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Image Structure Retrieval via L0 Minimization
Yujing Sun, Scott Schaefer, Wenping Wang

Abstract—Retrieving salient structure from textured images is an important but difficult problem in computer vision because texture,
which can be irregular, anisotropic, non-uniform and complex, shares many of the same properties as structure. Observing that salient
structure in a textured image should be piece-wise smooth, we present a method to retrieve such structures using an L0 minimization
of a modified form of the relative total variation metric. Thanks to the characteristics shared by texture and small structures, our method
is effective at retrieving structure based on scale as well. Our method outperforms state-of-art methods in texture removal as well as
scale-space filtering. We also demonstrate our method’s ability in other applications such as edge detection, clip art compression
artifact removal, and inverse half-toning.

Index Terms—Texture removal, image smoothing, L0 sparsity
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1 INTRODUCTION

PAINTING on textured surfaces has long been an impor-
tant art form. From oil paintings on canvas to graffiti

on brick walls, images on textured surfaces are everywhere.
Complicated patterns can also be easily knitted into fine
crafts such as a sweater or embroidery using cross-stitch. All
these works are similar in that salient structure is blended
into texture patterns. The human visual system can easily
distinguish the salient image from the underlying texture
details. However, the task of retrieving structure from tex-
ture patterns for a computer is much more challenging since
texture, which can be irregular, anisotropic, non-uniform
and complex, shares similar properties with major image
structure, namely strong gradients. As a result, it can be
difficult for an algorithm to distinguish the main image
structure from texture automatically.

Most of the existing detexturing operators [1], [2], [3],
[4], [5], [6], [7], if not all, define various metrics to locate
texture and then extract structure by blurring an image
in textured regions while keeping transitions on structure
edges. Recently Xu et al. [7] proposed a method based on a
relative total variation (RTV) metric, which outperforms most
detexturing approaches. Although effective in removing tex-
ture, RTV [7] will decrease the transition along major edges,
resulting in a blurry effect. While there is a tradeoff between
texture removal and edge preservation, by improving the
performance of the RTV metric while making use of the
sparsity of L0 norm, our method outperforms RTV [7] and
other existing methods in better sharpening structure edges
while removing texture patterns.

In addition to texture, small high-contrast features could
also cause many image processing techniques, such as con-
tent aware editing, edge detection, shape matching etc.,
to produce unsatisfactory results. Recently, many scale-
space operators have been proposed to handle high-contrast
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details. The Rolling Guided Filter (RGF) [8] is one such
method, which removes features based on their scale. How-
ever, RGF [8] can shift edges and corners. By combining
static and dynamic guidance, SDF [9] fixes the edge shift
problem but still has difficulty preserving low-contrast,
large structures. Tree Filters [10] and its variants [1], [11]
make use of tree-like structure, such as a minimum span-
ning tree (MST) or segment graph to connect pixels and
perform image smoothing globally along the structure. If
these connections cross strong edges, these edges will be
corrupted [11]. As a result, the tree-like filters can introduce
“leaks” on major edges. Thanks to the similar characteristics
shared by textures and small structure, our method can
work as a scale-space filter and produce better results than
state-of-art methods.

In this paper, we show how to combine the detextur-
ing strength of RTV with the edge preserving abilities of
L0 minimization to extract salient structures from images
while eliminating texture and/or fine-scale features. Such
a combination generates a nonlinear optimization, which
can be difficult to solve. Instead we show how to transform
the problem into a sequence of simpler optimization steps
that converges to the solution to of the overall nonlinear
problem. We demonstrate the effectiveness of our method at
removing high-contrast details while maintaining structure
where the original L0 gradient minimization [12] often fails
and in scale-based filtering where RTV [7] performs poorly.

2 RELATED WORK

Texture Removal In the past few years, texture removal
has been well studied. Subr et al. [6] smoothed texture by
averaging minimal and maximal envelopes based on the
observation that texture patterns oscillate locally between
extrema. Buades et al. [2] used a nonlinear low pass-high
pass filter pair to compute a local total variation and to
perform structure/texture decomposition. In contrast to in-
tensity based methods, Karacan et al. [4] used the covariance
of patch features, which leverages the repetitive nature of
texture, to remove textures. Cho et al. [3] extended the
bilateral filter to perform texture removal (BTF), the core
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of which is to capture the texture information by patch shift
and to ensure proper differentiation of texture and structure.
Ono et al. [13] performed cartoon/texture decomposition
based on the blockwise low-rank nature of texture but is
quite slow. Buades and Lisani [14] presented a directional
operator to detexture image by filtering toward largest rate
deduction of local total variation. However, all the methods
mentioned above over-blurs salient edges to some extent. By
constructing tree weights, tree-like filters [1], [10], [11] suc-
cessfully gets rid of “halo” problems, but one misclassified
pixel can corrupt a major edge introducing a “leak” artifact.
Su et al. [15] combine multiple filters to remove texture.Total
variation (TV) and modifications thereof [5], [16], [17], [18],
[19] are known to be one category of classic methods in
detexturing by minimizing the L1 norm of gradients to
enforce structural similarity between the input and output.
However, the traditional total variation approach blurs ma-
jor edges when textures have similar or larger gradients
than structures. Recently, Xu et al. [7] greatly improved the
performance of total variation by defining a relative total
variation (RTV) metric.
Structure-preserving filtering Even though not designed
for texture/detail removal, edge-preserving image smooth-
ing techniques can achieve a similar goal. Local methods
include bilateral filters (BF) [20], [21], [22], [23], [24], [25],
guided filters (GF) [8], [9], [26], [27], mode and median fil-
ters [28], [29], [30], [31], [32], domain transfer [33], geodesic
filters [34], [35], multipoint filters [36], joint filters [37], [38],
and scale-space filters [8], [9]. These local filters smooth
images by updating each pixel value according to various
functions defined upon its spatial and color differences with
neighboring pixels. Generally, BF and GF cannot get rid of
blurry artifacts [11]. Mode and median filters are effective
in removing high contrast noise but tend to produce os-
cillations in the presence of signals that oscillate quickly.
Geodesic filters [34], [35], RGF [8] and SDF [9] can perform
scale-space filtering in terms of removing fine scale details
without degrading structure edges. SDF [9] sharpens edges
well but has difficulty preserving relatively low contrast
structures. Global methods are mainly optimization-based
including weighted least squares (WLS) [39] and sparsity
minimization [5], [12], [40]. For these methods, images
are processed by optimizing global functions involving a
weighted L2 norm [39], L1 norm [5], [40], or L0 norm [12].
Note that these global methods are all gradient-based opera-
tors and thus do not remove high contrast details well. More
recently, other image filters [41], [42] to denoise images have
been proposed. Although effective, they intend to maintain
texture details while reducing noise whereas our goal is to
remove texture/detail.

2.1 L0 Minimization

The L0 norm directly measures sparsity of a vector, and
minimizing the L0 norm produces sparse solutions. Hence,
we take advantage of L0 minimization to extract salient
structure from texture. Besides image smoothing [12], the
L0 norm has been adopted to mesh denoising [43], point set
denoising [44], image deblurring [45] and intrinsic image
decomposition [46], [47]. However, optimizing the L0 norm
is difficult in practice. Xu et al. [12], He et al. [43], and

(a) Γ (b) Φ

(c) RTV (d) <

Fig. 2. Comparison between Γ, Φ, RTV and our modified RTV metric
(<) on the boy image.

Sun et al. [44] adopted a splitting scheme to solve an L0

minimization problem to smooth images, meshes, and point
clouds respectively. Since we use a similar splitting scheme
in our approach, we will briefly review this technique.

The L0 norm of a vector ϑ is defined as the number
of non-zero entries. Given a signal X̂ and a differential
operator f , X can be minimized by

min
X
|X − X̂|2 + λ|f(X)|0, (1)

where the first term is a data fidelity term, λ is the smooth-
ing parameter and |f(X)|0 denotes the L0 norm of f(X).
To optimize Equation 1, an auxiliary variable µ can be
introduced to form

min
X,µ
|X − X̂|2 + β|f(X)− µ|2 + λ|µ|0, (2)

in which β is set to a small value initially and controls how
quickly this problem approaches Equation 1.

Given an initial guess for X , we minimize Equation 2 by
first holding X constant and solving for µ,

min
µ
β|f(X)− µ|2 + λ|µ|0.

The solution of this minimization is given by µi = 0 if
|f(X)i|2 < λ

β or µi = f(X)i otherwise. Next, we hold µ
constant and solve for X ,

min
X
|X − X̂|2 + β|f(X)− µ|2.

This equation is quadratic in X and has a trivial global
minimum. By repeating solving the two minimization prob-
lems with β = 2β , f(X) is forced to approach µ when β
approaches infinity.

2.2 Relative Total Variation
As stated above, RTV [7] is effective at distinguishing tex-
ture and structure. We review the computation of the metric
here.
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(a) Input (b) RTV, λ = 0.014 (c) RTV, λ = 0.016 (d) RTV, λ = 0.018 (e) our method, λ = 0.004

Fig. 1. Comparison between RTV [7] and our method on the boy image, σ = 2.5. Input image courtesy Mark Delaney.

The RTV Υ of an image I is defined pixel-wise and
contains two factors: the windowed total variation Γ, and
the windowed inherent variation Φ. The windowed total
variation counts the absolute spatial difference within a
patch centered at pixel p in the d direction, which is written
as

Γd(p) =
∑

q∈Ω(p)

wp,q · |∂dIq|,

where Ω(p) is the rectangular region centered at pixel p and
d is the direction. The windowed inherent variation Φ is
defined as

Φd(p) = |
∑

q∈Ω(p)

wp,q · ∂dIq|,

where wp,q is a weighting function

wp,q = exp(−|p− q|
2

2σ2
). (3)

Then, relative total variation Υ is formed by combining Γ
and Φ,

Υ(p) =
Γx(p)

Φx(p) + ε
+

Γy(p)

Φy(p) + ε

in which ε is a small positive number to avoid division by
zero.

3 APPROACH

The ability of L0 minimization has been well demonstrated
in image smoothing [12], however, the same approach does
not work well with texture patterns when the image gradi-
ent in textured regions is more prominent than that of salient
edges, as shown in Figure 6, 7 and 9. The problem with
minimizing theL0 norm of the image gradients is that image
gradients are a poor measure of whether or not texture exists
within the image. In contrast, RTV distinguishes between
structure and texture well. Hence, we would like to find
an image close to the input whose measure of texture is
zero. Moreover, the structures are typically sparse compared
to the entire image, which makes the L0 norm an ideal
candidate for this problem.

However, we must make a few modifications to RTV to
use this metric with an L0 optimization. First, RTV is high in
textured regions and low at structural edges in the image.
While such a metric makes sense for an L2 minimization,

(a) α = 1, λ = 0.006 (b) α = 1, λ = 0.004 (c) α = 2, λ = 0.004

(d) α = 3, λ = 0.004 (e) α = 5, λ = 0.004 (f) α = 7, λ = 0.004

Fig. 3. Demonstration of our method using different α.

it is not compatible with the sparsity measured by the
L0 norm. Instead we modify the RTV metric slightly to
make the metric small in textured regions and large along
structure edges in the image. Then optimizing the L0 norm
of this modified metric will find an image whose measure of
texture is zero except along structure edges that are sparse
within the image.

Hence, our modified RTV metric is given as

<(p) = <x(p) + <y(p)

where
<d(p) = sΦd(p)

αΓd(p).

Compared with the original RTV metric, we multiply by Φ
rather than divide by Φ to achieve the desired behavior on
different regions of the image. We include α as an exponent
to accenuate the structure from the texture (we choose α = 7
in our experiments), and s is simply a normalization factor.
Figure 3 shows the results of using different values of α
and figure 2 shows the difference between the original RTV
metric on an image and our modified form <. Note that
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since RTV metric divides Γ by (Φ + ε), the range of values
is quite large if ε is close to zero since Φ may be zero in
some regions. To visualize the original RTV values in an
image, we use a large ε = 0.1 in figure 2.

3.1 L0 Relative Total Variation Minimization

Let I be the input image, S the computed result, and < the
modified RTV metric distinguishing structure from texture,
we solve the structure retrieval problem by minimizing

min
S

∑
p

|Sp − Ip|2 + λ|<|0,

where λ is the parameter controlling the smoothness of the
image. The first term makes sure that the structure image
does not stray too far away from the input and second term
is the L0 norm of the modified RTV metric, which attempts
to remove texture while preserving structure.

Similar to [12], we adopt a splitting scheme to minimize
this nonlinear objective function. Note that due to the non-
linear terms in <, the solution to this energy function is
not trivial as was the case in the original L0 smoothing
work [12]. Hence, we will show how we transform the
nonlinear portion of< so that the optimization can be solved
in an iterative manner.

We introduce auxiliary vectors φ and ρ corresponding to
<x and <y and minimize the following energy function

min
S,φ,ρ

∑
p

(Sp−Ip)2+β((<x(p)−φp)2+(<y(p)−ρp)2)

+λ|φ+ ρ|0.
(4)

Subproblem 1: Solve for φ and ρ.

To minimize this energy, we perform an alternating
optimization where we first hold S constant and solve for φ
and ρ,

min
φ,ρ

β
∑
p

((<x(p)− φp)2 + (<y(p)− ρp)2)

+λ|φ+ ρ|0,
(5)

which reaches its minimum when

(φp, ρp) =

{
(0, 0) <x(p)2 + <y(p)2 ≤ λ

β ,

(<x(p),<y(p)) otherwise.
(6)

Subproblem 2: Solve for S.

Fixing φ and ρ, we minimize equation 4 over S

min
S

∑
p

(Sp− Ip)2 +β((<x(p)−φp)2 + (<y(p)− ρp)2). (7)

Since < is nonlinear, this energy function is difficult to
solve. Now we show how Eq. 7 can be decomposed into a
simpler optimization. To simplify, let Ψd(p) = sΦd(p)

α, and
<d(p) can be rewritten as

<d(p) = Ψd(p) · Γd(p).

Without loss of generality, we first consider the term in the
x direction in Equation 7, (<x(p) − φp)2. Expanding Γx(p)
in <x(p) yields

(<x(p)− φp)2 = (Ψx(p) ·
∑

q∈Ω(p)

wp,q|∂xSq| − φp)2

= (Ψx(p) · wp,p|∂xSp|+ Ψx(p) ·
q 6=p∑

q∈Ω(p)

wp,q|∂xSq| − φp)2

≈ (Ψ̂x(p) · wp,p|∂xSp|+ Ψ̂x(p) ·
q 6=p∑

q∈Ω(p)

wp,q|∂xŜq| − φp)2

= (kxp|∂xSp|+ bxp)
2.

(8)
where

kxp = Ψ̂x(p) · wp,p,

and

bxp = Ψ̂x(p) ·
q 6=p∑

q∈Ω(p)

wp,q|∂xŜq| − φp.

Ψ̂ and Ŝ are results from the previous iteration, and there-
fore kxp and bxp can be treated as constants. Thus, Equa-
tion 8 reaches minimum when |∂xSp| = − bxp

kxp
.Expanding

− bxp

kxp
, we obtain

|∂xSp| = − bxp

kxp
= −

Ψ̂x(p)·
q 6=p∑

q∈Ω(p)

wp,q|∂xŜq|−φp

Ψ̂x(p)·wp,p

=


−

q 6=p∑
q∈Ω(p)

wp,q|∂xŜq|
wp,p

φp = 0,

|∂xŜp| φp = <̂x(p).

Note that −
q 6=p∑

q∈Ω(p)

wp,q|∂xŜq|
wp,p

is always negative, which is not

possible unless |∂xŜp| = 0. Thus, Equation 8 is minimized
under the condition

∂xSp =


0 φp = 0,

∂xŜp φp = <̂x(p).

A similar argument holds for <y(p).
As a result, objective function in Equation 7 can be trans-

formed to the following quadratic optimization problem

min
S

∑
p

(Sp − Ip)2 + β((∂xSp − ηp)2 + (∂ySy − γp)2), (9)

where η, γ are auxiliary variables that depend solely on φ, ρ

(ηp, γp)=

{
(0, 0) (φp, ρp) = (0, 0),
(∂xSp, ∂ySp) (φp, ρp) = (<x(p),<y(p)).

(10)

Algorithm 1 depicts pseudocode for this minimization pro-
cess. Since Equation 9 converges to the solution to Equa-
tion 7 and is a quadratic function, our optimization has a
closed-form solution. Results from different iterations are
shown in Figure 4.
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Algorithm 1 Structure Retrieval via L0 Minimization
1: Input: image I , smoothing weight λ, detail scale σ,

parameters β0, βmax.
2: Initialization: S(0) ← I , β ← β0, i← 0
3: repeat
4: Compute < from S(i) at each pixel p.
5: Find φp and ρp in Eq. 6.
6: Using φp and ρp, compute ηp and γp in Eq. 10.
7: Using ηp and γp, minimize Eq. 9 for S(i+1).
8: β ← 2β, σ ← σ/2, i++.
9: until β > βmax

10: Output: resulting image S

(a) Input (b) Iter 5 (c) Iter 15

Fig. 4. Results at different iterations. σ = 3, λ = 0.005. Input image
from Pinterest user Community of Jesus.

3.2 Analysis

Parameters. Our method has two main parameters: σ (de-
fined in Equation 3), which determines the spatial scale
of texture/feature, and λ, which controls the amount of
smoothing. The influence of increasing σ and λ is demon-
strated in Figure 8. As shown in the figure, σ is the
key parameter to distinguish salient structures from tex-
ture/details. We use tunable ranges of parameters for σ ∈
[1, 5] and λ ∈ [0.001, 0.005] in all the experiments. In our
method, we decrease σ at each iteration by setting σ = σ/2
since we found that gradually decreasing σ helps to produce
sharper edges.
Convergence. Our L0 optimization has a closed-form so-
lution at each step and reduces the error since both of the
subproblems to solve for φ and ρ in Equation 5 and the
sub-problem to solve for S in equation 9 have closed-form
solutions. In practice, we only perform a finite number of
iterations.
Implementation. In terms of timings, our algorithm took 10
to 30 iterations to produce the results in the paper. In each
iteration, most of the computation time is spent calculating
< and on solving for S in Equation 9, which we accelerate
using the Fourier Transform. When processing color images,
for each channel, we compute < and perform the L0 min-
imization process separately. The proposed method takes
about 5 seconds to process a 600 × 400 image with a single

channel on an Intel Xeon X5460 3.16GHz with 8GB memory.

4 EXPERIMENTS AND DISCUSSION

In all the experiments, we fine-tuned parameters for every
method. Unless stated otherwise, we use µ = 50, v = 400
for SDF [9] and k = 5 for RGF [8]. For BNN [13], we process
each image channel separately.

4.1 Texture Removal
Texture Type. We consider texture to be surface patterns
that are similar in appearance and local statistics [49],
which can be isotropic or anisotropic. Our method makes
no assumptions about the regularity, isotropic shape, or
uniformity of the textures. Figure 6 shows a comparison of
different methods that target texture removal on an image
containing multiple types of texture, both isotropic and
anisotropic. Scale-space filtering methods can be used for
texture removal as well, and the comparison in Figure 7
compares our method with texture removal methods as
well as scale-space filters on an image with irregular and
nonuniform textures.

L0 gradient minimization [12] is effective at sharpening
and preserving strong edges but the gradient-based formu-
lation prevents this method from removing high-contrast
texture patterns. RGF [8] can remove texture details, but
structures are over-smoothed as well. RGF [8] also results
in a bumpy output due to the locality of its computations.
SDF [9] has a better performance but still blurs certain
features.

The locality of Region Covariance [4] creates similar
results to the other local methods, causing a “halo” artifact.
BTF [3] can better preserve structure due to the patch shift
algorithm, but the method also fails to smooth the image
sufficiently in a global manner and blurs edges to some
extent. The classic total variation method [16] overblurs the
structure too much. Even though the Directional filter [14]
improves the edges preservation by filtering along the di-
rection of largest local total variation rate deduction, blurry
artifacts are still quite noticeable. BNN [13] cannot well
maintain edges as well. Tree Filtering [1] is a weighted-
average filter combining bilateral weights with a tree weight
and produces smoother result. However, it suffers from the
“leak” problem: certain major edges are corrupted. RTV
[7] performs detexturing as a global optimization. But our
method produces sharper edges while removing textures
more effectively than RTV [7]. Even though < is computed
locally, our smoothing process is a global L0 minimization,
which produces higher quality results. Additional results
produced by our method are included in the supplemental
materials.

4.2 Scale-space Filtering
By varying σ, which controls the size of feature, our method
can perform scale-based filtering as well. In figure 5, we
show comparisons of our method with the state of the
art on different smoothing scales. L0 gradient minimiza-
tion [12] and WLS [39] perform image smoothing by solving
a global minimization on gradients. Since these methods
are gradient-based operators, higher contrast features are
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(a) Input (b) WLS [39] (c) RGF [8] (d) RTV [7] (e) SDF [9] (f) Our

Fig. 5. Comparison of filtering based on scale. For all methods, parameters gradually increase from top to bottom. The last row shows the close-ups
of the specified regions in row 3, respectively. (b) WLS [39] λ = 5× 103, 3× 104, 2× 105, µ = 40. (c) RGF [8] σs = 4, 10, 40, σr = 0.05. (d) RTV [7]
σ = 4, 12, 20, λ = 0.02. (e) SDF [9] λ = 200, 1200, 3000.(f) Ours σ = 4, 12, 20, λ = 0.005. Input image from [9].

(a) Input (b) L0 Grad [12] (c) TV [16] (d) BNN [13] (e) Dir Filter [14]

(f) Tree Filter [1] (g) Reg Cov [4] (h) BTF [3] (i) RTV [7] (j) Our method

Fig. 6. Comparison with state-of-art detexturing methods on the Barbara image. Parameters: (b) λ = 0.03 (c) σ = 3 (d) γ = 0.1, λ = 0.5 (e) σ = 4
(f) σ = 0.05, σs = 4, σr = 0.03 (g) k = 9, σ = 0.3,Model2 (h) k = 5, nitr = 2 (i) σ = 2.5, λ = 0.01 (j) σ = 2.5, λ = 0.001.
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(d)

(a) Input (b) L0 [12] (c) RGF [8] (d) Tree Filter [1] (e) SDF [9]

(f) Reg Cov [4] (g) Dir Filter [14] (h) BTF [3] (i) RTV [7] (j) Our method

Fig. 7. Another comparison of our method with existing image smoothing and detexturing methods. (b) λ = 0.08 (c) σs = 5, σr = 0.05 (d)
σ = 0.02, σs = 2, σr = 0.05 (e) λ = 50, Gaussian kernel ([10, 10], 4) (f) k = 15, σ = 0.2, Model 1 (g) σ = 4 (h) k = 5, niter = 3 (i)
σ = 2, λ = 0.015 (j) σ = 2, λ = 0.002.

(a) Input (b) λ = 0.001, σ = 1.5 (c) λ = 0.002, σ = 1.5 (d) λ = 0.003, σ = 1.5

(e) Zoomed-in details (f) σ = 1.5, λ = 0.002 (g) σ = 2.5, λ = 0.002 (h) σ = 3.5, λ = 0.002

Fig. 8. The effect of parameters on our optimization. λ is the overall smoothing parameter and does not significantly affect high-contrast texture
removal (top row). σ distinguishes salient structures from textures (bottom row). Input image from Tidy.ro label Discover.
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(a) Input (b) L0 [12] (c) RGF [8] (d) RTV [7] (e) SDF [9] (f) Our method

Fig. 9. Another comparison on scale-space filtering at the resolution when the fence is removed. (b) λ = 0.08 (c) σs = 5, σr = 0.07 (d) λ =
0.01, σ = 4 (e) λ = 60, Gaussian kernal ([15, 15], 5) (f) λ = 0.001, σ = 4. Input image from [48].

always removed after lower contrast features without re-
gards to feature size. RGF [8] and SDF [9] are scale-based
separators. When increasing the smoothing parameters,
larger structures are gradually removed. RGF [8] tends to
shift/round off the structure edges while SDF [9] fixes the
problem by using joint static and dynamic guidance. Even
though SDF [9] is effective at localizing edges, it cannot
preserve low-contrast, large structure edges well. As shown
in figure 5(e), while the sunflowers in the foreground are
maintained, the clouds, which are apparently larger than
the flowers, are completely smoothed out. In addition, our
method better preserves the shape of the trees as shown
in figure 5 (row 4). Even though RTV [7] is not design for
scale-based filtering, we add it in the comparison since our
method is related to RTV. As shown, RTV [7] could smooth
images based on scale but over-blurs certain edges to a great
extent.

Another scale-space filtering comparison is shown in
Figure 9. L0 minimization fails to remove the fine-scale
details of the fence at this resolution while losing some of
the coarser details in the image. Both RGB and RTV remove
fine-scale features but blur edges significantly. SDF performs
well but still blurs some of the edges of the church. In
contrast, our approach removes fine-scale details without
blurring sharp edges.

4.3 Comparision with L0 Gradient [12] and RTV [7]
As shown in Section 3.1, we solve the strucure retrieval
problem in an l0 minimization manner whereas the large
image gradient in these textured regions effectively prevents
the original L0 gradient minimization [12] from removing
these textures/features as demonstrated in Figure 6, 7
and 9.

Compared to RTV, our method better preserves sharp
edges when eliminating texture patterns/details due to the
used of the L0 norm. In Figure 1, we show RTV results with
varying λ. Similar to our method, RTV produces smoother
result with larger λ. However, certain edges are smoothed
out gradually as well. For fairness, we use the same σ for

RTV and our method to process each test image and turning
the smoothing parameter λ to produce the best results for
both methods. λ is chosen based on the minimum principle,
which is to take the minimal value that can completely
removal texture patterns. Note that scale of λ in RTV and
our method are different. For all the examples, we choose [
0.01, 0.03 ] for RTV as instructed by the original paper [7]
and [ 0.001, 0.005 ] for our method. As shown in all the
examples, our method can better maintain salient edges
than RTV [7].

5 APPLICATIONS

Texture smoothing is a useful tool of image editing and can
have various applications. In this section, we show various
applications including edge enhancement/simplification,
clip-art artifact removal, and inverse halftoning.

5.1 Edge Simplification and Enhancement

Images, especially natural images, may contain trivial high-
contrast texture/details/noises, which are not useful for
humans to perceive the image content and potentially hin-
der edge detection operators from extracting meaningful
edges. Edge simplification is an important pre-processing
tool whose applications include image abstraction, segmen-
tation, scene understanding, and shape matching to name a
few.

Our method is capable of enhancing and simplifying
edges. By reducing these trivial details, our method can
help to produce clean edge maps. In figure 10, we apply
the sobel edge detection operator to the result of various
image smoothing methods. All of the filters improve the
performance of the sobel edge detector in some ways.
Among the methods, SDF [9] and our method have the
best performance. Note that SDF completely removed the
low-contrast large structure (figure 10(e)) and blurs some
of the structure edges when details are fully smoothed
(figure 10(k)).
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(a) Input (b) Tree Filter (c) BTF, k = 3 (d) RTV, σ = 2.5 (e) SDF, λ = 200 (f) Our, σ = 2.5

(g) L0 Gradient (h) WMF (i) BTF, k = 5 (j) RTV, σ = 3.5 (k) SDF, λ = 500 (l) Our, σ = 3.5

Fig. 10. Comparison on Edge detection and Simplification. Other parameter settings are: σs = 3, σr = 0.03, σ = 0.1 for tree filter, nitr = 3 for BTF,
λ = 0.01 for RTV, λ = 0.03 for L0 gradient minimization, r = 5, σ = 300 for WMF and λ = 0.003(f), 0.005(l) for our method. Input image from [9].

(a) Input (b) RGF [8] (c) SDF [9] (d) Reg Cov [4] (e) BTF [3] (f) Our

Fig. 11. Application of inverse halftoning. Input image from Digital Anarchy.

5.2 Clip-Art Compression Artifact Removal

Lossy compressed cartoon images may contain severe arti-
facts. However, these cartoon images are often piecewise
constant color before compression, and compression ar-
tifacts correlate with edges in the image. General image
smoothing and denoising methods are not suitable to re-
move these artifacts [12] and will blur otherwise sharp
boundaries. To remove these compression artifacts, [50]
used a prior training procedure. In contrast, our method
can faithfully reduce these artifacts without a prior learning
process. Thanks to the L0 minimization framework, both the
traditional L0 gradient minimization method [12] and our
method demonstrate impressive results in this application.
But when the artifacts have higher contrast, edges could
by smoothed by the traditional L0 gradient method. How-
ever, small high-contrast details have little influence on our

method, and thus our method can produce sharper edges
than the L0 gradient method. A comparison of different
methods on this application is shown in Figure 12.

5.3 Inverse Halftone
Our method can also be applied to perform inverse halfton-
ing, which aims at removing stipple dots from the halftone
image. Although our method is not design to solve this
problem, it demonstrates good performance in terms of
keeping structures while reducing the dots. We show an
inverse halftoning application in Figure 11. RGF suffers
from “bumpy” artifacts and rounded features while SDF
removes the shading on the face. Both reg cov [4] and
BTF [3] applied their approaches to solve this problem, but
our methods better preserves transitions along edges and
maintains more details and shading.
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(a) Input (b) SDF (c) L0 Grad

(d) BTF (e) RTV (f) Our

Fig. 12. Comparison on removal compression artifacts from cartoon
images. Parameters: (b) λ = 30 (c) λ = 0.03, (d) k = 3, nitr = 5
(e) σ = 2, λ = 0.015,(f) σ = 2, λ = 0.0025. Input image from [7].

6 CONCLUSION AND LIMITATIONS

To conclude, we have presented a method to retrieve salient
structure. By incorporating an L0 minimization with a mod-
ified form of the RTV metric, we demonstrate our method’s
ability in detexture and scale-space filtering.

Our method does have some limitations, which cannot
handle images with small-scale features. When an image
contains fine details comparable to textures in size, our
method could fail because < may fail to distinguish such
details from textures. However, this failure is also the rea-
son our method performs well when used for scale-based
filtering.
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