular windows.

(a) Input (b) Small texture
removal

(c) Medium tex-
ture removal

(d) Large texture
removal

Fig. 32. Different scales of geometric texture removal results of the
Circular model.

(a) Input (b) Ours (c) Input (d) Ours

Fig. 33. Geometric texture removal results of the Turtle point cloud and
embossed point cloud. We render point set surfaces of each point cloud
for visualization.

produces high quality output, the algorithm takes a long
time to run due to the svd operation for each normal esti-
mation. Therefore, our method is more suitable for offline
geometry processing. However, it is possible to accelerate
our method using specific svd decomposition algorithms,
such as the randomized svd (RSVD) decomposition algo-
rithm [62] as shown in Table 3. In addition, many parts of
the algorithm could benefit from parallelization.

7 CONCLUSION

In this paper, we have presented an approach consisting
of two steps: normal estimation and position update. Our
method can handle both mesh shapes and point cloud
models. We also show various geometry processing appli-
cations that benefit from our approach directly or indirectly.
The extensive experiments demonstrate that our method
performs substantially better than state of the art techniques,
in terms of both visual quality and accuracy.

While our method works well, speed is an issue if online
processing speeds are required. In addition, though we
mitigate issues associated with the point distribution in the
position update procedure (i.e., gaps near edges), the point
distribution could still be improved. One way to do so is

to re-distribute points after our position update through a
“repulsion force” from each point to its neighbors. We could
potentially accomplish this effect by adding this repulsion
force directly to Eq. (11).
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[13] A. C. Öztireli, G. Guennebaud, and M. Gross, “Feature preserving
point set surfaces based on non-linear kernel regression,”
Computer Graphics Forum, vol. 28, no. 2, pp. 493–501, 2009. [Online].
Available: http://dx.doi.org/10.1111/j.1467-8659.2009.01388.x

[14] Y. Zheng, H. Fu, O.-C. Au, and C.-L. Tai, “Bilateral normal fil-
tering for mesh denoising,” IEEE Transactions on Visualization and
Computer Graphics, vol. 17, no. 10, pp. 1521–1530, Oct 2011.

[15] H. Zhang, C. Wu, J. Zhang, and J. Deng, “Variational mesh
denoising using total variation and piecewise constant function
space,” Visualization and Computer Graphics, IEEE Transactions on,
vol. 21, no. 7, pp. 873–886, July 2015.

[16] P.-S. Wang, X.-M. Fu, Y. Liu, X. Tong, S.-L. Liu, and B. Guo,
“Rolling guidance normal filter for geometric processing,” ACM
Trans. Graph., vol. 34, no. 6, pp. 173:1–173:9, Oct. 2015. [Online].
Available: http://doi.acm.org/10.1145/2816795.2818068

[17] A. Boulch and R. Marlet, “Fast and robust normal estimation
for point clouds with sharp features,” Comput. Graph. Forum,
vol. 31, no. 5, pp. 1765–1774, Aug. 2012. [Online]. Available:
http://dx.doi.org/10.1111/j.1467-8659.2012.03181.x

[18] A. Boulch and R. Marlet, “Deep learning for robust normal
estimation in unstructured point clouds,” Computer Graphics
Forum, vol. 35, no. 5, pp. 281–290, 2016. [Online]. Available:
http://dx.doi.org/10.1111/cgf.12983

[19] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle,
“Surface reconstruction from unorganized points,” SIGGRAPH
Comput. Graph., vol. 26, no. 2, pp. 71–78, Jul. 1992. [Online].
Available: http://doi.acm.org/10.1145/142920.134011

[20] M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman, D. Levin, and
C. T. Silva, “Point set surfaces,” in Proceedings of the Conference
on Visualization ’01, ser. VIS ’01. Washington, DC, USA:
IEEE Computer Society, 2001, pp. 21–28. [Online]. Available:
http://dl.acm.org/citation.cfm?id=601671.601673

[21] M. Pauly, M. Gross, and L. P. Kobbelt, “Efficient simplification
of point-sampled surfaces,” in Proceedings of the Conference
on Visualization ’02, ser. VIS ’02. Washington, DC, USA:
IEEE Computer Society, 2002, pp. 163–170. [Online]. Available:
http://dl.acm.org/citation.cfm?id=602099.602123

[22] N. J. Mitra and A. Nguyen, “Estimating surface normals in
noisy point cloud data,” in Proceedings of the Nineteenth Annual
Symposium on Computational Geometry, ser. SCG ’03. New
York, NY, USA: ACM, 2003, pp. 322–328. [Online]. Available:
http://doi.acm.org/10.1145/777792.777840

[23] C. Lange and K. Polthier, “Anisotropic smoothing of point
sets,” Computer Aided Geometric Design, vol. 22, no. 7,
pp. 680 – 692, 2005, geometric Modelling and Differential
Geometry. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S0167839605000750

[24] H. Huang, D. Li, H. Zhang, U. Ascher, and D. Cohen-
Or, “Consolidation of unorganized point clouds for surface
reconstruction,” ACM Trans. Graph., vol. 28, no. 5, pp. 176:1–
176:7, Dec. 2009. [Online]. Available: http://doi.acm.org/10.1145/
1618452.1618522

[25] T. K. Dey and S. Goswami, “Provable surface reconstruction
from noisy samples,” in Proceedings of the Twentieth Annual
Symposium on Computational Geometry, ser. SCG ’04. New
York, NY, USA: ACM, 2004, pp. 330–339. [Online]. Available:
http://doi.acm.org/10.1145/997817.997867

[26] P. Alliez, D. Cohen-Steiner, Y. Tong, and M. Desbrun, “Voronoi-
based variational reconstruction of unoriented point sets,” in
Proceedings of the Fifth Eurographics Symposium on Geometry
Processing, ser. SGP ’07. Aire-la-Ville, Switzerland, Switzerland:
Eurographics Association, 2007, pp. 39–48. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1281991.1281997

[27] B. Li, R. Schnabel, R. Klein, Z. Cheng, G. Dang, and
S. Jin, “Robust normal estimation for point clouds with sharp
features,” Computers & Graphics, vol. 34, no. 2, pp. 94 –
106, 2010. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S009784931000021X

[28] J. Zhang, J. Cao, X. Liu, J. Wang, J. Liu, and X. Shi, “Point cloud
normal estimation via low-rank subspace clustering,” Computers
& Graphics, vol. 37, no. 6, pp. 697 – 706, 2013, shape Modeling
International (SMI) Conference 2013. [Online]. Available: http://
www.sciencedirect.com/science/article/pii/S0097849313000824

[29] X. Liu, J. Zhang, J. Cao, B. Li, and L. Liu, “Quality point
cloud normal estimation by guided least squares representation,”
Computers & Graphics, vol. 51, no. Supplement C, pp.
106 – 116, 2015, international Conference Shape Modeling

International. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S0097849315000710

[30] J. Zhang, J. Cao, X. Liu, C. He, B. Li, and L. Liu, “Multi-normal
estimation via pair consistency voting,” IEEE Transactions on Visu-
alization and Computer Graphics, pp. 1–1, 2018.

[31] E. Mattei and A. Castrodad, “Point cloud denoising via moving
rpca,” Computer Graphics Forum, vol. 36, no. 8, pp. 123–137, 2017.
[Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.
1111/cgf.13068

[32] K.-W. Lee and W.-P. Wang, “Feature-preserving mesh denoising
via bilateral normal filtering,” in Proc. of Int’l Conf. on Computer
Aided Design and Computer Graphics 2005, Dec 2005.

[33] C. C. L. Wang, “Bilateral recovering of sharp edges on feature-
insensitive sampled meshes,” Visualization and Computer Graphics,
IEEE Transactions on, vol. 12, no. 4, pp. 629–639, July 2006.

[34] T. R. Jones, F. Durand, and M. Desbrun, “Non-iterative,
feature-preserving mesh smoothing,” ACM Trans. Graph., vol. 22,
no. 3, pp. 943–949, Jul. 2003. [Online]. Available: http:
//doi.acm.org/10.1145/882262.882367

[35] S. Fleishman, I. Drori, and D. Cohen-Or, “Bilateral mesh
denoising,” ACM Trans. Graph., vol. 22, no. 3, pp. 950–953, Jul.
2003. [Online]. Available: http://doi.acm.org/10.1145/882262.
882368

[36] H. Yagou, Y. Ohtake, and A. Belyaev, “Mesh smoothing via mean
and median filtering applied to face normals,” in Geometric Model-
ing and Processing, 2002. Proceedings, 2002, pp. 124–131.

[37] H. Yagou, Y. Ohtake, and A. Belyaev, “Mesh denoising via it-
erative alpha-trimming and nonlinear diffusion of normals with
automatic thresholding,” in Computer Graphics International, 2003.
Proceedings, July 2003, pp. 28–33.

[38] Y. Shen and K. Barner, “Fuzzy vector median-based surface
smoothing,” IEEE Transactions on Visualization and Computer Graph-
ics, vol. 10, no. 3, pp. 252–265, May 2004.

[39] X. Sun, P. L. Rosin, R. R. Martin, and F. C. Langbein, “Random
walks for feature-preserving mesh denoising,” Computer Aided
Geometric Design, vol. 25, no. 7, pp. 437 – 456, 2008,
solid and Physical Modeling Selected papers from the Solid
and Physical Modeling and Applications Symposium 2007
(SPM 2007) Solid and Physical Modeling and Applications
Symposium 2007. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S0167839608000307

[40] J. Solomon, K. Crane, A. Butscher, and C. Wojtan, “A
general framework for bilateral and mean shift filtering,”
CoRR, vol. abs/1405.4734, 2014. [Online]. Available: http:
//arxiv.org/abs/1405.4734

[41] W. Zhang, B. Deng, J. Zhang, S. Bouaziz, and L. Liu,
“Guided mesh normal filtering,” Comput. Graph. Forum,
vol. 34, no. 7, pp. 23–34, Oct. 2015. [Online]. Available:
http://dx.doi.org/10.1111/cgf.12742

[42] X. Lu, W. Chen, and S. Schaefer, “Robust mesh denoising via
vertex pre-filtering and l1-median normal filtering,” Computer
Aided Geometric Design, vol. 54, no. Supplement C, pp. 49
– 60, 2017. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S0167839617300638

[43] S. K. Yadav, U. Reitebuch, and K. Polthier, “Mesh denoising
based on normal voting tensor and binary optimization,” IEEE
Transactions on Visualization and Computer Graphics, vol. PP, no. 99,
pp. 1–1, 2017.

[44] P.-S. Wang, Y. Liu, and X. Tong, “Mesh denoising via
cascaded normal regression,” ACM Trans. Graph., vol. 35,
no. 6, pp. 232:1–232:12, Nov. 2016. [Online]. Available:
http://doi.acm.org/10.1145/2980179.2980232

[45] Q. Zheng, A. Sharf, G. Wan, Y. Li, N. J. Mitra, D. Cohen-Or,
and B. Chen, “Non-local scan consolidation for 3d urban scenes,”
ACM Trans. Graph., vol. 29, no. 4, pp. 94:1–94:9, Jul. 2010. [Online].
Available: http://doi.acm.org/10.1145/1778765.1778831

[46] J. Digne, “Similarity based filtering of point clouds,” in 2012
IEEE Computer Society Conference on Computer Vision and Pattern
Recognition Workshops, June 2012, pp. 73–79.

[47] J. Digne, S. Valette, and R. Chaine, “Sparse geometric represen-
tation through local shape probing,” IEEE Transactions on Visual-
ization and Computer Graphics, vol. 24, no. 7, pp. 2238–2250, July
2018.

[48] E. J. Candès and B. Recht, “Exact matrix completion via
convex optimization,” Foundations of Computational Mathematics,
vol. 9, no. 6, p. 717, Apr 2009. [Online]. Available: https:
//doi.org/10.1007/s10208-009-9045-5

http://dx.doi.org/10.1111/j.1467-8659.2009.01388.x
http://doi.acm.org/10.1145/2816795.2818068
http://dx.doi.org/10.1111/j.1467-8659.2012.03181.x
http://dx.doi.org/10.1111/cgf.12983
http://doi.acm.org/10.1145/142920.134011
http://dl.acm.org/citation.cfm?id=601671.601673
http://dl.acm.org/citation.cfm?id=602099.602123
http://doi.acm.org/10.1145/777792.777840
http://www.sciencedirect.com/science/article/pii/S0167839605000750
http://www.sciencedirect.com/science/article/pii/S0167839605000750
http://doi.acm.org/10.1145/1618452.1618522
http://doi.acm.org/10.1145/1618452.1618522
http://doi.acm.org/10.1145/997817.997867
http://dl.acm.org/citation.cfm?id=1281991.1281997
http://www.sciencedirect.com/science/article/pii/S009784931000021X
http://www.sciencedirect.com/science/article/pii/S009784931000021X
http://www.sciencedirect.com/science/article/pii/S0097849313000824
http://www.sciencedirect.com/science/article/pii/S0097849313000824
http://www.sciencedirect.com/science/article/pii/S0097849315000710
http://www.sciencedirect.com/science/article/pii/S0097849315000710
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.13068
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.13068
http://doi.acm.org/10.1145/882262.882367
http://doi.acm.org/10.1145/882262.882367
http://doi.acm.org/10.1145/882262.882368
http://doi.acm.org/10.1145/882262.882368
http://www.sciencedirect.com/science/article/pii/S0167839608000307
http://www.sciencedirect.com/science/article/pii/S0167839608000307
http://arxiv.org/abs/1405.4734
http://arxiv.org/abs/1405.4734
http://dx.doi.org/10.1111/cgf.12742
http://www.sciencedirect.com/science/article/pii/S0167839617300638
http://www.sciencedirect.com/science/article/pii/S0167839617300638
http://doi.acm.org/10.1145/2980179.2980232
http://doi.acm.org/10.1145/1778765.1778831
https://doi.org/10.1007/s10208-009-9045-5
https://doi.org/10.1007/s10208-009-9045-5


IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. Y, JULY 2019 17

[49] J.-F. Cai, E. J. Candès, and Z. Shen, “A singular value thresholding
algorithm for matrix completion,” SIAM J. on Optimization,
vol. 20, no. 4, pp. 1956–1982, Mar. 2010. [Online]. Available:
http://dx.doi.org/10.1137/080738970

[50] J. Wright, A. Ganesh, S. Rao, Y. Peng, and Y. Ma, “Robust principal
component analysis: Exact recovery of corrupted low-rank matri-
ces via convex optimization,” in Advances in Neural Information
Processing Systems 22, Y. Bengio, D. Schuurmans, J. D. Lafferty,
C. K. I. Williams, and A. Culotta, Eds. Curran Associates, Inc.,
2009, pp. 2080–2088.

[51] G. Liu, Z. Lin, and Y. Yu, “Robust subspace segmentation by
low-rank representation,” in Proceedings of the 27th International
Conference on International Conference on Machine Learning,
ser. ICML’10. USA: Omnipress, 2010, pp. 663–670. [Online].
Available: http://dl.acm.org/citation.cfm?id=3104322.3104407

[52] Z. Zhang, A. Ganesh, X. Liang, and Y. Ma, “Tilt: Transform
invariant low-rank textures,” International Journal of Computer
Vision, vol. 99, no. 1, pp. 1–24, Aug 2012. [Online]. Available:
https://doi.org/10.1007/s11263-012-0515-x

[53] T. P. Wu, S. K. Yeung, J. Jia, C. K. Tang, and G. Medioni, “A closed-
form solution to tensor voting: Theory and applications,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 34,
no. 8, pp. 1482–1495, Aug 2012.

[54] X. Li, L. Zhu, C.-W. Fu, and P.-A. Heng, “Non-local low-
rank normal filtering for mesh denoising,” Computer Graphics
Forum, vol. 37, no. 7, pp. 155–166, 2018. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.13556

[55] P. Guerrero, Y. Kleiman, M. Ovsjanikov, and N. J. Mitra, “Pcpnet
learning local shape properties from raw point clouds,” Computer
Graphics Forum, vol. 37, no. 2, pp. 75–85, 2018. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.13343

[56] X. Lu, Z. Deng, and W. Chen, “A robust scheme for feature-
preserving mesh denoising,” IEEE Trans. Vis. Comput. Graph.,
vol. 22, no. 3, pp. 1181–1194, 2016.

[57] R. Preiner, O. Mattausch, M. Arikan, R. Pajarola, and M. Wimmer,
“Continuous projection for fast l1 reconstruction,” ACM Trans.
Graph., vol. 33, no. 4, pp. 47:1–47:13, Jul. 2014. [Online]. Available:
http://doi.acm.org/10.1145/2601097.2601172

[58] S. K. Yadav, U. Reitebuch, M. Skrodzki, E. Zimmermann, and
K. Polthier, “Constraint-based point set denoising using normal
voting tensor and restricted quadratic error metrics,” Computers &
Graphics, vol. 74, pp. 234 – 243, 2018. [Online]. Available: http://
www.sciencedirect.com/science/article/pii/S0097849318300797

[59] W. Pan, X. Lu, Y. Gong, W. Tang, J. Liu, Y. He, and G. Qiu, “HLO:
half-kernel laplacian operator for surface smoothing,” Computer
Aided Design, 2019.

[60] S. K. Yadav, U. Reitebuch, and K. Polthier, “Robust and high
fidelity mesh denoising,” IEEE Transactions on Visualization and
Computer Graphics, vol. 25, no. 6, pp. 2304–2310, June 2019.

[61] L. He and S. Schaefer, “Mesh denoising via l0 minimization,”
ACM Trans. Graph., vol. 32, no. 4, pp. 64:1–64:8, Jul. 2013. [Online].
Available: http://doi.acm.org/10.1145/2461912.2461965

[62] N. Halko, P. G. Martinsson, and J. A. Tropp, “Finding structure
with randomness: Probabilistic algorithms for constructing
approximate matrix decompositions,” SIAM Review, vol. 53, no. 2,
pp. 217–288, 2011. [Online]. Available: https://doi.org/10.1137/
090771806

Xuequan Lu is a Lecturer (Assistant Profes-
sor) at Deakin University, Australia. He spent
more than two years as a Research Fellow in
Singapore. Prior to that, he earned his Ph.D
at Zhejiang University (China) in June 2016.
His research interests mainly fall into the cate-
gory of visual computing, for example, geome-
try modeling, processing and analysis, anima-
tion/simulation, 2D data processing and analy-
sis. More information can be found at http://www.
xuequanlu.com.

Scott Schaefer is a Professor of Com-
puter Science at Texas AM University. He re-
ceived a bachelors degree in Computer Sci-
ence/Mathematics from Trinity University in 2000
and an M.S. and PhD. in Computer Science
from Rice University in 2003 and 2006 respec-
tively. His research interests include graphics,
geometry processing, curve and surface repre-
sentations, and barycentric coordinates. Scott
received the Gnter Enderle Award in 2011 and
an NSF CAREER Award in 2012.

Jun Luo received his BS and MS degrees in
Electrical Engineering from Tsinghua University,
China, and the Ph.D. degree in Computer Sci-
ence from EPFL (Swiss Federal Institute of Tech-
nology in Lausanne), Lausanne, Switzerland.
From 2006 to 2008, he has worked as a postdoc-
toral research fellow in the Department of Electri-
cal and Computer Engineering, University of Wa-
terloo, Waterloo, Canada. In 2008, he joined the
faculty of the School Of Computer Science and
Engineering, Nanyang Technological University

in Singapore, where he is currently an Associate Professor. His research
interests include mobile and pervasive computing, wireless networking,
applied operations research, as well as network security.

Lizhuang Ma received the Ph.D. degree from
the Zhejiang University, Hangzhou, China. He
was the recipient of the national science fund
for distinguished young scholars from NSFC. He
is currently a Distinguished Professor and the
Head of the Digital Media Computer Vision Lab-
oratory, Shanghai Jiao Tong University, Shang-
hai, China. His research interests include digital
media technology, vision, graphics, etc,.

Ying He is currently an associate professor at
School of Computer Science and Engineering,
Nanyang Technological University, Singapore.
He received the BS and MS degrees in electri-
cal engineering from Tsinghua University, China,
and the PhD degree in computer science from
Stony Brook University, USA. His research inter-
ests fall into the general areas of visual com-
puting and he is particularly interested in the
problems which require geometric analysis and
computation.

http://dx.doi.org/10.1137/080738970
http://dl.acm.org/citation.cfm?id=3104322.3104407
https://doi.org/10.1007/s11263-012-0515-x
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.13556
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.13343
http://doi.acm.org/10.1145/2601097.2601172
http://www.sciencedirect.com/science/article/pii/S0097849318300797
http://www.sciencedirect.com/science/article/pii/S0097849318300797
http://doi.acm.org/10.1145/2461912.2461965
https://doi.org/10.1137/090771806
https://doi.org/10.1137/090771806
http://www.xuequanlu.com
http://www.xuequanlu.com

	Introduction
	Related Work
	Normal Estimation
	Nonlocal Methods for Point Clouds and Nuclear Norm Minimization 

	Normal Estimation
	Non-local Similar Structures
	Weighted Nuclear Norm Minimization
	Algorithm

	Position Update
	Method Analysis
	Analysis of Normal Estimation
	Analysis of Point Update

	Applications and Experimental Results
	Point Cloud Filtering
	Point Cloud Upsampling
	Surface Reconstruction
	Mesh Denoising
	Geometric Texture Removal
	Timings

	Conclusion
	References
	Biographies
	Xuequan Lu
	Scott Schaefer
	Jun Luo
	Lizhuang Ma
	Ying He


