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Abstract
Lofting is a traditional technique for creating a curved shape by first specifying a network of curves that approx-
imates the desired shape and then interpolating these curves with a smooth surface. This paper addresses the
problem of lofting from the viewpoint of subdivision. First, we develop a subdivision scheme for an arbitrary net-
work of cubic B-splines capable of being interpolated by a smooth surface. Second, we provide a quadrangulation
algorithm to construct the topology of the surface control mesh. Finally, weextend the Catmull-Clark scheme to
produce surfaces that interpolate the given curve network. Near the curve network, these lofted subdivision sur-
faces are C2 bicubic splines, except for those points where three or more curves meet. We prove that the surface is
C1 with bounded curvature at these points in the most common cases; empirical results suggest that the surface is
also C1 in the general case.

Categories and Subject Descriptors(according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling

1. Introduction

Lofting is a common technique for constructing smooth sur-
faces for computer graphics and computer-aided design ap-
plications. In this approach, the user defines a curve net-
work and a smooth surface interpolating this network is con-
structed automatically. The problem of constructing a sur-
face using a curve network can be split into several steps.
First, a method for defining a curve network compatible with
a smooth surface is needed, as several curves meeting at a
point need to have tangent lines in the same plane for such
surface to exist. Next, we need a way to define the topol-
ogy of the surface, as surfaces of different topology may be
compatible with a given curve network; finally, we need al-
gorithms for computing the geometry of the surface interpo-
lating the curves.

In our approach, thecurve networkconsisting of cubic
B-splines is inferred from curve control points connected
by line segments in thepolyline network. Control points
where more than two line segments meet are called corners.
A curve network compatible with a smooth surface is com-
puted from control points using thecurve network subdivi-
sion scheme.

A set of closed loops of curves are identified as bound-
aries of surfacepatches. Specifying these loops defines the
topology of the surface uniquely. Additional control points

are introduced in the interior of patches using a connectivity
construction algorithm and fairing; finally, a smooth surface
is computed using a modification of Catmull-Clark subdivi-
sion scheme. Figure1 shows an example of a polyline net-
work q0 defining the curve networkq∞. On the right, the
surface control meshp0 for this example was computed au-
tomatically from the polyline networkq0. When subdivided
using our modified Catmull-Clark algorithm,p0’s associated
limit surfacep∞ interpolates curve networkq∞.

Previous Work. Early work on lofting [CK83, TS90] fo-
cused on its inherent difficulties such as fillingn-sided
holes and maintaining higher order smoothness. Later
work [Her96, Vár91] developed new types of patches suit-
able for lofting. While there has been considerable success
with these approaches, subdivision surfaces provide a sim-
ple standard framework for this task, especially for com-
puter graphics applications, as arbitrary meshes with com-
plex constraints at corners can be handled with greater ease.

Unfortunately, Catmull-Clark surfaces [CC78], the stan-
dard generalization of bicubic splines, are incapable of in-
terpolating a network of cubic splines since the image of a
curve incident on an extraordinary vertex is not piecewise
polynomial. The pioneer in this area, Nasri, has developed
subdivision methods for lofting based on the concept of a
polygonal complex[Nas97, Nas00, NA02, Nas03, NKL01].
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Figure 1: A network of polygonal lines q0 and its associated curve network q∞ (left). The base mesh p0 for a modified Catmull-
Clark surface whose limit surface p∞ (right) interpolates q∞. p0 was automatically computed from q0 using a combination of
skinning, fairing and lofting.

Such complexes consist of the portion of a surface mesh that
controls the shape of a curve on the limit surface. By ad-
justing the shape of this complex, the designer can adjust
the shape of the curve as well as its cross boundary deriva-
tives. Another subdivision approach to lofting is Levin’s
combinedsubdivision scheme [Lev99]. This method adjusts
the surface subdivision rules near the curve network to en-
sure that the surface smoothly interpolates the resulting net-
work. Combined subdivision produces surfaces that can in-
terpolate arbitrary parametric curves, not just networks of
cubic splines.

Contributions. We present a new method for lofting curve
networks which has the following features:

• The resulting surfaces are standard Catmull-Clark away
from corners of the curve network;

• Curves of the network are cubic splines embedded in the
surfaces; curves can be tagged as creases;

• Curves can terminate or continue through corner vertices;
• At corner vertices without creases, curves lie on a com-

monC2 surface.

Our lofting method is fully automatic and requires only
the minimal necessary input from the user designing the
curve network. In particular, the method automatically quad-
rangulates patches formed by the network of polygonal lines
and fairs the resulting mesh. Nasri [NAH03] considers build-
ing quadrangulations specific to subdivision surfaces by op-
timizing the number and valence of extraordinary vertices.
However, only simple configurations for skinning between
two disjoint curves are considered.

In comparison to the work of Levin, we consider a less
general setting; as a result we gain the advantage of pre-
serving the piecewise polynomial nature of the surface away
from extraordinary vertices and do not require cross bound-
ary information for curves to produce high-quality results.
Furthermore, Levin restricts the topology of the curve net-
work where we consider arbitrary connectivity of the curve
network. Finally, in contrast to Nasri’s approach, we do not
use a polygonal complex, which simplifies construction of
the fully automatic method.

2. Overview of the approach

The input to our method is a polyline network, a collection of
open polygonal lines that terminate in a set of common cor-
ners. Pairs of polylines incident on a common corner may be
tagged as modeling a single curve passing through the cor-
ner. Each polyline in the network is tagged as being either
smooth or creased. We note that there are many ways to as-
sociate a curve network with the polyline network. Our curve
network subdivision scheme is one convenient way to ensure
that the limit curves are cubic splines, and, at the same time,
for arbitrary positions of control points we obtain a curve
network compatible with a smooth surface.

To build a surface, a designer specifies a polyline network
and a set of patches as a list of topological faces (lists of
indexed corner vertices). It is important to note that topolog-
ical specification of patches is a necessary part of the infor-
mation needed for lofting. In many configurations it is pos-
sible to infer this information from curves, for example, if
the projection of a part of the network to a plane is forms a
tessellation of an area of the plane. Unfortunately, there ex-
ist local rotationally symmetric configurations, such as six
edges lying on the coordinate axes and meeting at the ori-
gin, for which there appears no general way to infer surface
topology.

Given this information, our automated lofting process
consists of three steps:

• Skinning:Compute the connectivity for a base mesh by
quadrangulating the cycle of polylines bounding each
patch (Section6.1);

• Fairing: Position the vertices of this base mesh such that
its limit surface interpolates the curve network and has a
visually pleasing appearance (Section6.2);

• Subdivision:Apply modified Catmull-Clark subdivision
to this base mesh and construct a fine mesh that approxi-
mates the limit surface. (Sections4 and5).

We start with a detailed description of our subdivision
scheme for curve networks and its related surface scheme,
as these are the central elements of our approach. Then we
conclude by discussing our method for skinning and fairing.
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Formulation of subdivision rules. One of the difficulties of
designing subdivision schemes with sufficient flexibility for
realistic modeling applications is the large number of rules
one needs to handle. Traditionally we specify subdivision
schemes as a collection of masks determined by the local
connectivity and tag configurations of the surface. However,
at corners of the polyline networks, which are also vertices
of the associate surface control mesh, the number of different
choices of continuity constraints on incident curves grows
rapidly, making the fixed mask approach very cumbersome.

For our purposes, we view subdivision as an operatorS
that acts on control meshes and produces refined control
meshes. The restriction of this operator to a fixed-size neigh-
borhood of a vertex can be represented as a matrixS for the
type of subdivision schemes that we consider sinceS uses
affine combinations of control points to compute the control
points on the next level. These matrices depend only on the
local mesh connectivity and tags. It is often useful to con-
sider the neighborhoods of vertices of the same size on all
subdivision levels. In this case such matrices are square, and
do not depend on subdivision level for the type of schemes
we consider. We call such matriceslocal subdivision matri-
ces.

Such matrices are often used to analyze smoothness. We
also use them in implementation: for corner vertices, we
adopt the approach of precomputing appropriate subdivision
matrices based on the parameters of each different corner
configuration using simple linear algebra and use these ma-
trices directly instead of subdivision masks. Since these ma-
trices act on vectors of control points in the two-ring of the
corner, the matrices are small and easy to compute.

3. Lofting two intersecting cubic splines

This section considers the fundamental problem of interpo-
lating two intersecting cubic splines using a bicubic surface.
The possibility of such interpolation is well-known. Our goal
is to illustrate three main ideas: (a) a subdivision schemes for
networks of cubic splines interpolating corner control points;
(b) the change of basis operator; (c) the commutative relation
satisfied by curve and surface subdivision operators and the
change of basis operator.

A change of basis operatorM, extracts a polyline network
from a surface control mesh and updates the positions of the
control points for this network. A curve subdivision operator
C, which maps a polyline network to a refined polyline net-
work and a surface subdivision operatorS are said tocom-
mutewith respect toM if

CM = MS. (1)

Note this relation implies that repeated applications ofC and
S are also related viaCkM = MSk. It is easy to show that the
limit surface defined byS interpolates the limit curves de-
fined byC, assuming both schemes converge. Furthermore,
local subdivision matrices corresponding to the operatorsC,
M andS must also satisfy the equation1; this fact is used

to compute the rules for neighborhoods of corner points for
arbitrary curve networks.

Interpolating a single point on a cubic spline. Before we
consider the surface, case, we examine the simple problem
of modifying the subdivision rules for a uniform cubic spline
in the neighborhood of a single vertexv such that the re-
sulting scheme interpolates the control pointv, but the limit
curve remains a cubic B-spline. These rules are an important
component in the construction of change of basis operators
and curve network subdivision schemes.

Recall that the subdivision matrixCu (acting onv and its
two neighbors on each side) for uniform cubic splines has
the form

Cu =















3
4

1
8

1
8 0 0

1
2

1
2 0 0 0

1
2 0 1

2 0 0
1
8

3
4 0 1

8 0
1
8 0 3

4 0 1
8















(2)

where we choose the indices of vertices along the curve to
be 5,3,1,2,4, withv having index 1, to make the structure of
the matrix more apparent.

Given the control pointsq0
u for a uniform cubic spline,

we can repositionv to lie at its limit position by computing
q0 = Nq0

u where

N =













2
3

1
6

1
6 0 0

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1













.

The mask( 1
6

2
3

1
6 ) is the standard limit position mask for

cubic splines. We compute the rules for the modified curve
C using the commutative relationCN = NCu whereN is the
change of basis matrix. Solving forC yields

C =













1 0 0 0 0
3
4

3
8 − 1

8 0 0
3
4 − 1

8
3
8 0 0

3
16

23
32 − 1

32
1
8 0

3
16 − 1

32
23
32 0 1

8













(3)

in the two-ring ofv. Outside the two-ring ofv, the subdi-
vision rules remain those of uniform cubic splines. Due to
the commutative relation, starting with the control points
Nq0

u and applyingC to vertices in two-ring ofv and uni-
form spline rules elsewhere yield the same cubic spline in
the limit.

Interpolating a single cubic spline. To demonstrate a sim-
ple example of the commutative relation1 for surfaces, we
examine the case of a uniform bicubic B-spline surface inter-
polating an isolated B-spline curve or a set of isolated curves
(e.g. Figure3, left).
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Figure 2: Change of basis mask M for an interior vertex of
q0 (top-left), a corner vertex of q0 of valence four (top-right),
a general interior vertex (bottom-left) and a corner vertex of
valence n (bottom-right). Lofted edges are shown in bold.

The curve subdivision operatorC in this case is deter-
mined by the uniform cubic B-spline subdivision rules, as
there are no corners. Similarly, the surface subdivision op-
eratorS is just the subdivision operator for tensor-product
bicubic splines. If the change of basis operatorM is chosen
to apply the limit mask across the curve as shown in figure2
(top left), then the commutative relation in equation1 is sat-
isfied.

Interpolating two intersecting cubic splines. Finally, we
consider a tensor-product bicubic uniform B-spline surface
that interpolates two intersecting cubic splines.

The surface subdivision operatorS in this case remains the
same; the curve subdivision operator is obtained using the
rules from equation3 for each curve. This ensures that the
common control point is interpolated. The local subdivision
matrixC for the 2-ring of the corner vertex has the form

C=































1 0 0 0 0 0 0 0 0
3
4

3
8 0 − 1

8 0 0 0 0 0
3
4 0 3

8 0 − 1
8 0 0 0 0

3
4 − 1

8 0 3
8 0 0 0 0 0

3
4 0 − 1

8 0 3
8 0 0 0 0

3
16

23
32 0 − 1

32 0 1
8 0 0 0

3
16 0 23

32 0 − 1
32 0 1

8 0 0
3
16 − 1

32 0 23
32 0 0 0 1

8 0
3
16 0 − 1

32 0 23
32 0 0 0 1

8































(4)
where the order of the vertices in each block is cyclic and
the block ordering is given in figure10.

The change of basis operatorM in this case extracts a
row and a column of control points corresponding to the

curves, and uses the masks which are tensor products of the
masks encoded as rows in the curve change of basis matrix
N (Figure2, top right). Figure3 (right) shows an example of
a spherical surface interpolating three circular cubic splines
that have six pair wise intersections.

Figure 3: Lofting four non-intersecting curves with a
toroidial surface (left). Lofting three intersecting curves with
a spherical surface (right).

In the examples considered in this section, the surface
subdivision scheme was known, and the curve subdivision
schemes were either known or could be easily deduced from
the corner vertex interpolation constraint. In the next two
sections, we consider the problem of constructing curve
subdivision schemes for arbitrary numbers of cubic splines
meeting at a common corner, possibly with continuity con-
straints. Unlike the case of two intersecting curves, which
always share a tangent plane, special care must be taken
to ensure that the resulting networks are compatible with a
smooth surface. Such rules are constructed in matrix form,
generalizing the matrix from equation4.

Afterwards, we generalize the change of basis operator
M to arbitrary curve networks. Finally, knowing the curve
network scheme and the change of basis operator, we use
the commutative relation to construct a surface subdivision
scheme interpolating the curve network which reduces to
tensor product B-spline subdivision rules away from corners.

4. Subdivision for curve networks

As defined in the overview, a polyline networkq0 consists
of a set of open polylinesq0

i that terminate at a set of shared
corners. Pairs of polylines incident on a common cornerv
may be tagged as forming a single polyline crossing the cor-
ner v. Individual polylines may be tagged as being either
smooth or creased. In addition, topological faces (ordered
lists of corner vertices) are specified, which uniquely define
the topology of a surface associated with the network.

For the two-ring of each corner inq0, we construct a sub-
division matrixC with the following properties:

• Each polylineq0
i converges to a cubic splineq∞i . Tagged

pairs of polylines incident on a common corner converge
to a single uniformC2 cubic spline passing through that
corner, acrosscurve.

• If none of the polylines incident on a corner are creased,
the associated curve network has a unique tangent plane
as well as a common best approximating quadric surface
at the corner. (Having such a quadric makes lofting with a
bounded curvature surface easier.)
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• If several of the polylines incident on a corner are creased,
each portion of the network between two consecutive
creased curves (asector) has a common tangent plane
(and best approximating quadric).

If a polyline contains only one interior vertex, we average
the rules for the overlapping portion of the two-rings for each
corner. Outside the two-ring of each corner inq0, our scheme
uses the subdivision rules for cubic splines from equation2.

Note that if we assume an ordering on these incident
edges, this symmetry is broken and the process of determin-
ing a common tangent plane is made much more robust. For
curve networks used in lofting, this ordering of edges can be
inferred from the patch structure placed on top of the curve
network. Specifically, if the surface is a topological mani-
fold, the patch structure defines an ordering of the edges in-
cident onv. We use this ordering to construct the subdivision
rules at the corners of the curve network.

4.1. Overview

Due to the presence of cross curves and crease curves, the
subdivision rules at a corner ofq0 include a large number
of cases that, if enumerated, would result in a large amount
of tedious, special coding. Thus, instead of taking the more
traditional route of explicitly specifying masks for various
cases, we construct all necessary rules in a concise and uni-
form manner using a matrix approach. Using this method,
we consider only two cases separately: the case of a cor-
ner vertex with no incident crease curves and the case of a
sector at a corner vertex bounded by two crease curves (cf.
[BLZ00]). The rules for vertices outside two-rings of corner
vertices are the standard uniform cubic B-spline rules.

In both cases, our construction is based on the general-
ization of the ideas that were used in subdivision literature
since [DS78]: to achieve desired behavior, the subdivision
matrix is decomposed asC = ZΛZ−1 (whereZ is the matrix
of eigenvectors andΛ is a diagonal matrix of eigenvalues),
eigenvalues are changed, and the matrix is assembled back
with modified eigenvaluesC′ = ZΛ′Z−1. This is usually
done analytically, and explicit masks are derived for imple-
mentation. While this approach works well in simple cases,
we go a step further for the more general cases that arise dur-
ing practical modeling. In this situation, weprescribeboth
the eigenvalues and eigenvectors in such a way that the re-
sulting subdivision rules (encoded in the subdivision matrix)
have the properties described above. Furthermore, the strat-
egy we use for constructing the eigenvectorsZ is to general-
ize the eigenvectors for the matrixC in equation4 to higher
valences and creased configurations.

Our matrixC, defined over the two-ring of a corner vertex
of valencen, has size(2n+1)× (2n+1) with 2n+1 eigen-
vectors. Forn > 5, we specify fewer eigenvectors (specifi-
cally, 6+n) with the remaining eigenvectors having an asso-
ciated eigenvalue of zero. Instead of constructing the eigen-
vectors corresponding to these zero eigenvalues explicitly,

we use the pseudo-inverseZ+ = (ZTZ)−1ZT to reconstruct
C from a smaller set of nonzero eigenvalues and correspond-
ing eigenvectors:

C = ZΛZ+ (5)

4.2. Rules for corners with no incident crease curves

To constructZ in this case, we first define a set ofn angles
ψ0, . . .ψn−1 which control the directions in which incident
curves approach the corner vertex in its tangent plane. If the
corner has no cross curves, we force equi-angular spacing
via ψi = 2πi

n . If the ith and jth incident curves form a sin-
gle cross curve, we constrain the anglesψi and ψ j to sat-
isfy ψi + π = ψ j . Due to this constraint, the angles can no
longer be equally spaced, which is the reason why traditional
techniques based on the Fourier transform can not always be
used to pre-compute masks. We now compute theψi by min-
imizing ∑i(ψi+1 −ψi)

2 subject to the previous angle con-
straints.

Given theψi , we define 6+ n eigenvectors ofZ in four
groupsZ0 Z1 Z2 Z3 with each group corresponding to eigen-
values 1, 1/2, 1/4 and 1/8. The matrixZ0 has a single col-
umn corresponding to the vector of ones. The matricesZ1
and Z2 have two and three columns, respectively, and de-
pend on the anglesψi . In particular, the row ofZ1 andZ2
corresponding to theith vertex on thejth-ring of v has the
form:

Z1 =
(

j cos(ψi) j sin(ψi)
)

,

Z2 =
(

β( j) β( j)cos(2ψi) β( j)sin(2ψi)
) (6)

whereβ( j) = 0 if j = 0 and j2− 1
3 if j > 0. The matrixZ3

hasn columns. At theith vertex of thej-ring of v, thekth
column ofZ3 is j3 − j if k = i and 0 otherwise. The coef-
ficientsβ( j) and j3 − j reproduce the quadratic and cubic
eigenvectors (corresponding to the eigenvalues1

4 and 1
8) of

the subdivision matrix for the interpolating scheme of equa-
tion 3.

For valencesn≥ 5, we now computeC using equations5
and6. The leftmost two examples of figure4 shows close-
ups of two valence five corners. However, for then< 5 case,
equation6 definesmoreeigenvectors than we need. In this
case, we select a linear subspace of the eigenvectors spanned
by Z2. Specifically, we compute the null space ofZ0, Z1 and
Z3 asZ⊥

013 and then projectZ⊥
013 ontoZ2. If Z+

2 is the pseudo-

inverse ofZ2, this resulting projection isZ2(Z
+
2 Z⊥

013). Fi-
nally, we computeC using equation5 with this subspace in
place ofZ2.

For n = 4, this construction reproduces the subdivision
matrix C of equation4. In the symmetric case whereψi =
2πi
n , we can pre-computeC explicitly as a block circulant

matrix. The attached appendix states these rules and uses
them in the smoothness analysis for the resulting lofted sur-
face.

To understand the behavior ofC in the neighborhood of a
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cornerv, we parameterize the tangent plane atv defined by
the two eigenvectors inZ1 via (x1,x2) = r(cos(ψ),sin(ψ)).
Under this parameterization, the first column ofZ1 defines
a curve network lying on the linear functionx1 while the
second column ofZ1 defines a curve network lying on the
linear functionx2. Viewed in this informal manner, the limit
networks associated with the three columns ofZ2 lie on the
quadratic functions,

x2
1 +x2

2, x2
1−x2

2,
1
2x1x2, (7)

respectively. Similarly, the limit curves associated with the
columns ofZ3 lie onn piecewise cubic functions that areC2

atv.

4.3. Rules for corners with incident crease curves

At a corner, the incident crease curves divide the network
into sectors bounded by consecutive crease curves. Our goal
is to construct subdivision rules for the crease curves as well
as rules for other curves that lie on the interior of a sector.
Boundary curves are simply treated as crease curves.

For crease curves terminating at a cornerv, we use the uni-
form rules of equation2 on the interior of the curve and in-
terpolatev. These rules converge to natural cubic splines (i.e;
cubic curves whose second derivative atv is zero). For two
crease curves crossingv, we use the interpolatory rules of
equation3. Note that the subdivision rules for crease curves
depend only the vertices on the crease curves (as in standard
creased constructions for subdivision surfaces).

The construction of the subdivision matrixC for each sec-
tor also starts with the eigenvector matrixZ constructed as in
section4.2. On the interior of a sector, the subdivision rules
depend on vertices of the bounding crease curves as well as
vertices of curves interior to the sector. The subdivision rules
C̄ for these interior (smooth) curves have the form

C̄ = Z̄ΛZ+ (8)

whereZ̄ consists of rows inZ corresponding to the interior
vertices of these smooth curves. As in the case of no creases,
these subdivision rules force the limit curves in this sector to
lie on a commonC2 surface; however, these surfaces can be
different for different sectors.

The second example from the right in figure4 shows a
valence five corner in which two non-adjacent curves form
a single crease curve crossingv. These two crease curves
form two sectors of widthπ. For the upper sector, the rules
for C̄ reduce to the uniform rules of equation2. For the lower
sector, the matrix̄C has the form









9
16

1
32

3
8

1
8

−3
32 0 0 0 0

9
16

−3
32

1
8

3
8

1
32 0 0 0 0

9
64

1
128

23
32

1
32

−3
128 0 1

8 0 0
9
64

−3
128

1
32

23
32

1
128 0 0 1

8 0









on the two-ring ofv. The four rows ofC̄ define subdivision
rules for two interior vertices on each of the smooth curves
incident onv.

If the width of the sector is less thanπ, a simpler alter-
native to equation8 is to use uniform cubic rules on each
smooth curve incident onv. These rules are more flexible at
the cornerv, but are not guaranteed to converge to a common
tangent plane. The rightmost example of figure4 shows an
example in which three crease curves meet atv.

5. Lofted subdivision surfaces

Given the subdivision schemeC for curve networks as de-
fined in the previous section, we next construct a modified
version of Catmull-Clark subdivisionS that commutes with
C via equation1 whereM generalizes the tensor product
case to extraordinary vertices. Given this generalizedM, we
then explicitly solve for this modified Catmull-Clark scheme
S using a block decomposition of local subdivision matrices
corresponding toC, M andS.

5.1. Generalizing M

In the tensor product cases of section3, the operatorM had
the property that the limit curveq∞ was interpolated by the
surfacep∞ if q0 = Mp0. If the vertexv was not a corner
vertex ofq0, M computed the position of the control points
of the curve network by applying the mask( 1

6
2
3

1
6) to p0

with the mask centered atv and oriented across the curves
(upper left of figure2). If v was a corner ofq0, M applied
the 3×3 limit mask for bicubic subdivision atv (upper right
of figure2).

For general quad meshespk, we next define the behavior
of M at a vertex whose surface valence is other than four.
At an interior vertexv of qk, M applies the mask shown in
the lower left of figure2 to pk. This mask is based on the
number of unlofted edgesn1 andn2 on each side ofqk. If
n1 = n2 = 1, M degenerates to the mask for the regular case.

At a corner ofq0 with surface valencen, we defineM to
be the limit mask for repeated averaging Catmull-Clark sub-
division, shown in lower right of figure2. Whenn = 4, this
mask degenerates to that of the regular case. In the presence
of crease curves, we modifyM to be interpolatory on all ver-
tices lying on creased polylines. The effect of this choice on
the resulting lofted surface will be to decouple the subdivi-
sion rules along creased curves from the rest of the surface.

5.2. Lofted subdivision via block decomposition

Given this choice forM, we can now solve forS using equa-
tion 1. If we constrain the rules forS to reproduce those of
bicubic subdivision off of the curve networks, the surface
rules for vertices on the curve network are uniquely deter-
mined. To make the construction of the rules more explicit,
we introduce the following notation. Letpk be the vector
of control points of the mesh afterk subdivision steps.pk

can be partitioned into two subvectors: curve network con-
trol pointspk

c and all other control pointspk
n. The subdivision

schemes and change of basis operators can be expressed as
global matrices acting on these vectors. LetSk be the ma-
trix for the surface subdivision scheme,pk+1 = Skpk, letCk
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Figure 4: Four corner configurations arising during realistic modeling. The upperleft pictures are close-ups of both the network
and the lofted surface. The upper right diagram depicts the layout of theψi . Dotted edges are creases. Pairs of arrows denote
cross curves.

be the matrix for the curve subdivision scheme, andMk the
change of basis matrix. The subdivision schemeS can be
expressed in block form aspk+1

c = Sk
cpk and pk+1

n = Sk
npk.

If the change of basis matrixMk is also expressed in block
form as(Mk

c Mk
n), so thatqk

c = Mk
c pk

c + Mk
npk

n the commuta-
tive relation of equation1 has the block form

CkMk =
(

Mk+1
c Mk+1

n
)

(

Sk
c

Sk
n

)

.

We note thatMk
c is a square matrix, as it acts on mesh con-

trol points pk
c corresponding to the vertices of the polyline

network and produces new values for the same vertices. Fur-
thermore, as explained below,Mk

c has an inverse. Solving for
the modified surface subdivision operatorSk

c in terms ofCk,
Mk andSk

n yields

Sk
c = (Mk

c)
−1(CkMk−Mk+1

n Sk
n). (9)

This equation not only defines our surface scheme, but
can be used to apply this scheme to a mesh. The local masks
for Mk, Mk+1

n , Sk
n andCk are already defined:Mk andMk+1

n
explicitly in this section,Sk

n by the standard Catmull-Clark
rules andCk in Section4. The only remaining transformation
(Mk

c)
−1 repositions vertices of the polyline network. Fortu-

nately, as it can be easily verified directly,(Mk
c)

−1 has the
same support asMk

c. At a corner vertexv, (Mk
c)

−1 is defined
by a simple mask: it repositionsv to lie at 9

4 of its current
position minus3

2 of the centroid of its edge neighbors. At an

interior vertexv, (Mk
c)

−1 simply scales the vertex position
by 3

2 .

Analysis. At interior verticesv of qk, the resulting rules pro-
duce by our surface scheme reduce to those of uniform bicu-
bic B-splines whenn1 = n2 = 1. In this case, the scheme is
C2 at v. At a corner vertexv of q, the subdivision rules re-
duce to those of bicubic B-splines whenn = 4. Again, the
scheme isC2 at v. More generally, the resulting subdivision
rules differ from those of standard Catmull-Clark in the two-
ring of corner vertices. Ifψi = 2πi

n , our modified Catmull-
Clark scheme has a spectrum of the form 1, 1

2 , 1
2 , 1

4 , . . . and

converges to surfaces that areC1 with bounded curvature at

v. The attached appendix contains an explicit construction
for these rules as function of the valencen and outlines our
smoothness proof.

Unfortunately, proving any type of smoothness result in
more general cases is very difficult. One reassuring fact is
that the commutative relation of equation1 ensures that
any eigenvalues ofC are also eigenvalues ofS. Thus, at
corner vertex ofq0, the spectrum ofS includes the eigen-
values 1, 1

2 , 1
2 , 1

4 , . . .. However, this condition is not suffi-
cient to ensure the correct spectrum for the resulting surface
scheme since lofting inserts extra eigenvalues into the spec-
trum of S. However, our experience has been that the lofted
scheme produces visually smooth surfaces in all configura-
tions where corner vertices are fully lofted (i.e; all surfaces
edges incident on the corner are lofted). Figure4 shows four
close-ups of lofted subdivision surfaces near a corner vertex.

6. Automated lofting of curve networks

In the previous sections, we have constructed subdivision
schemes for curve networks and surfaces that loft these net-
works. Now, given a network of polylinesq0, we first de-
scribe a skinning method for constructing the topology of a
base meshp0 that interpolatesq0. We then fair the positions
of vertices ofp0 subject to the constraint thatq0 = Mp0.

6.1. Skinning

Our skinning algorithm constructs mesh connectivity for the
interior of each patch specified by the designer. If we merge
(in cyclic order) the open polylines bounding the patch, the
result is a closed polylineq. Our task is to form a quadran-
gulation ofq, i.e; a quad mesh whose boundary is exactly
q.

While many quadrangulation and even more triangulation
algorithms have been proposed in mesh generation literature,
the task of generating suitable meshes for subdivision sur-
faces is quite different. For standard mesh generation, the
main goal is to maintain good quad or triangle aspect ra-
tios and/or approximate a given shape well. For subdivision
surfaces, methods such as Nasri [NAH03] seek to generate
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meshes whose topologies minimize the number and valence
of extraordinary vertices.

Theoretical bounds. We have designed a simple algorithm
for generating a quadrangulationp of q that optimizes the
valence of added extraordinary vertices and their number. If
we let val(pi) denote the edge valence of a vertexpi of p,
the following proposition shows the fundamental limitation
on what can be achieved.

Proposition 1 Let q be a closed polyline formed as the union
of k open polylines. If the length ofq is even, any quadran-
gulationp of q satisfies

∑
i
|val(pi)−vi | ≥ |k−4| (10)

wherevi = 2 if pi is a corner vertex ofq, vi = 3 if pi is an
interior vertex ofq andvi = 4 otherwise.

This proposition has several important consequences. Ide-
ally, we desire a quadrangulationp with one quad incident
on each corner ofq, two quads incident on an interior ver-
tex of q and four quads meeting at every interior vertex of
p. This situation would make the left-hand side of equa-
tion 10zero. Unfortunately, this proposition forcesp to have
extraordinary vertices whenk 6= 4. Second, as the valence
of these extraordinary vertices decreases, the number of ex-
traordinary vertices must increase. In particular, if only ver-
tices of valence five or less are allowed, the resulting mesh
must have at least|k−4| extraordinary vertices.

For k = 4, generating a quadrangulation with no extraor-
dinary vertices is possible in many cases. However, in some
cases, creating extraordinary vertices is necessary. A simple
example is shown in Figure5. In this case, it is easy to show
that there can be no regular quadrangulation, and therefore at
least one vertex of valence greater than four and one vertex
of valence less than four needs to be introduced.

Figure 5: A patch with four corners which cannot be quad-
rangulated without adding extraordinary vertices. Empty
circles mark the corner vertices, i.e. vertices where multiple
curves meet, filled circles mark interior boundary vertices.

Our algorithm takes the extreme approach and generates
only extraordinary vertices of valence three and five since
the quality of the resulting surface is the closest to that of the
regular case. One can argue that in some cases better results
can be achieved by using higher valence vertices (e.g. up to
7); such extensions are easy to add to our basic algorithm.
Moreover, our algorithm always stays close to the optimal
number of extraordinary vertices. Specifically, fork≥ 4, our
method generates a quadrangulation with no more thank−2
vertices of valence five, no more than 2 vertices of valence
three (plus an extra triangle or pentagon for odd lengthq).

Overview. Given a closed polylineq = (q1, ...,qn), we de-
fine achain of lengthm to be a subsequence(qi , . . . ,qi+m)
of q corresponding to a single open polyline with corners
at qi and qi+m. (Note that index arithmetic onq is per-
formed modn.) Our quadrangulation method constructsp
by performing a sequence ofchain advanceson q. Given
a chain(qi , . . . ,qi+m), this chain advance adds a layer of
m quads top bounded below by(qi , . . . ,qi+m) and above
by (qi−1, p j , . . . , p j+m−1,qi+m+1) wherep j , . . . p j+m−1 are
new vertices that lie on the interior of the final patchp. The
polylineq is then replaced by the polyline

(q1, . . . ,qi−1, p j , . . . , p j+m−1,qi+m+1, . . . ,qn).

Our quadrangulation method performs a sequence of chain
advances that can be partitioned into two phases.

• Phase one performs two types of chain advances and ter-
minates when all but one of the chains inq have length
one.

• Phase two performs two different types of chain advances
and terminate when the length ofq is five or less. At this
point, the method forms a single polygon fromq and adds
it to p.

Phase one. In the first phase, our method repeatedly applies
two types of chain advances. Type one advances involve a
single chain(qi , . . .qi+m) whereqi−1 andqi+m+1 are inte-
rior vertices (see figure6 left). These advances introduce no
extraordinary vertices and leaves the number of chains inq
unchanged. Type two advances involve a sequence of chains
of length one(qi , . . . ,qi+m) whereqi−1 andqi+m+1 are in-
terior vertices (see figure6 right). These advances introduce
m−1 valence five vertices while decreasing the number of
chains inq by m−1.

Figure 6: Phase one chain advances. Left: type one. Right:
type two. Empty circles indicate corner vertices before the
advance, filled circles indicate interior chain vertices.

Phase one applies these chain advances until all but one
of the chains inq have length one. During this phase, there
are many different type one and type two advances possible.
Type one advances have priority over type two advances. In
most cases, several type one advances are possible. While
any choice of type one advance is permissible, we use the
following heuristic to select among various type one ad-
vances.

If q consists ofk chains, we let the vectorl = (l1, . . . lk) de-
note the length of the chains ofq. Applying d = (d1, . . .dk)

c© The Eurographics Association 2004.



S. Schaefer & J. Warren & D. Zorin / Lofting Curve Networks using Subdivision Surfaces

type one advances to each chain ofq yields a new polygon
whose chains have lengthl −Hd whereH is a matrix whose
ith row has ones in positioni − 1 andi + 1 and zero other-
wise. Since our ultimate goal is to choosed such thatl −Hd
is zero, we computed = H+l and then advance on the max-
imal entry ofd.

If no type one advances are possible,q must contain a
chain of length one. In this case, we perform a type two ad-
vance of the shortest continuous sequence of chains of length
one.

Phase two. At the start of phase two, all but one of the
chains inq have length one. Without loss of generality, we
assume thatq has lengthn with its first chain having length
m≥ 1. In the second phase, we perform two different types
of chain advances. Type three advances involves the chain
(q1, . . .qm+1) (see figure7 left). This advance creates va-
lence five vertices atqn andqm+2 while decreasing the num-
ber of chains by two. Type four advances involve the chain
(qn,q1) (see figure7 right) . If m< n−1, this advance cre-
ates a valence five vertex atqn−1 and decreases the num-
ber of chains by one. Ifm= n−1, this advance creates no
valence five vertices sinceqn−1 is an interior vertex of the
chain(q1, . . .qn).

Figure 7: Phase two chain advances. Left: type three. Right:
type four. Empty circles indicate corner vertices before the
advance, filled circles indicate interior chain vertices.

Phase two applies type three advances toq until n≤ 2m+
3. Next, phase two applies type four advances toq until q has
five or fewer vertices. Phase two concludes by generating a
single triangle, quad or pentagon from this finalq. Figure8
shows several examples of quadrangulations created by our
method.

To summarize our valence bounds, fork = 3, the method
generate a quad mesh with either a single valence three ver-
tex (q has even length) or an extra triangle (q has odd length).
Fork≥ 4, the four types of chain advances generate one va-
lence five vertex for each chain eliminated. Since up tok−2
chains may be eliminated, the final mesh has up tok−2 va-
lence five vertices. The final polygon constructed at the end
of phase two may introduce up to two vertices of valence
three in the mesh. Thus, our method generates a quadrangu-
lation with no more thank− 2 vertices of valence five, no
more than 2 vertices of valence three (plus an extra triangle
or pentagon for odd lengthq).

Figure 8: Various quadrangulations produced by our
method. Successive phase one chain advances are shaded
from dark to light.

In some situations, our quadrangulation method intro-
duces extraordinary vertices on the boundary ofp. If the
length of all chains inq is three or more, we can add a pre-
liminary phase zero to our method that moves all extraordi-
nary vertices to the interior ofp. This phase consists ofk
type one advances, one per chain inq. These advances add
a single ring of quads top with no extraordinary vertices
on the boundary of the finalp. For meshes of this type, our
lofting method produces surfaces that are provablyC1 at the
corners ofq andC2 elsewhere onq.

6.2. Fairing

Having computed the topological structure for each patch in
the base meshp0, we next compute positions for the vertices
of p0 such that the limit surfacep∞ is fair and interpolates
the curve network. In this framework, our task is to optimize
the shape of the surfacep0 by minimizing a fairness func-
tional E(p) subject to the constraint thatq0 = Mp0, which
guarantees that the curves are interpolated.

There is a substantial amount of work on fairing meshes;
for subdivision surfaces fairing was first considered in
[HKD93], where the goal is to construct Catmull-Clark sub-
division surfaces interpolating the control points. In that pa-
per the functional is evaluated on the surface, which is more
reliable but also quite computationally expensive and re-
quires considerable effort to implement. We have found that
a much simpler approach based on fairing the base meshp0

itself yields good results.

Our implementation uses a thin plate functional defined
as follows:

E(p) =∑
pi

(

∑
p j∈Ni

αi
j p j

)2

+

(

∑
p j∈Ni

βi
j p j

)2

+

(

∑
p j∈Ni

γi
j p j

)2

whereNi is the one-ring of the vertexpi , and for noncrease
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Figure 9: Examples of surfaces lofting curve networks. Each surface was computed automatically using skinning and fairing.

verticespi , of valenceki 6= 4, and j 6= i,

αi
j =

2
ki

cos(
4π j
ki

), βi
j =

2
ki

sin(
4π j
ki

), γi
j =

1
ki

,

andαi
i = βi

i = 0, γi
i = −1. Forki = 4, αi

j andβi
j should be

αi
j = 1

4 cos(π j) and βi
j = 1

4 sin(π j). This functional, up to
a scale factor, can be viewed as a finite difference approxi-
mation of

∫

F2
uu+ F2

vv+ 2F2
uvdudvfor a particular choice of

local parameterizations.

This functional is known to be far from optimal for fine
meshes; generally speaking, a nonlinear functional formu-
lated in terms of curvature approximations is likely to yield
somewhat better results. However, the difference on rela-
tively coarse meshes, such as the typical control meshes
of subdivision surfaces, appears to be less significant. The
great advantage of this functional in our setting is that it is
quadratic and can be written in the formpTAp, whereA is
a symmetric matrix. Therefore, vertex positions can be com-
puted without a good initial guess. These positions can then
be used as an initial guess for a nonlinear optimization pro-
cedure.

We minimize this functional with constraints using the
standard Lagrange multiplier approach, i.e. solving

∇pE(p)+MTλ = Ap+MTλ = 0; Mp = q0

whereλ is the vector of Lagrange multipliers, one per curve
vertex. We note that this is a symmetric but not a positive
definite linear system, so one has to be careful when using
an iterative method to solve it: the standard Conjugate Gradi-

ent method does not apply, Conjugate Residuals or another
more general method need to be used. For small numbers
of control points (up to several hundreds) a direct solver is
acceptable. Figure9 shows three examples of lofted surfaces
constructed from polyline network by our automatic method.

7. Future work

We have noted some partially lofted configurations (where
not all surface edges incident on a corner vertex are lofted)
in which the resulting subdivision surfaces are onlyC0, not
C1. While our skinning method does not generate such par-
tially lofted configurations if all polylines inq0 contain at
least two interior vertices, we believe that it may be pos-
sible to modify the change of basisM to yield lofted sur-
faces that areC1 for all configurations including partially
lofted ones. The recently developed smoothness analysis
techniques of [Uml03] may aid in this process.

We also note that the surface rules produced by equation9
are very general. In particular, this technique can be used
to modify the subdivision rules for other schemes such as
Loop’s triangular scheme to loft networks of curves. For ex-
ample, triangularC2 quartic box-splines can be used to in-
terpolate a network ofC2 quartic splines. (The restriction of
a C2 quartic box spline to a single grid line is aC2 quar-
tic spline.) At extraordinary vertices of the curve network,
equation9 defines perturbed versions of the box spline rules
that allow the resulting surface to interpolate arbitrary num-
ber of curves meeting at the extraordinary vertex. This topic
is an important area for further research.
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Appendix A: Explicit curve and surface rules

In the rotationally symmetric case whereψi = 2πi
n , the curve

subdivision matrixC can be expressed in a block form in-
duced by partitioningq0 into rings around the cornerv as
shown in figure10. Specifically,C can be partitioned such
that the blockC11 is a scalar, the blocksCi1 are columns
vectors of constants of lengthn, the blocksC1 j are row vec-
tors of constants of lengthn and the blocksCi j wherei, j > 1
aren×n circulant matrices. In thismodified block circulant
form, each circulant matrixCi j can be encoded as a polyno-
mial ci j [z] whose coefficients form the first row ofCi j . Col-
lecting these polynomialsci j [z] yields amatrix polynomial
c[z] that compactly encodesC.

One advantage of matrix polynomials is that comput-
ing the spectral structure of their associated block circu-
lant matrices is easy. Given a matrix polynomialc[z], let
ĉ[z] be the submatrix formed by eliminating the first row
and column ofc[z]. As shown in section 8.3 of Warren and
Weimer [WW01], the eigenvalues ofC are the eigenvalues
of c[1] and the eigenvalues of ˆc[ω j ] whereω is thenth root
of unity and 1≤ j ≤ n−1.

If ψi = 2πi
n , the matrix polynomialc[z] for the subdivision

matrixC of equation5 has the form

c[z] =





1 0 0
3
4

1
4η0[z]+η1[z]+ αn

2 η2[z] 0
3
16

11
16η0[z]+ 3

2η1[z]+ 11αn
8 η2[z] 1

8



 (11)

where the polynomials η j [z] have the form
1
n ∑n−1

i=0 cos( 2π ji
n )zi and the constantαn is 0 if n = 3,

1
2 if n = 4 and 1 forn ≥ 5. Using the fact that the polyno-
mialsη j [z] satisfyη j [ωi ] = 0 wheni 6= j,n− j allows easy
computation of the eigenvalues ofC. As expected,C has the
spectrum 1, 1

2 , 1
2 , 1

4 , . . ..

Another advantage of matrix polynomials is that we can
compute the matrix polynomials[z] for our lofted surface
scheme by applying equation9 to the appropriate matrix
polynomials. Before proceeding, we must first formm[z].
The operatorM maps surface vertices in the two-ring ofv to
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Figure 10: Block ordering for vertices on a curve network
(left) and its corresponding surface mesh (right)

curve vertices in the two-ring ofv using the ordering of fig-
ure10. At the corner vertexv, M computes4

9 of the central

vertex plus 4
9n times each edge-adjacent surface vertex plus

1
9n times each face-adjacent surface vertex. We encode this
transformation as the first row of matrix polynomialm[z].

m[z] =





4
9

4
9

1
9 0 0 0 0

0 2
3

1
6 + 1

6z 0 0 0 0
0 0 0 2

3
1
6z

1
6 0





Note the entriesm1 j [z] for j > 1 are implicitly multiplied by
1
n so that the rows of the matrix polynomial sum to one when
evaluated atz= 1. Similarly, the polynomialM23[z] =

1
6 + 1

6z

encodes a circulant matrix whose first row is( 1
60. . .01

6).

We next compute the modified subdivision rulessc[z] by
applying equation9 to the matrix polynomialss[z], m[z] and
sn[z]. The fundamental observation underlying this construc-
tion is that multiplying two block circulant matrices is equiv-
alent to multiplying their matrix polynomials. For modified
block circulant matrices, a similar construction is possible
subject to the restriction that entries of the matrix polynomial
corresponding to scalar, row vectors or column vectors in the
modified block circulant matrix are treated appropriately. In
particular, the product of a column vector times a row vec-
tor is a circulant matrix whose entries are constants. Thus,
modeling multiplication of modified block circulant matri-
ces using matrix polynomials requires introducing multiples
of η0[z] into the resulting product to model this effect. With
this caveat, we can computec[z]m[z]−mn[z]sn[z] wheresn[z]
has the form

sn[z] =









1
4

1
4 + z

4
1
4 0 0 0 0

1
16

1
16 + 3z

8
3
8

z
16

1
16 0 0

1
16

3
8 + z

16
3
8

1
16 0 1

16 0
1
64

3
32 + 3z

32
9
16

1
64 + z

64
3
32

3
32

1
64









.

Multiplying (c[z]m[z]− mn[z]sn[z]) by the inverse ofmc[z]
yields the matrix polynomialsc[z] for our modified Catmull-
Clark scheme of the form





9
16

3
8

1
16 0 0 0 0

3
8 s22[z] s23[z] 0 0 0 0
3
32 s42[z] s43[z]

3
32

1
64z

1
64 0





Figure 11: Characteristic map of the surface scheme for n=
3. . .8

where the four modified entriessi j [z] are as given below

s22[z] = 1
16(12η0[z]+16η1[z]+8αnη2[z]− 1

z(1+z)2),

s23[z] = 1+z
16z (2η0[z]+4η1[z]+2αnη2[z]−1),

s42[z] = 1
64(52η0[z]+96η1[z]+88αnη2[z]− 1

z −12−z),
s43[z] = 1+z

32z (6η0[z]+12η1[z]+11αnη2[z]−3).

The polynomialsη j [z] and the constantαn are defined in the
same manner as forc[z].

We can analyze the smoothness of the modified surface
scheme using the matrix polynomials[z] formed bysc[z] and
sn[z]. The modified subdivision scheme has a spectrum of the
form 1, 1

2 , 1
2 , 1

4 , . . . where the eigenvalue14 has multiplicity 2
if n = 3, 3 if n = 4 and 4 forn≥ 5 and the remaining eigen-
values lie between14 and zero. Similarly, we have computed
the eigenvectors associated with the subdominant eigenval-
ues1

2 symbolically as a function of the valencen. Figure11
shows the characteristic map induced by these eigenvectors
for valencen = 3 to 8. Using interval arithmetic in Mathe-
matica in conjunction with the symbolic representation of
these eigenvectors, we have proven that the characteristic
map is regular and injective for all valencesn ≥ 3. Thus,
the lofted subdivision surface isC1 with bounded curvature
at these vertices [PU01].

Appendix B: Proof of proposition 1

Consider a quadrangulated domain homeomorphic to a disk,
with k corners (i.e. vertices of valence 2) on the boundary;
By assumptions of the proposition, all other vertices on the
boundary are valence 3. Let the sets of interior, edge and
corner vertices beVI , VC andVE respectively, and the set
of all vertices beV. We call these remaining boundary ver-
ticesedge vertices.The total number of quads can be com-
puted asf = (1/4)(∑vi∈VI

ki +2|VE|+ |VC|), where|X| is the
number of elements in a setX. The total number of edges is
(1/2)(∑vi∈VI

ki +3|VE|+2|VC|). By the Euler formula,

1 = |V|−e+ f = |VI |+ |VE|+ |VC|+
1
4(∑vi∈VI

ki +2|VE|+ |VC|)−
1
2(∑vi∈VI

ki +3|VE|+2|VC|)

= |VI |−
1
4(∑vi∈VI

ki)+ 1
4 |VC|

As |VC| = k, the statement of the proposition follows.
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