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Abstract

Lofting is a traditional technique for creating a curved shape by first spegfs network of curves that approx-
imates the desired shape and then interpolating these curves with a smofatbesThis paper addresses the
problem of lofting from the viewpoint of subdivision. First, we develop aisidion scheme for an arbitrary net-
work of cubic B-splines capable of being interpolated by a smooth sur$sm®nd, we provide a quadrangulation
algorithm to construct the topology of the surface control mesh. Finallyextend the Catmull-Clark scheme to
produce surfaces that interpolate the given curve network. Near theaetwork, these lofted subdivision sur-
faces are @ bicubic splines, except for those points where three or more curves Wie@rove that the surface is
¢! with bounded curvature at these points in the most common cases; eahggsualts suggest that the surface is

also C in the general case.

Categories and Subject Descript¢scording to ACM CCS) |.3.5 [Computer Graphics]: Computational Geometry

and Object Modeling

1. Introduction

Lofting is a common technique for constructing smooth sur-
faces for computer graphics and computer-aided design ap-
plications. In this approach, the user defines a curve net-
work and a smooth surface interpolating this network is con-
structed automatically. The problem of constructing a sur-
face using a curve network can be split into several steps.
First, a method for defining a curve network compatible with
a smooth surface is needed, as several curves meeting at
point need to have tangent lines in the same plane for such
surface to exist. Next, we need a way to define the topol-
ogy of the surface, as surfaces of different topology may be
compatible with a given curve network; finally, we need al-
gorithms for computing the geometry of the surface interpo-
lating the curves.

In our approach, theurve networkconsisting of cubic
B-splines is inferred from curve control points connected
by line segments in th@olyline network Control points
where more than two line segments meet are called corners.
A curve network compatible with a smooth surface is com-
puted from control points using treirve network subdivi-
sion scheme

A set of closed loops of curves are identified as bound-
aries of surfac@atches Specifying these loops defines the
topology of the surface uniquely. Additional control points

(© The Eurographics Association 2004.

a

are introduced in the interior of patches using a connectivity
construction algorithm and fairing; finally, a smooth surface
is computed using a modification of Catmull-Clark subdivi-
sion scheme. Figurgé shows an example of a polyline net-
work qO defining the curve networg®. On the right, the
surface control mesp0 for this example was computed au-
tomatically from the polyline networqo. When subdivided
using our modified Catmull-Clark algorithm;’'s associated
limit surfacep™ interpolates curve netwoi™.

Previous Work. Early work on lofting [CK83, TS9(] fo-
cused on its inherent difficulties such as fillingsided
holes and maintaining higher order smoothness. Later
work [Her96 Var91] developed new types of patches suit-
able for lofting. While there has been considerable success
with these approaches, subdivision surfaces provide a sim-
ple standard framework for this task, especially for com-
puter graphics applications, as arbitrary meshes with com-
plex constraints at corners can be handled with greater ease.

Unfortunately, Catmull-Clark surface€€79, the stan-
dard generalization of bicubic splines, are incapable of in-
terpolating a network of cubic splines since the image of a
curve incident on an extraordinary vertex is not piecewise
polynomial. The pioneer in this area, Nasri, has developed
subdivision methods for lofting based on the concept of a
polygonal complexNas97 Nas0Q NA02, Nas03 NKLO1].
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Figure1: A network of polygonal Iinesoqand its associated curve networkqleft). The base mesH’ for a modified Catmull-
Clark surface whose limit surface™p(right) interpolates §°. p0 was automatically computed from gsing a combination of

skinning, fairing and lofting.

Such complexes consist of the portion of a surface mesh that 2. Overview of the approach

controls the shape of a curve on the limit surface. By ad-
justing the shape of this complex, the designer can adjust
the shape of the curve as well as its cross boundary deriva-
tives. Another subdivision approach to lofting is Levin's
combinedsubdivision scheme_pv99. This method adjusts
the surface subdivision rules near the curve network to en-
sure that the surface smoothly interpolates the resulting net-
work. Combined subdivision produces surfaces that can in-
terpolate arbitrary parametric curves, not just networks of
cubic splines.

Contributions. We present a new method for lofting curve
networks which has the following features:

e The resulting surfaces are standard Catmull-Clark away
from corners of the curve network;

Curves of the network are cubic splines embedded in the
surfaces; curves can be tagged as creases;

e Curves can terminate or continue through corner vertices;
e At corner vertices without creases, curves lie on a com-

monC2 surface.

Our lofting method is fully automatic and requires only
the minimal necessary input from the user designing the
curve network. In particular, the method automatically quad-
rangulates patches formed by the network of polygonal lines
and fairs the resulting mesh. Na€xi4HO03] considers build-
ing quadrangulations specific to subdivision surfaces by op-
timizing the number and valence of extraordinary vertices.
However, only simple configurations for skinning between
two disjoint curves are considered.

In comparison to the work of Levin, we consider a less
general setting; as a result we gain the advantage of pre-
serving the piecewise polynomial nature of the surface away
from extraordinary vertices and do not require cross bound-
ary information for curves to produce high-quality results.
Furthermore, Levin restricts the topology of the curve net-
work where we consider arbitrary connectivity of the curve
network. Finally, in contrast to Nasri's approach, we do not
use a polygonal complex, which simplifies construction of
the fully automatic method.

The input to our method is a polyline network, a collection of
open polygonal lines that terminate in a set of common cor-
ners. Pairs of polylines incident on a common corner may be
tagged as modeling a single curve passing through the cor-
ner. Each polyline in the network is tagged as being either
smooth or creased. We note that there are many ways to as
sociate a curve network with the polyline network. Our curve
network subdivision scheme is one convenient way to ensure
that the limit curves are cubic splines, and, at the same time,
for arbitrary positions of control points we obtain a curve
network compatible with a smooth surface.

To build a surface, a designer specifies a polyline network
and a set of patches as a list of topological faces (lists of
indexed corner vertices). It is important to note that topolog-
ical specification of patches is a necessary part of the infor-
mation needed for lofting. In many configurations it is pos-
sible to infer this information from curves, for example, if
the projection of a part of the network to a plane is forms a
tessellation of an area of the plane. Unfortunately, there ex-
ist local rotationally symmetric configurations, such as six
edges lying on the coordinate axes and meeting at the ori-
gin, for which there appears no general way to infer surface
topology.

Given this information, our automated lofting process
consists of three steps:

e Skinning: Compute the connectivity for a base mesh by
quadrangulating the cycle of polylines bounding each
patch (Sectior®.1);

e Fairing: Position the vertices of this base mesh such that
its limit surface interpolates the curve network and has a
visually pleasing appearance (Sect®B);

e Subdivision:Apply modified Catmull-Clark subdivision
to this base mesh and construct a fine mesh that approxi-
mates the limit surface. (SectioAsnd5).

We start with a detailed description of our subdivision
scheme for curve networks and its related surface scheme,
as these are the central elements of our approach. Then we
conclude by discussing our method for skinning and fairing.

(© The Eurographics Association 2004.
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Formulation of subdivision rules. One of the difficulties of to compute the rules for neighborhoods of corner points for
designing subdivision schemes with sufficient flexibility for  arbitrary curve networks.

realistic modeling applications is the large number of rules

one needs to handle. Tl’aditiona"y we Specify subdivision |nterp0|ating ag'ng|e point on a cubic Sp”ne Before we
schemes as a collection of masks determined by the local consider the surface, case, we examine the simple problem
connectivity and tag configurations of the surface. However, of modifying the subdivision rules for a uniform cubic spline
at corners of the polyline networks, which are also vertices jn the neighborhood of a single vertexsuch that the re-

of the associate surface control mesh, the number of different syting scheme interpolates the control painbut the limit
choices of continuity constraints on incident curves grows curve remains a cubic B-spline. These rules are an important
rapidly, making the fixed mask approach very cumbersome. component in the construction of change of basis operators

For our purposes, we view subdivision as an operstor ~and curve network subdivision schemes.

that acts on control meshes and produces refined control  Recall that the subdivision matri, (acting onv and its

meshes. The restriction of this operator to a fixed-size neigh- o neighbors on each side) for uniform cubic splines has
borhood of a vertex can be represented as a matiox the the form

type of subdivision schemes that we consider sieeses

affine combinations of control points to compute the control zgl % % 0 0

points on the next level. These matrices depend only on the % % 00 O

local mesh connectivity and tags. It is often useful to con- Cu=| 510 % 0 O 2
sider the neighborhoods of vertices of the same size on all 1 % 0 % 0

subdivision levels. In this case such matrices are square, and 2 0 % 0 %

do not depend on subdivision level for the type of schemes

we consider. We call such matrickzal subdivision matri- where we choose the indices of vertices along the curve to
ces be 5,3,1,2,4, witlv having index 1, to make the structure of

. the matrix more apparent.
Such matrices are often used to analyze smoothness. We

also use them in implementation: for corer vertices, we  Given the control pointsy for a uniform cubic spline,
adopt the approach of precomputing appropriate subdivision We can repositiow to lie at its limit position by computing
matrices based on the parameters of each different cornerq0 = NCﬂ where
configuration using simple linear algebra and use these ma-

211 1
trices directly instead of subdivision masks. Since these ma- 3l 5[0 O
. L . 0|1 0|0 O
trices act on vectors of control points in the two-ring of the Nn=| olo 1l0 o
corner, the matrices are small and easy to compute. N
00 01 O
00 0|0 1

3. Lofting two inter secting cubic splines

1215 ; L "
This section considers the fundamental problem of interpo- 1he mask(g 5 ) is the standard limit position mask for
lating two intersecting cubic splines using a bicubic surface. Cubic splines. We compute the rules for the modified curve

The possibility of such interpolation is well-known. Our goal € using the commutative relatiddN = NG, whereN is the
is to illustrate three main ideas: (a) a subdivision schemes for change of basis matrix. Solving faryields

networks of cubic splines interpolating corner control points; 1 0 olo o
(b) the change of basis operator; (c) the commutative relation 3 I _I10 o
satisfied by curve and surface subdivision operators and the c— i1 % § 0 0 3)
change of basis operator. e £ 5
. . 16 32 "32|8
A change of basis operatbt, extracts a polyline network ]1% ,3;2 gé 0 %

from a surface control mesh and updates the positions of the _ i ) )
control points for this network. A curve subdivision operator in the two-ring ofv. Outside the two-ring of;, the subdi-
C’ which maps a p0|y|ine network to a refined polyline net- Vision rules remain those of uniform cubic Spllnes. Due to

work and a surface subdivision opera®are said tccom- the commutative relation, starting with the control points
mutewith respect td if Nd? and applyingC to vertices in two-ring ofv and uni-
form spline rules elsewhere yield the same cubic spline in
CM =MS. @ thelimit.

Note this relation implies that repeated application€ afnd

Sare also related vigkM = MS¥. Itis easy to show thatthe  Interpolating a single cubic spline. To demonstrate a sim-
limit surface defined bys interpolates the limit curves de-  ple example of the commutative relatidrfor surfaces, we
fined byC, assuming both schemes converge. Furthermore, examine the case of a uniform bicubic B-spline surface inter-
local subdivision matrices corresponding to the operdiors  polating an isolated B-spline curve or a set of isolated curves
M and S must also satisfy the equatidn this fact is used (e.g. Figures, left).

(© The Eurographics Association 2004.
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Figure 2: Change of basis mask M for an interior vertex of
o (top-left), a corner vertex oftpf valence four (top-right),

a general interior vertex (bottom-left) and a corner vertex of
valence n (bottom-right). Lofted edges are shown in bold.

The curve subdivision operat@ in this case is deter-
mined by the uniform cubic B-spline subdivision rules, as
there are no corners. Similarly, the surface subdivision op-
eratorS is just the subdivision operator for tensor-product
bicubic splines. If the change of basis operdibis chosen
to apply the limit mask across the curve as shown in figQure
(top left), then the commutative relation in equatibis sat-
isfied.

Interpolating two inter secting cubic splines. Finally, we
consider a tensor-product bicubic uniform B-spline surface
that interpolates two intersecting cubic splines.

The surface subdivision opera®in this case remains the
same; the curve subdivision operator is obtained using the
rules from equatior® for each curve. This ensures that the
common control point is interpolated. The local subdivision
matrix C for the 2-ring of the corner vertex has the form

1] 0 0 0 0]0 0 00O
§ 2 0 -3 O0]0 0 0 O
il o 2 0 —-3]l0o 0 00
1 3
jl—s 0 & 0Jo 000
c=| 3]0 -2 0o % |oo0o00O
3 23 1 1
B8 9 -=» 0[g 000
s 0 3 0 -4|l0 § 00
Sl-L 0 2B o0loolo
]36 32 1 32 23 8 1
510 -4 0 X |o o0 0 }
4)

where the order of the vertices in each block is cyclic and
the block ordering is given in figuriQ.

The change of basis operatbt in this case extracts a
row and a column of control points corresponding to the

Curve NetworkswsBubdivision Surfaces

curves, and uses the masks which are tensor products of the
masks encoded as rows in the curve change of basis matrix
N (Figure2, top right). Figure3 (right) shows an example of

a spherical surface interpolating three circular cubic splines
that have six pair wise intersections.

Figure 3: Lofting four non-intersecting curves with a
toroidial surface (left). Lofting three intersecting curves with
a spherical surface (right).

In the examples considered in this section, the surface
subdivision scheme was known, and the curve subdivision
schemes were either known or could be easily deduced from
the corner vertex interpolation constraint. In the next two
sections, we consider the problem of constructing curve
subdivision schemes for arbitrary numbers of cubic splines
meeting at a common corner, possibly with continuity con-
straints. Unlike the case of two intersecting curves, which
always share a tangent plane, special care must be taken
to ensure that the resulting networks are compatible with a
smooth surface. Such rules are constructed in matrix form,
generalizing the matrix from equati@n

Afterwards, we generalize the change of basis operator
M to arbitrary curve networks. Finally, knowing the curve
network scheme and the change of basis operator, we use
the commutative relation to construct a surface subdivision
scheme interpolating the curve network which reduces to
tensor product B-spline subdivision rules away from corners.

4. Subdivision for curve networks

As defined in the overview, a polyline netwoaﬁ consists

of a set of open ponIineﬁ}iO that terminate at a set of shared
corners. Pairs of polylines incident on a common corner
may be tagged as forming a single polyline crossing the cor-
ner v. Individual polylines may be tagged as being either
smooth or creased. In addition, topological faces (ordered
lists of corner vertices) are specified, which uniquely define
the topology of a surface associated with the network.

For the two-ring of each corner o, we construct a sub-
division matrixC with the following properties:

e Each ponIineqiO converges to a cubic spling™. Tagged
pairs of polylines incident on a common corner converge
to a single uniformC? cubic spline passing through that
corner, acrosscurve.

o If none of the polylines incident on a corner are creased,
the associated curve network has a unique tangent plane
as well as a common best approximating quadric surface
at the corner. (Having such a quadric makes lofting with a
bounded curvature surface easier.)

(© The Eurographics Association 2004.



S. Schaefer & J. Warren & D. Zorin / Lofting Curve NetworkshgsBubdivision Surfaces

e If several of the polylines incident on a corner are creased,
each portion of the network between two consecutive
creased curves (gecto) has a common tangent plane
(and best approximating quadric).

If a polyline contains only one interior vertex, we average
the rules for the overlapping portion of the two-rings for each
corner. Outside the two-ring of each corneq?m our scheme
uses the subdivision rules for cubic splines from equalion

Note that if we assume an ordering on these incident
edges, this symmetry is broken and the process of determin-
ing a common tangent plane is made much more robust. For
curve networks used in lofting, this ordering of edges can be
inferred from the patch structure placed on top of the curve
network. Specifically, if the surface is a topological mani-
fold, the patch structure defines an ordering of the edges in-
cident onv. We use this ordering to construct the subdivision
rules at the corners of the curve network.

4.1. Overview

we use the pseudo-inverg& = (2'2)~1z" to reconstruct
C from a smaller set of nonzero eigenvalues and correspond-
ing eigenvectors:

C=2zNZ" (5)

4.2. Rulesfor cornerswith noincident crease curves

To constructZ in this case, we first define a setmfingles

Yo, - - - Yn_1 Which control the directions in which incident
curves approach the corner vertex in its tangent plane. If the
corner has no cross curves, we force equi-angular spacing
via gj = <. If the ith and jth incident curves form a sin-
gle cross curve, we constrain the anglgsand ; to sat-

isfy Wi + 1= ;. Due to this constraint, the angles can no
longer be equally spaced, which is the reason why traditional
techniques based on the Fourier transform can not always be
used to pre-compute masks. We now computejHey min-
imizing i (Wi+1 — ;)2 subject to the previous angle con-
straints.

Given they;, we define 6+ n eigenvectors o in four

Due to the presence of cross curves and crease curves, thegroupsZy Z; Z, Z3 with each group corresponding to eigen-

subdivision rules at a corner qP include a large number

of cases that, if enumerated, would result in a large amount
of tedious, special coding. Thus, instead of taking the more
traditional route of explicitly specifying masks for various

values 1, ¥2, 1/4 and ¥8. The matrixZg has a single col-
umn corresponding to the vector of ones. The matriges
and Z, have two and three columns, respectively, and de-
pend on the angleg;. In particular, the row oZ; andZ,

cases, we construct all necessary rules in a concise and uni-corresponding to théh vertex on thejth-ring of v has the

form manner using a matrix approach. Using this method,
we consider only two cases separately: the case of a cor-
ner vertex with no incident crease curves and the case of a
sector at a corner vertex bounded by two crease curves (cf.
[BLZ0OQ]). The rules for vertices outside two-rings of corner
vertices are the standard uniform cubic B-spline rules.

In both cases, our construction is based on the general-
ization of the ideas that were used in subdivision literature
since PS79: to achieve desired behavior, the subdivision
matrix is decomposed &= ZAZ ! (whereZ is the matrix
of eigenvectors and is a diagonal matrix of eigenvalues),

eigenvalues are changed, and the matrix is assembled back

with modified eigenvalue€’ = ZA’Z~1. This is usually
done analytically, and explicit masks are derived for imple-
mentation. While this approach works well in simple cases,

we go a step further for the more general cases that arise dur-

ing practical modeling. In this situation, weescribeboth

the eigenvalues and eigenvectors in such a way that the re-

sulting subdivision rules (encoded in the subdivision matrix)

have the properties described above. Furthermore, the strat-

egy we use for constructing the eigenvectdiis to general-
ize the eigenvectors for the matkxin equatiord to higher
valences and creased configurations.

Our matrixC, defined over the two-ring of a corner vertex
of valencen, has siz§2n+1) x (2n+ 1) with 2n+ 1 eigen-
vectors. Fom > 5, we specify fewer eigenvectors (specifi-
cally, 64 n) with the remaining eigenvectors having an asso-
ciated eigenvalue of zero. Instead of constructing the eigen-
vectors corresponding to these zero eigenvalues explicitly,

(© The Eurographics Association 2004.

form:
Z = ( jeogwi) jsin(Wi) ), ©)
Zo= ( B(j) B(j)cos2yi) B(j)sin2yi) )

wherep(j) = 0if j = 0 andj?— 3 if j > 0. The matrixzs
hasn columns. At theith vertex of thej-ring of v, the kth
column ofZz is j3 — j if k=i and O otherwise. The coef-
ficientsB(j) and j3 — j reproduce the quadratic and cubic
eigenvectors (corresponding to the eigenvalﬁleand %) of

the subdivision matrix for the interpolating scheme of equa-
tion 3.

For valences > 5, we now comput€ using equations
and6. The leftmost two examples of figudeshows close-
ups of two valence five corners. However, for the 5 case,
equation6 definesmore eigenvectors than we need. In this
case, we select a linear subspace of the eigenvectors spanned
by Z,. Specifically, we comfute the null spaceZpf Z; and
Z3 asZgizand then projecy; 5 0ntoZy. If Z; is the pseudo-
inverse ofZy, this resulting projection i€,(Z; Z5i3). Fi-
nally, we computeC using equatiorb with this subspace in
place ofZ,.

For n = 4, this construction reproduces the subdivision
matrix C of equationd. In the symmetric case wherg =
ZTT”, we can pre-comput€ explicitly as a block circulant
matrix. The attached appendix states these rules and uses
them in the smoothness analysis for the resulting lofted sur-
face.

To understand the behavior @fin the neighborhood of a
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cornerv, we parameterize the tangent planes aefined by
the two eigenvectors id; via (X1,%2) = r(coy),sin(y)).
Under this parameterization, the first columnzZaf defines
a curve network lying on the linear function while the
second column of; defines a curve network lying on the
linear functionx,. Viewed in this informal manner, the limit
networks associated with the three column&gfie on the
quadratic functions,

2,02 2 2
X{+X3, X[ —X3,

@)

respectively. Similarly, the limit curves associated with the
columns ofZ3 lie on n piecewise cubic functions that aBé
atv.

1
?X1X27

4.3. Rulesfor cornerswith incident crease curves

If the width of the sector is less tham a simpler alter-
native to equatior8 is to use uniform cubic rules on each
smooth curve incident om These rules are more flexible at
the cornew, but are not guaranteed to converge to a common
tangent plane. The rightmost example of figdrehows an
example in which three crease curves meet at

5. Lofted subdivision surfaces

Given the subdivision schent@ for curve networks as de-
fined in the previous section, we next construct a modified
version of Catmull-Clark subdivisio8 that commutes with

C via equationl whereM generalizes the tensor product
case to extraordinary vertices. Given this generalidedve
then explicitly solve for this modified Catmull-Clark scheme
Susing a block decomposition of local subdivision matrices

At a corner, the incident crease curves divide the network corresponding t&€, M andS.
into sectors bounded by consecutive crease curves. Our goal o
is to construct subdivision rules for the crease curves as well 5.1. Generalizing M

as rules for other curves that lie on the interior of a sector.
Boundary curves are simply treated as crease curves.

For crease curves terminating at a comave use the uni-
form rules of equatior2 on the interior of the curve and in-
terpolatev. These rules converge to natural cubic splines (i.e;
cubic curves whose second derivativevas zero). For two
crease curves crossing we use the interpolatory rules of
equation3. Note that the subdivision rules for crease curves

In the tensor product cases of sect®rihe operatoM had
the property that the limit curvg™ was interpolated by the
surfacep™ if q° = Mp°. If the vertexv was not a corner
vertex ofqo, M computed the position of the control points
of the curve network by applying the magg 2 1) to p°
with the mask centered &tand oriented across the curves
(upper left of figure2). If v was a corner oqo, M applied
the 3x 3 limit mask for bicubic subdivision at(upper right

depend only the vertices on the crease curves (as in standardf figure2).

creased constructions for subdivision surfaces).

The construction of the subdivision matfXor each sec-
tor also starts with the eigenvector matrixonstructed as in
sectiond4.2 On the interior of a sector, the subdivision rules

For general quad meshp‘é, we next define the behavior
of M at a vertex whose surface valence is other than four.
At an interior vertexv of qk, M applies the mask shown in
the lower left of figure2 to pk. This mask is based on the

) . - K
depend on vertices of the bounding crease curves as well asnumber of unlofted edges; andn; on each side of". If
vertices of curves interior to the sector. The subdivision rules N1 = N2 =1, M degenerates to the mask for the regular case.

C for these interior (smooth) curves have the form
C=2ZAZ" (8)

whereZ consists of rows irZ corresponding to the interior

At a corner ofqO with surface valence, we defineM to
be the limit mask for repeated averaging Catmull-Clark sub-
division, shown in lower right of figur@. Whenn = 4, this
mask degenerates to that of the regular case. In the presence

vertices of these smooth curves. As in the case of no creases of crease curves, we modift to be interpolatory on all ver-

these subdivision rules force the limit curves in this sector to
lie on a commorC? surface; however, these surfaces can be
different for different sectors.

The second example from the right in figuteshows a
valence five corner in which two non-adjacent curves form
a single crease curve crossingThese two crease curves
form two sectors of widtht. For the upper sector, the rules
for C reduce to the uniform rules of equati@nFor the lower
sector, the matriC has the form
1 -3

9 3 1

T O B
A N R G
2 128 32 3 12 0 5 00
9 =3 1 22 1 9 o i o
64 128 32 32 128 8

on the two-ring ofv. The four rows ofC define subdivision
rules for two interior vertices on each of the smooth curves
incident onv.

tices lying on creased polylines. The effect of this choice on
the resulting lofted surface will be to decouple the subdivi-
sion rules along creased curves from the rest of the surface.

5.2. Lofted subdivision via block decomposition

Given this choice foM, we can now solve fo using equa-
tion 1. If we constrain the rules fdb to reproduce those of
bicubic subdivision off of the curve networks, the surface
rules for vertices on the curve network are uniquely deter-
mined. To make the construction of the rules more explicit,
we introduce the following notation. Lepk be the vector

of control points of the mesh aftér subdivision stepspk

can be partitioned into two subvectors: curve network con-
trol pointsplé and all other control pointpﬁ. The subdivision

schemes and change of basis operators can be expressed as

global matrices acting on these vectors. Btbe the ma-
trix for the surface subdivision schemé(fl = §‘pk, letCX

(© The Eurographics Association 2004.
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Figure4: Four corner configurations arising during realistic modeling. The ugpérmpictures are close-ups of both the network
and the lofted surface. The upper right diagram depicts the layout afithBotted edges are creases. Pairs of arrows denote
Cross curves.

be the matrix for the curve subdivision scheme, aitithe v. The attached appendix contains an explicit construction
change of basis matrix. The subdivision scheghean be for these rules as function of the valentand outlines our
expressed in block form as‘é*l = §pk and pﬁ*l = éﬁpk. smoothness proof.

If the change of basis matrdX is also expressed in block
form as(M&MK), so thatg = MEpS + MKpk the commuta-
tive relation of equatiod has the block form

Unfortunately, proving any type of smoothness result in
more general cases is very difficult. One reassuring fact is
that the commutative relation of equatidnensures that

Ke K il il $ any eigenvalues of are also eigenvalues @& Thus, at
C'M" = ( M Mp? ) ( ) : corner vertex otqo, the spectrum of includes the eigen-
values 13,3, %..... However, this condition is not suffi-
We note thaM is a square matrix, as it acts on mesh con- cient to ensure the correct spectrum for the resulting surface
trol points p§ corresponding to the vertices of the polyline  scheme since lofting inserts extra eigenvalues into the spec-
network and produces new values for the same vertices. Fur-trum of S However, our experience has been that the lofted
thermore, as explained beloM has an inverse. Solving for  scheme produces visually smooth surfaces in all configura-

the modified surface subdivision opera%rin terms ofC", tions where corner vertices are fully lofted (i.e; all surfaces
MK andS yields edges incident on the corner are lofted). Figlishows four
close-ups of lofted subdivision surfaces near a corner vertex.
S = (M) H(CMK - M ). © P

This equation not only defines our surface scheme, but 6. Automated lofting of curve networks

can be used to apply this scheme to a mesh. The local masksin the previous sections, we have constructed subdivision
for MK, MK+, S andC* are already definedd* andMk ™ schemes for curve networks and surfaces that loft these net-
explicitly in this sectionSﬁ by the standard Catmull-Clark  works. Now, given a network of ponIinqu, we first de-
rules andC in Sectiord. The only remaining transformation  scribe a skinning method for constructing the topology of a
(M&)~* repositions vertices of the polyline network. Fortu-  base mesp? that interpolates”. We then fair the positions

nately, as it can be easily verified directijy) ! has the  of vertices ofp° subject to the constraint thg? = Mp°.
same support agk. At a corner vertex, (M§) ~ is defined
by a simple mask: it repositionsto lie at% of its current 6.1. Skinning

position minu%3 of the centroid of its edge neighbors. At an

K Our skinning algorithm constructs mesh connectivity for the

:;];e; lor vertexv, (Mc) " simply scales the vertex position interior of each patch specified by the designer. If we merge
2 (in cyclic order) the open polylines bounding the patch, the
Analysis. At interior verticesv of g¥, the resulting rules pro- ~ result is a closed polyling. Our task is to form a quadran-
duce by our surface scheme reduce to those of uniform bicu- gulation ofg, i.e; a quad mesh whose boundary is exactly
bic B-splines whem; = np, = 1. In this case, the scheme is 9
C? atv. At a corner vertew of g, the subdivision rules re-
duce to those of bicubic B-splines whan= 4. Again, the
scheme i<C? atv. More generally, the resulting subdivision

While many quadrangulation and even more triangulation
algorithms have been proposed in mesh generation literature,
) ! the task of generating suitable meshes for subdivision sur-
rules differ from those of standgr_d Catmull-Clark in the two- 505 is quite different. For standard mesh generation, the
ring of comer vertices. Ify; = <%, our modified Catmull- 5 goal is to maintain good quad or triangle aspect ra-
Clark scheme has a spectrum of the form3 35, %,...and  tios and/or approximate a given shape well. For subdivision
converges to surfaces that @ with bounded curvature at  surfaces, methods such as NadtAHO3] seek to generate
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meshes whose topologies minimize the number and valence Overview. Given a closed polyling = (ds,...,0n), we de-

of extraordinary vertices.

Theoretical bounds. We have designed a simple algorithm
for generating a quadrangulatignof q that optimizes the
valence of added extraordinary vertices and their number. If
we let val(p;) denote the edge valence of a verigxof p,

the following proposition shows the fundamental limitation
on what can be achieved.

Proposition 1 Letqbe a closed polyline formed as the union
of k open polylines. If the length df is even, any quadran-
gulationp of g satisfies

> Ival(pi) —vi| > [k—4]

(10)

wherev; = 2 if p; is a corner vertex of,, vi = 3 if pj is an
interior vertex ofg andv; = 4 otherwise.

This proposition has several important consequences. lde-
ally, we desire a quadrangulatignwith one quad incident
on each corner of, two quads incident on an interior ver-
tex of g and four quads meeting at every interior vertex of
p. This situation would make the left-hand side of equa-
tion 10zero. Unfortunately, this proposition forcpgo have
extraordinary vertices whek £ 4. Second, as the valence

of these extraordinary vertices decreases, the number of ex-

traordinary vertices must increase. In particular, if only ver-
tices of valence five or less are allowed, the resulting mesh
must have at leagk — 4| extraordinary vertices.

For k = 4, generating a quadrangulation with no extraor-
dinary vertices is possible in many cases. However, in some

fine achainof lengthm to be a subsequends;, ..., 0i+m)

of g corresponding to a single open polyline with corners
at g and g.+m. (Note that index arithmetic o is per-
formed modn.) Our quadrangulation method construgts
by performing a sequence chain advance®n g. Given

a chain(q,...,gi+m), this chain advance adds a layer of
m quads top bounded below byq;,...,q+m) and above
by (Gi—1, Bj,- -, Pj+m—1,Gi+m+1) Wherepj,... pjim—1 are
new vertices that lie on the interior of the final pajghThe
polyline qis then replaced by the polyline

(q17"'7qi—la pj7--~apj+m—17Qi+m+17--~7qn)~

Our quadrangulation method performs a sequence of chain
advances that can be partitioned into two phases.

e Phase one performs two types of chain advances and ter-
minates when all but one of the chainsgrhave length
one.

e Phase two performs two different types of chain advances
and terminate when the length gfis five or less. At this
point, the method forms a single polygon frenand adds
itto p.

Phase one. In the first phase, our method repeatedly applies
two types of chain advances. Type one advances involve a
single chain(q, . ..gi+m) Wheregj_1 andgjmy1 are inte-

rior vertices (see figuré left). These advances introduce no
extraordinary vertices and leaves the number of chairmg in
unchanged. Type two advances involve a sequence of chains
of length one(q, . .., 0i+m) whereqgi_1 anddj+ms1 are in-
terior vertices (see figur@right). These advances introduce

cases, creating extraordlnary vertices is necessary. A S|mplem7 1 valence five vertices while decreasing the number of

example is shown in Figurg In this case, it is easy to show

chains ing by m— 1.

that there can be no regular quadrangulation, and therefore at

least one vertex of valence greater than four and one vertex
of valence less than four needs to be introduced.

Figure5: A patch with four corners which cannot be quad-
rangulated without adding extraordinary vertices. Empty
circles mark the corner vertices, i.e. vertices where multiple
curves meet, filled circles mark interior boundary vertices.

Our algorithm takes the extreme approach and generates

only extraordinary vertices of valence three and five since
the quality of the resulting surface is the closest to that of the

regular case. One can argue that in some cases better result:

can be achieved by using higher valence vertices (e.g. up to
7); such extensions are easy to add to our basic algorithm.
Moreover, our algorithm always stays close to the optimal
number of extraordinary vertices. Specifically, kor 4, our
method generates a quadrangulation with no morekhah
vertices of valence five, no more than 2 vertices of valence
three (plus an extra triangle or pentagon for odd lemgyth

T T

S § S

Figure 6: Phase one chain advances. Left: type one. Right:
type two. Empty circles indicate corner vertices before the
advance, filled circles indicate interior chain vertices.

Phase one applies these chain advances until all but one
of the chains img have length one. During this phase, there
are many different type one and type two advances possible.

Srype one advances have priority over type two advances. In

most cases, several type one advances are possible. While
any choice of type one advance is permissible, we use the
following heuristic to select among various type one ad-
vances.

If g consists ok chains, we let the vectdr= (11, .. .Iy) de-
note the length of the chains qf Applyingd = (dy,...dk)

(© The Eurographics Association 2004.
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type one advances to each chairmofields a new polygon
whose chains have length- Hd whereH is a matrix whose
ith row has ones in position— 1 andi + 1 and zero other-
wise. Since our ultimate goal is to choassuch that —Hd

is zero, we computd = HTI and then advance on the max-
imal entry ofd.

If no type one advances are possildemust contain a
chain of length one. In this case, we perform a type two ad-
vance of the shortest continuous sequence of chains of length
one.

Phase two. At the start of phase two, all but one of the
chains ing have length one. Without loss of generality, we
assume thag has lengtm with its first chain having length
m> 1. In the second phase, we perform two different types
of chain advances. Type three advances involves the chain
(01,---0me1) (see figure? left). This advance creates va-
lence five vertices ajn andgm2 While decreasing the num-
ber of chains by two. Type four advances involve the chain
(an,q1) (see figurer right) . If m < n— 1, this advance cre-
ates a valence five vertex gt_1 and decreases the num-
ber of chains by one. lfn=n— 1, this advance creates no
valence five vertices sinag,_1 is an interior vertex of the
chain(qy,...ogn).

SIS Y eoa

Figure 7: Phase two chain advances. Left: type three. Right:
type four. Empty circles indicate corner vertices before the
advance, filled circles indicate interior chain vertices.

Phase two applies type three advancesguatil n < 2m+
3. Next, phase two applies type four advancesuatil g has
five or fewer vertices. Phase two concludes by generating a
single triangle, quad or pentagon from this figaFigure8
shows several examples of quadrangulations created by our
method.

To summarize our valence bounds, koe 3, the method
generate a quad mesh with either a single valence three ver-
tex (q has even length) or an extra triangégh@s odd length).
Fork > 4, the four types of chain advances generate one va-
lence five vertex for each chain eliminated. Since up-ta2
chains may be eliminated, the final mesh has up-+t® va-
lence five vertices. The final polygon constructed at the end
of phase two may introduce up to two vertices of valence

three in the mesh. Thus, our method generates a quadrangu-

lation with no more thark — 2 vertices of valence five, no
more than 2 vertices of valence three (plus an extra triangle
or pentagon for odd lengtly.

(© The Eurographics Association 2004.
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Figure 8: Various quadrangulations produced by our
method. Successive phase one chain advances are shaded
from dark to light.

In some situations, our quadrangulation method intro-
duces extraordinary vertices on the boundarypoif the
length of all chains ing is three or more, we can add a pre-
liminary phase zero to our method that moves all extraordi-
nary vertices to the interior gb. This phase consists &f
type one advances, one per chairginrhese advances add
a single ring of quads t@ with no extraordinary vertices
on the boundary of the fing. For meshes of this type, our
lofting method produces surfaces that are prov&iat the
corners ofg andC? elsewhere on,.

6.2. Fairing

Having computed the topological structure for each patch in
the base mespo, we next compute positions for the vertices
of p0 such that the limit surfacp® is fair and interpolates
the curve network. In this framework, our task is to optimize
the shape of the surfaqn? by minimizing a fairness func-
tional E(p) subject to the constraint thg? = Mp°, which
guarantees that the curves are interpolated.

There is a substantial amount of work on fairing meshes;
for subdivision surfaces fairing was first considered in
[HKD93], where the goal is to construct Catmull-Clark sub-
division surfaces interpolating the control points. In that pa-
per the functional is evaluated on the surface, which is more
reliable but also quite computationally expensive and re-
quires considerable effort to implement. We have found that
a much simpler approach based on fairing the base rp(ésh
itself yields good results.

Our implementation uses a thin plate functional defined
as follows:

2 2 2
o3 (5m) (2] ()

whereN; is the one-ring of the vertep;, and for noncrease
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Figure 9: Examples of surfaces lofting curve networks. Each surface was catnguutiematically using skinning and fairing.

verticesp;, of valencek; #£ 4, andj #1, ent method does not apply, Conjugate Residuals or another
more general method need to be used. For small numbers
-, of control points (up to several hundreds) a direct solver is
ki acceptable. Figuré@shows three examples of lofted surfaces
andal =Bl =0,y = —1. Fork, = 4, aij and B‘j should be constructed from polyline network by our automatic method.

) = goos (). B gsnEh) V= ¢

ol = Jcogmj) and B} = Fsin(rj). This functional, up to
a scale factor, can be viewed as a finite difference approxi- 7. Futurework
mation of [ FZ,+ R + 2FZdudvfor a particular choice of

local parameterizations. We have noted some partially lofted configurations (where

not all surface edges incident on a corner vertex are lofted)
This functional is known to be far from optimal for fine  in which the resulting subdivision surfaces are o@f}y not

meshes; generally speaking, a nonlinear functional formu- C, while our skinning method does not generate such par-

lated in terms of curvature approximations is likely to yield tjally lofted configurations if all polylines img® contain at

somewhat better results. However, the difference on rela- |east two interior vertices, we believe that it may be pos-

tively coarse meshes, such as the typical control meshessiple to modify the change of basié to yield lofted sur-

of subdivision surfaces, appears to be less significant. The faces that ar€? for all configurations including partially

great advantage of this functional in our setting is that it is |ofted ones. The recently developed smoothness analysis

quadratic and can be written in the fOI]lﬂAp, whereA is techniques of ml03] may aid in this process.

a symmetric matrix. Therefore, vertex positions can be com-

puted without a good initial guess. These positions can then ~ We also note that the surface rules produced by equétion

be used as an initial guess for a nonlinear optimization pro- are very general. In particular, this technique can be used
cedure. to modify the subdivision rules for other schemes such as

L ) ) ) ) ) Loop’s triangular scheme to loft networks of curves. For ex-
We minimize this functional with constraints using the ample, trianguIaC2 quartic box-splines can be used to in-
standard Lagrange multiplier approach, i.e. solving terpolate a network of? quartic splines. (The restriction of
T T . 0 a C? quartic box spline to a single grid line isGf quar-
VpE M'A=Ap+M'A=0; Mp= . ! - ;

pE(P)+ Pt P=q tic spline.) At extraordinary vertices of the curve network,
whereA is the vector of Lagrange multipliers, one per curve equationd defines perturbed versions of the box spline rules
vertex. We note that this is a symmetric but not a positive that allow the resulting surface to interpolate arbitrary num-
definite linear system, so one has to be careful when using ber of curves meeting at the extraordinary vertex. This topic
an iterative method to solve it: the standard Conjugate Gradi- is an important area for further research.
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Appendix A: Explicit curve and surface rules

oni

In the rotationally symmetric case whepe= 45, the curve
subdivision matrixC can be expressed in a block form in-
duced by partitionin(‘:qO into rings around the corner as
shown in figurelQ. Specifically,C can be partitioned such
that the blockC,1 is a scalar, the block€j; are columns
vectors of constants of length the blocksC,; are row vec-
tors of constants of lengthand the block€;ij wherei, j > 1
aren x n circulant matrices. In thimodified block circulant
form, each circulant matrigi; can be encoded as a polyno-
mial ¢;j [Z] whose coefficients form the first row Gf;j. Col-
lecting these polynomials;j[Z) yields amatrix polynomial
c[Z that compactly encodeés

One advantage of matrix polynomials is that comput-
ing the spectral structure of their associated block circu-
lant matrices is easy. Given a matrix polynomédd], let
€[Z] be the submatrix formed by eliminating the first row
and column ofc[z. As shown in section 8.3 of Warren and
Weimer (WWO01], the eigenvalues o€ are the eigenvalues
of c[1] and the eigenvalues afc3'] wherew is thent” root
of unity and 1< j <n-—1.

If gj = 27”1 the matrix polynomiat[Z] for the subdivision
matrix C of equationb has the form
1 0 0
dg=| § _an'Z+nlid+gnig 0 ) ay
15 1N [@+3n°[d+5end g
where the polynomials r]j[z] have the form

ign-t cos(zlnji)zi and the constantiy is 0 if n = 3,

1 if n=4and 1 fom > 5. Using the fact that the polyno-
mialsn! 7 satisfyn! [ooi} = 0 wheni # j,n— j allows easy
computation of the eigenvalues©f As expectedC has the
spectrum 13, 3.2,

Another advantage of matrix polynomials is that we can
compute the matrix polynomiadZ for our lofted surface
scheme by applying equatidhto the appropriate matrix
polynomials. Before proceeding, we must first fomig].
The operatoM maps surface vertices in the two-ringuafo
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Figure 10: Block ordering for vertices on a curve network
(left) and its corresponding surface mesh (right)

curve vertices in the two-ring of using the ordering of fig-
ure 10. At the corner vertex, M computesg of the central

vertex plus% times each edge-adjacent surface vertex plus

g—ln times each face-adjacent surface vertex. We encode this ;7]

transformation as the first row of matrix polynomigz].
4

s § 3 0 0 0O
mz=| 0 § §+& 0 0 00
o0 o0 % & %o

Note the entriesm (7] for j > 1 are implicitly multiplied by

% so that the rows of the matrix polynomial sum to one when
evaluated at= 1. Similarly, the polynomiaMa3[Z] = %+ 6%
encodes a circulant matrix whose first row( 0...03).

We next compute the modified subdivision rutef] by
applying equatior® to the matrix polynomials|z], m[z] and
sn[Z). The fundamental observation underlying this construc-
tion is that multiplying two block circulant matrices is equiv-
alent to multiplying their matrix polynomials. For modified
block circulant matrices, a similar construction is possible
subject to the restriction that entries of the matrix polynomial
corresponding to scalar, row vectors or column vectors in the
modified block circulant matrix are treated appropriately. In
particular, the product of a column vector times a row vec-
tor is a circulant matrix whose entries are constants. Thus,
modeling multiplication of modified block circulant matri-
ces using matrix polynomials requires introducing multiples
of n°[Z into the resulting product to model this effect. With
this caveat, we can computg]m[z] — mn[Z]sn[Z wheresn[Z]
has the form

101 1
N
SR 0 B B
ic 8t 8 1w 9 i O
i 3,% 8 1,z 3 3 1
64 32732 16 84764 32 32 64
Multiplying (c[Zm[Z — mn[Zsn[Z]) by the inverse oimc[Z]

yields the matrix polynomiad:[Z for our modified Catmull-
Clark scheme of the form
3 1

9
? 3 6 0 0 0 0
5 2[4 %23(Z 2 (1) ? 0
3 %204 sield » e g O

Figure 11: Characteristic map of the surface scheme fer n
3...8

where the four modified entries [Z] are as given below

2[4 = 15(120°[4 + 160" [4 +8ann’[2 — 3(1+2)%),
237 = 152 (2n°[4 +4n*[Z + 200077 - 1),

= 54(52n°(2+96n"[4 + 88ann*[4 — 3 — 12— 2),
suslz) = 522 (6n°[2 + 12012 + 1lann?(Z - 3).

The polynomialsﬂ [7 and the constant, are defined in the
same manner as fafZ].

We can analyze the smoothness of the modified surface
scheme using the matrix polynomt] formed bysc[z] and
sn[Z. The modified subdivision scheme has a spectrum of the
form 1,1, 3, 1, ... where the eigenvalughas multiplicity 2
if n=3, 3ifn=4 and 4 fom > 5 and the remaining eigen-
values lie betweeé and zero. Similarly, we have computed
the eigenvectors associated with the subdominant eigenval-
ues% symbolically as a function of the valenoeFigurell
shows the characteristic map induced by these eigenvectors
for valencen = 3 to 8. Using interval arithmetic in Mathe-
matica in conjunction with the symbolic representation of
these eigenvectors, we have proven that the characteristic
map is regular and injective for all valences> 3. Thus,
the lofted subdivision surface @ with bounded curvature
at these verticedU01].

Appendix B: Proof of proposition 1

Consider a quadrangulated domain homeomorphic to a disk,
with k corners (i.e. vertices of valence 2) on the boundary;
By assumptions of the proposition, all other vertices on the
boundary are valence 3. Let the sets of interior, edge and
corner vertices b&;, Vc and Ve respectively, and the set
of all vertices beV/. We call these remaining boundary ver-
ticesedge verticesThe total number of quads can be com-
puted asf = (1/4)(3yev; ki +2|Ve|+[Vc|), where|X] is the
number of elements in a skt The total number of edges is
(1/2)(3viev ki + 3|VE| +2|Vc|). By the Euler formula,

1= |V|—e+f= M|+ M|+ M|+
1 Cvev ki +2Ve| + IVel) - 3 (Tvew ki +3VeE|+2Ve))
= M| = 3(Tvev k) + FMVc|

As |Vc| = k, the statement of the proposition follows.
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