
Eurographics Symposium on Geometry Processing 2017
J. A. Bærentzen and K. Hildebrandt
(Guest Editors)

Volume 36 (2017), Number 5

Isometry-Aware Preconditioning for Mesh Parameterization

S. Claici,1 M. Bessmeltsev,1 S. Schaefer,2 and J. Solomon1

1MIT, CSAIL, Cambridge, USA
2Texas A&M University, College Station, USA

O
ur

m
et

ho
d

[R
PP

SH
17

]

Iteration 5 Iteration 10 Iteration 20

Figure 1: Comparison of our method against SLIM [RPPSH17] on a particularly challenging test case. Both methods were run for 20
iterations. The first two columns show the mesh and initial parameterization shared by both methods. The remaining columns show the UV
maps obtained by our algorithm (top) and SLIM (bottom) at iterations 5, 10, and 20. Our AKVF preconditioner converges quickly to a
distortion error near the lower bound, while SLIM makes slow progress after the first few iterations. For detail, we show a zoomed-in version
of the SLIM parameterization at each iteration. Unlike SLIM, we do not require Newton iterations to reach the global optimum.

Abstract
This paper presents a new preconditioning technique for large-scale geometric optimization problems, inspired by applications
in mesh parameterization. Our positive (semi-)definite preconditioner acts on the gradients of optimization problems whose
variables are positions of the vertices of a triangle mesh in R2 or of a tetrahedral mesh in R3, converting localized distortion
gradients into the velocity of a globally near-rigid motion via a linear solve. We pose our preconditioning tool in terms of
the Killing energy of a deformation field and provide new efficient formulas for constructing Killing operators on triangle and
tetrahedral meshes. We demonstrate that our method is competitive with state-of-the-art algorithms for locally injective param-
eterization using a variety of optimization objectives and show applications to two- and three-dimensional mesh deformation.

1. Introduction

Mesh parameterization is a fundamental member of the geometry
processing toolkit for computer graphics. Among other applica-
tions, parameterization is critical for texture mapping, remeshing,
decimation, and attribute transfer.

From a geometric standpoint, the language of discrete differen-
tial geometry suggests elegant formulations of mesh parameteri-
zation objective functions. As a result, the objectives optimized
by modern parameterization algorithms are endowed with both
smooth and discrete interpretations. These interpretations allow the
objectives to be understood as discretized adaptations of continuous

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

S. Claici, M. Bessmeltsev, S. Schaefer & J. Solomon / Isometry-Aware Preconditioning for Mesh Parameterization

quantities on a smooth surface as well as purely discrete measures
of triangle distortion.

With this geometric sophistication, however, comes demand for
complex optimization algorithms. From an optimization stand-
point, parameterization problems involve minimization of non-
convex objectives measuring distortion of a map into the plane
as well as bijectivity constraints preventing triangles from flip-
ping over. These problems are highly structured, generally built
from triplet terms reflecting the topology of the underlying triangle
mesh. Moreover, the parameterization objectives may exhibit spe-
cial properties like rotation invariance, which present challenges
for generic optimization tools.

In this paper, we take inspiration from recent preconditioners
that accelerate first-order (gradient-based) optimization for mesh
parameterization [SS15, KGL16, RPPSH17]. We formulate a new
preconditioner specifically designed for parameterization prob-
lems, using the language of vector field design. Our precondi-
tioner is built from the intuition that a triangle with zero distortion
should be moved rigidly as the parameterization is updated else-
where on the mesh. We formalize this idea using the framework
of approximate Killing vector fields (AKVFs) on two-dimensional
shapes [BCBSG10, SBCBG11a].

Our method achieves state-of-the-art performance on challeng-
ing parameterization tasks. To accelerate application of our precon-
ditioner in each iteration, we present a simple formula for assem-
bling KVF operators directly from mesh geometry. From a theoret-
ical standpoint, we present a Riemannian interpretation of our pre-
conditioner, showing how the preconditioner navigates the space
of mesh parameterizations endowed with a natural metric. Beyond
mesh parameterization, we show how an analogous operator can
precondition problems on tetrahedral meshes and demonstrate its
application to deformation of volumetric objects.

Contributions. This paper contributes several new ideas to pa-
rameterization and related optimization problems in geometry. We
stress that our method matches or exceeds the performance of ex-
isting methods [KGL16,RPPSH17] while enjoying additional theo-
retical understanding and a remarkably simple matrix construction.
Specific contributions include the following:

• A positive (semi-)definite, rotation-invariant preconditioner for
gradient fields that penalizes non-isometric deformations and is
suited to minimization problems involving distortion energies
• Simple, easy-to-code, closed-form expressions for our precondi-

tioner both in the planar and volumetric cases in terms of ba-
sic mesh elements, which can be assembled in parallel with-
out matrix multiplication [SBCBG11a] or per-element eigenvec-
tor/SVD computation [RPPSH17]
• Interpretation of our preconditioner as the gradient with respect

to a natural AKVF-based metric on the “space of parameteriza-
tions” of a mesh with fixed topology
• Application of our method to mesh parameterization problems,

with improved performance over state-of-the-art
• Application to volumetric problems over tetrahedral meshes

2. Related Work

2.1. Mesh Parameterization

Surface parameterization is a fundamental and well-studied prob-
lem in computer graphics. We refer the reader to several surveys
for more complete background [FH05, SPR06].

Early work on parameterization concentrated on solving linear
systems of equations to find parameterizations. These solutions,
however, typically require constrained boundaries [Tut63, Flo97]
to guarantee locally injective parameterizations or suffer from ex-
cessive shrinking [LPRM02]. Hence, more recent work has con-
centrated on nonlinear problems that produce high-quality parame-
terizations.

As-rigid-as-possible parameterization (ARAP) [LZX∗08a] uses
a local-global optimization approach to optimize a measure of iso-
metric distortion. This algorithm involves repeatedly finding the
best rigid transformation for each triangle and stitching the trian-
gles together through a global, linear system of equations. This
choice of objective function, however, does not guarantee that the
parameterization is locally injective. Other nonlinear metrics guar-
antee that the parameterizations will be locally injective with the
use of an appropriate interior point solver. Examples include mea-
sures of conformal distortion [HG00,DMK03] as well as measures
of isometric distortion [SCOGL02,APL14]. We concentrate on the
symmetric Dirichlet energy [SS15] here for its high-quality results
and simple expression, although our preconditioner applies to any
rotationally-invariant distortion energy.

Minimizing such nonlinear distortion measures requires nonlin-
ear optimization procedures, and a variety of such methods have
been proposed in the past. Hormann and Greiner [HG00] utilize
a single-vertex-at-a-time update to guarantee injective parameter-
izations, though such an optimization is slow in practice. Fu et
al. [FLG15] employ a highly-parallel version of localized gradient
descent to obtain reasonable optimization times. Smith and Schae-
fer [SS15] use LBFGS coupled with an explicit bound on the line
search to guarantee a bijective parameterization. Other algorithms
optimize for injective parameterizations with bounded distortion
through a change of basis utilizing edge lengths [CLW16] or affine
transformations [FL16]. Sheffer et al. [SLMB05] propose a hierar-
chical method for conformal distortion.

More recently, several researchers have developed optimization
techniques specific to rotationally-invariant metrics. Kovalsky et
al. [KGL16] use a Newton-like algorithm for rotationally invariant
functions that can be written as a quadratic energy whose Hessian
is the mesh cotangent Laplacian [PP93] plus a nonlinear correction
term. The search direction for this nonlinear method is obtained by
applying the inverse of the Laplacian, which is constant from iter-
ation to iteration, to the negative gradient direction of the full en-
ergy function. Such a modification significantly decreases the num-
ber of iterations needed to converge versus a naïve quasi-Newton
method [SS15]. Our method resembles this approach, but we utilize
the inverse of the KVF operator for the current parameterization in-
stead of the Laplacian of the 3D mesh.

Rabinovich et al. [RPPSH17] employ a modified version of
ARAP to optimize rotationally-invariant energies. The idea is to
modify the local-global approach of ARAP to reweight an ARAP

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

S. Claici, M. Bessmeltsev, S. Schaefer & J. Solomon / Isometry-Aware Preconditioning for Mesh Parameterization

proxy energy such that the gradient of the reweighted energy is the
same as the gradient of the parameterization objective. Their algo-
rithm minimizes this proxy to obtain a search direction for the non-
linear optimization. The result is a very fast optimization method
that can be applied to massive meshes. We compare our results with
this technique in §6.

These ideas bear similarity to Sobolev gradient meth-
ods [MJBC13, RN95]; specifically, preconditioning via the Lapla-
cian can be seen as a gradient in the Sobolev space H1. If the energy
functional lies in a Sobolev space Hn, using the associated Sobolev
gradient may lead to better performance, since the Sobolev gradient
maintains smoothness of the functional. These methods, however,
are agnostic to the underlying task and, to our knowledge, have not
been applied to mesh parameterization.

2.2. Killing Vector Fields

Our preconditioner for mesh parameterization is constructed by
approximating optimization gradients with Killing vector fields
(KVFs). The idea of computing approximate Killing vector fields
(AKVFs) first appeared in the geometry processing literature
in [BCBSG10], in the context of vector field design on surfaces.
This approach, specialized to the case of two-dimensional shapes
in the plane, was applied by Solomon et al. [SBCBG11a] to planar
deformation; it is their discretization of the AKVF operator that we
use for parameterization, although we contribute a novel formula
that accelerates matrix construction.

Alternative AKVF discretizations include [ABCCO13,
AOCBC15], which use functional maps [OBCS∗12] to rep-
resent AKVFs as differential operators, and [dGLB∗14], which
builds a discrete theory of 2-tensor fields on triangulated polygons
in the plane using an edge-based representation. Some papers have
considered alternative discretizations and applications for AKVFs.
Solomon et al. [SBCBG11b] use AKVFs to partition surfaces
into parts with intrinsic symmetries, and Tao et al. [TSB16]
use AKVFs on a voxel grid to track moving level set surfaces.
AKVF-type operators also appear in approximately developable
deformation [KMP07], fluid simulation [NVW12], and nonrigid
registration for microscopy [CW13].

AKVF computation more broadly is a task in vector field design.
See recent surveys by de Goes et al. [dGDT15] and Vaxman et
al. [VCD∗16] for summaries of recent work in this area.

2.3. Manifold Approaches to Shape Analysis

We motivate our preconditioner as a gradient in the “manifold of
mesh parameterizations,” isomorphic to the (2|V |−3)-dimensional
space of vertex positions modulo rigid motion. This idea of defin-
ing a Riemannian metric in shape space has appeared in previous
works across a few communities. In computer graphics, this ap-
proach appears in work on shape interpolation including [KMP07],
which defines Riemannian metrics for triangle stretching in shape
interpolation, and [HRWW12], which interpolates between sur-
faces using a metric inspired by thin-shell deformation. Other ap-
pearances of a similar idea include applications to image registra-
tion [DGM98], volumetric shape deformation [FW06], 2D curve

(a) Base shape

(b) Gradient (c) Gradient displacement

(d) Laplacian gradient (e) Laplacian displacement

(f) KVF gradient (g) KVF displacement

Figure 2: Motivation for our preconditioner: let the bent rod (b)
be our initial parameterization of (a). Most individual faces have
0 distortion. By linearity, the gradient will be non-zero only at the
vertices adjacent to the deformed faces, which leads to non-rigid
motion. In contrast, our AKVF preconditioner aims to maintain a
search direction that is as isometric as possible. The preconditioned
gradient of (f) seeks to “un-bend” the parameterization back into
a rectangle. We observe similar behavior, though less pronounced,
when using the mesh Laplacian as a preconditioner in (d) and (e).

deformation [MM04], surface registration [BB11], and manipula-
tion of parameterized surfaces [KKDS10, KKG∗12].

3. Preliminaries and Motivation

As motivation for our work and to establish notation, we will con-
sider a simple example illustrated in Figure 2: the task of parame-
terizing a rectangular object (Figure 2(a)) in the plane.

If the mesh has vertices V and triangular faces F , following the
notation of Rabinovich et al. [RPPSH17] we can view parameteri-
zation algorithms as techniques for minimizing a functional

E(x) := ∑
f∈F

Â fD(J f (x)). (1)

Here, x∈R2|V | encodes the positions of all points in the parameter-
ization, Â f ∈R+ is the area of the undistorted triangle f , J f ∈R2×2

is the Jacobian of the affine deformation of the triangle f ∈ F mod-
ulo a rigid transformation of the triangle from 3D to the plane, and
D : R2×2→ R is a distortion measure per triangle. Intuitively, (1)
states that the distortion of mapping a mesh into the plane is the
sum of the distortions of its individual triangles.

Examples include the as-rigid-as-possible energy [LZX∗08b]

DARAP(J f (x)) := ‖J f (x)−R(J f (x))‖2
Fro,

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

S. Claici, M. Bessmeltsev, S. Schaefer & J. Solomon / Isometry-Aware Preconditioning for Mesh Parameterization

where R(·) projects onto the closest rotation matrix, and the flip-
preventing symmetric Dirichlet energy [SAPH04, SS15]

D(J f (x)) := ‖J f (x)‖2
Fro +‖J−1

f (x)‖2
Fro. (2)

First-order techniques iteratively improve a parameterization
from an initial guess x0 by moving along the negative gradient
−∇xE(x). By linearity, the gradient of Equation 1 is

∇xE(x) = ∑
f∈F

Â f∇xD(J f (x)). (3)

As an extreme example of what can go wrong, suppose x0 is a
bent bar in the example in Figure 2. Here, most triangles undergo
only rotation from 3D to 2D, and hence their distortion is zero,
yielding ∇xD(J f (x)) = 0. The weighted sum (3) is comprised of
a few terms involving vertices adjacent to distorted triangles. This
leads to a sparse gradient field, as in Figure 2(b).

Minimizing E(·) will seek to “un-bend” x0 back into a rectangle.
But if we search along−∇xE(x), this does not happen. Rather, we
would only move the vertices adjacent to distorted triangles (Fig-
ure 2(c)). The gradient disregards the fact that if we displace the
distorted vertices alone, their neighbors become distorted instead.
What we would prefer is a near-rigid motion of the undistorted ver-
tices whose velocity shown in Figure 2(f) yields a smooth shape as
in Figure 2(g).

Our preconditioner transforms vector fields like the one in Fig-
ure 2(b) to fields like the one in Figure 2(f) using the Killing oper-
ator K(x). K(x) measures the deviation of a vector field on x from
being a rigid motion—specifically rotation or translation—so the
product −K(x)+∇xE(x) transforms the descent direction into an
approximately rigid motion when possible. Since K(x) is symmet-
ric and positive (semi-)definite, this transformation maps descent
directions to descent directions, preserving gradient descent (with
or without line search) as an effective means for optimization. The
null space of K(x) corresponds to rigid motions that can be ignored
in parameterization problems, as translating/rotating a parameteri-
zation does not affect its quality.

4. As-Killing-As-Possible Preconditioner

Our insight is that an operator proposed for shape deformation and
vector field design serves as an effective preconditioner for param-
eterization and related tasks. This operator is easily computed from
mesh geometry via new closed-form expressions we present below.

4.1. Motivation for Use in Parameterization

Suppose we are in the process of parameterizing a triangle mesh.
The vertex positions of the current parameterization are stored in
a vector x ∈ R2|V |. In an iteration, we might update x 7→ x+d for
some search direction d ∈ R2|V |. While d is a 2|V |-dimensional
vector, its role is different from x: whereas x determines a param-
eterization, d is a change in parameterization. That is, d lies in the
tangent space of the set of parameterizations. Note that d is a vector
field along the planar region determined by x; we interpret d as a
velocity field rather than a displacement field, under the assumption
it is small relative to x.

(a) [SS15] (b) [LZX∗08b] (c) [APL14]

0 10 20 30 40 50

−4

−2

0

Iteration

lo
g
(E

n
er
gy

)

AKVF
SLIM

0 10 20 30 40 50

−4

−2

0

Iteration

lo
g
(E

n
er
gy

)

AKVF
SLIM

(d) (e)

Figure 3: Minimizing isometric distortion energies for the Cow
model. Our preconditioner can be applied generally to any gra-
dient descent method. Here we show results after 100 iterations
using (a) the symmetric Dirichlet energy [SS15] (b) as rigid as
possible (ARAP) energy [LZX∗08b] (c) an isometric distortion en-
ergy [APL14]. In (d) and (e) we compare with SLIM using the
ARAP energy [LZX∗08b]; SLIM’s poor performance is a result of
ARAP’s performance near local minima.

Suppose we measure the magnitude ‖d‖ of d, such that large
changes in the parameterization correspond to d’s with large mag-
nitude. It is tempting to use the Euclidean norm ‖d‖2, but this ar-
guably is incorrect. In particular, any d representing a rigid motion
(rotation or translation) of x may be nonzero but does not affect the
parameterization and should be considered to have zero magnitude.
More broadly, a d encoding nearly-rigid motion likely should have
low magnitude, even if ‖d‖2 is large.

A vector field d is the velocity of a rigid motion exactly when its
Jacobian Jd ∈ R2×2 is antisymmetric. This gives rise to the Killing
energy of a vector field d [BCBSG10], defined as

‖d‖2
KVF :=

1
2

∫
Ω(x)
‖Jd + J>d ‖2

Fro dA, (4)

where Ω(x) ⊆ R2 is the planar region defined by the parameter-
ization x. Unlike ‖d‖2, the norm ‖d‖2

KVF vanishes any time d is
the velocity of a rigid motion. Since Jd is linear in d, the entire ex-
pression for ‖d‖2

KVF is quadratic in d, showing that we can write
‖d‖2

KVF = d>K(x)d for some symmetric, positive semidefinite ma-
trix K(x)∈R2|V |×2|V |. K(x) is the Killing operator associated with
the parameterization x.

4.2. Discretization and Efficient Construction

4.2.1. Planar Case

Although there are many mesh-based discretizations of vector
fields [dGDT15], our application must update x, and hence we
choose to represent d using one vector per vertex (d∈R2|V |). Iden-
tical to [SBCBG11a], we use first-order (piecewise-linear) finite

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

S. Claici, M. Bessmeltsev, S. Schaefer & J. Solomon / Isometry-Aware Preconditioning for Mesh Parameterization

p q

θ

e e′

f

x0 x1

x2

x3

c

b

a

(a) Triangle (b) Tetrahedron

Figure 4: Notation for AKVF operator.

elements (FEM) to compute the Killing energy (4) as a quadratic
form ‖d‖2

KVF = d>K(x)d.

To maximize efficiency, we must assemble K(x) from the pa-
rameterization x as quickly as possible. Whereas Solomon et
al. [SBCBG11a] assemble K(x) as a product of FEM matrices, we
employ an explicit formula. Hence we prove:

Proposition 1 For a triangle mesh, K(x) can be computed in 2×2
blocks corresponding to (x,y) coordinates as follows:

Kpq =

∑ f∼(p,q)

[
e′e>
4Â f
−(cotθ)I2×2

]
if p∼ q

−∑r∼p Kpr if p = q
0 otherwise.

(5)

Here, p∼ q indicates that p,q ∈ V are adjacent, and f ∼ (p,q) in-
dicates triangle f ∈ F is adjacent to edge (p,q) (at most two terms).
Figure 4(a) illustrates this notation where the edges e,e′, area A f ,
and angle θ are functions of x.

While the cross term in (5) is an outer product e′e>, the cotangent
term can be computed using an inner product cotθ = e>e′/2A f .

We will prove the following more general formula.

Proposition 2 For a discretization x of a n-dimensional manifold,
K(x) can be computed in n×n blocks corresponding to (x1, . . . ,xn)
coordinates as follows:

Ki j =

∑ f∼(i, j) A f

[
∇φ j∇φ

>
i +(∇φi ·∇φ j)In×n

]
if i∼ j

−∑k∼i Kik if i = j
0 otherwise.

(6)
Here φi is the piecewise linear basis function that is 1 at vertex i
and 0 elsewhere.

Proof Write an arbitrary vector v using linear interpolation func-
tions: v = ∑i viφi. The Killing operator energy for a single triangle
with vertices i ∈ {1,2,3} is given by

‖Kv‖2
Fro =

1
2

∥∥∥∥∑
i

vi∇φ
>
i +∇φivi

>
∥∥∥∥2

Fro
.

Using ‖A‖2
Fro = Tr(AA>), we expand to

‖Kv‖2
Fro =

1
2

Tr
(
∑
i, j
[(vi∇φ

>
i)(vj∇φ

>
j)
>+(∇φivi

>)(∇φ jvj
>)>

+(vi∇φ
>
i)(∇φ jvj

>)>+(∇φivi
>)(vj∇φ

>
j)
>]
)
.

Using Tr(AB)=Tr(BA) and pulling out scalar terms when possible,
we can simplify the above to

‖Kv‖2
Fro = ∑

i, j
vi
>(∇φ j∇φ

>
i +(∇φi ·∇φ j)In×n)vj,

which yields

Ki j =∇φ j∇φ
>
i +(∇φi ·∇φ j)In×n. (7)

To obtain the Killing operator for the entire mesh, we scale by area
weights and sum over all triangles.

Equation (6) gives a general form for the KVF operator for n di-
mensional embeddings and can be specialized to 2D (Equation (5))
and 3D (Equation (10)) with the inclusion of area (respectively vol-
ume) terms to account for non-uniform weighting. Specifically, the
individual terms in (6) match the terms in (5) and (10). We remark
on the similarity between our Equations (5) and (10), and the par-
tial differential operator that also minimizes an AKVF energy given
in [TSB16].

Different from [SBCBG11a], for parameterization applica-
tions we choose to integrate the piecewise-constant KVF energy
‖Jd + J>d ‖

2
Fro over the 3D surface rather than the 2D parameteriza-

tion. The intuition comes from the fact that we are deforming a 3D
surface into 2D in the parameterization. Small triangles in the pa-
rameterization will be given small weight if we integrate the KVF
energy over the parameterization. These triangles, however, may
correspond to large triangles in 3D and should affect the parame-
terization energy disproportionately as the energy is integrated over
the 3D triangles in (1). To make this modification, we simply scale

the quantities in (5) by Â f
A f

. We found that such a change increases
the performance of the preconditioner in practice.

4.2.2. Volumetric Case

We can extend the formula for K(x) to tetrahedral meshes embed-
ded in R3 as well, which is useful for optimization problems like
the ones documented in §6.2. First-order FEM still suffices, and our
vector fields are still defined on vertices. Now, the fields are inter-
polated piecewise-linearly from the vertices of a tetrahedral mesh
to the interiors of the tetrahedra.

To simplify notation, we first provide a 3×3 off-diagonal block
of the KVF operator for a single tetrahedron; the full KVF oper-
ator K(x) for a tet is 12×12 (four vertices, each with xyz coordi-
nates). Suppose a tet has vertices (x0,x1,x2,x3). As illustrated in
Figure 4(b), define

a := x1−x3 b := x3−x2 c := x2−x0
n1 := b×a n2 := b× c (8)

The block of K(x) corresponding to edge (x0,x1) is then

Kedge(x0,x1,x2,x3) :=
1

36Vol
[n2n>1 +(n1·n2)I3×3], (9)

where Vol denotes the (unsigned) volume of the tetrahedron.

With this notation in place, we provide a formula for assembling
the volumetric version of K(x):

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

S. Claici, M. Bessmeltsev, S. Schaefer & J. Solomon / Isometry-Aware Preconditioning for Mesh Parameterization

Proposition 3 For a tetrahedral mesh, K(x) can be computed in
3×3 blocks corresponding to (x,y,z) coordinates as follows:

Kpq =

 ∑(p,q,r,s)∈T Kedge(xp,xq,xr,xs) if p∼ q
−∑r∼p Kpr if p = q
0 otherwise.

(10)

Here, p∼ q indicates that p,q ∈V are adjacent, and T is the set of
tetrahedra.

4.3. Preconditioned Gradient

At this point we have developed a Riemannian-style approach to
parameterization. The “manifold of parameterizations” M is iso-
morphic to the set of x ∈ R2|V |, modulo rigid motion. The tangent
space is the set of vector fields d ∈ R2|V | endowed with the inner
product 〈d,d′〉x := d>K(x)d′.

Parameterization can be viewed as searching for x that mini-
mizes a distortion function E(x). To properly carry out gradient
descent on this manifold, we search along the Riemannian gradient
with respect to 〈·, ·〉x, defined as

∇KVFE(x) := K(x)+∇xE(x). (11)

Here, ∇x denotes the Euclidean (coordinate-wise) gradient typi-
cally used for optimization, and K(x)+ is the Moore–Penrose pseu-
doinverse of K(x). Here we require the pseudoinverse because K(x)
has a three-dimensional null space corresponding to x translation,
y translation, and rotation about the origin. Since K(x) is otherwise
full rank, applying this pseudoinverse can be accomplished using
standard sparse matrix factorization techniques.

5. Algorithm

Our approach for minimizing equation (1) uses the AKVF oper-
ator to formulate an efficient and easily-implemented algorithm.
Our proposed method, shown in Algorithm 1, starts from a feasible
initialization x0 and iteratively produces a sequence of approxima-
tions xk that are guaranteed to converge to a local minimum. We
describe each step of our algorithm in more detail below.

5.1. Iterative technique

Similar to [RPPSH17, KGL16], we solve a Newton-style system
using the AKVF operator as a proxy for the Hessian of our problem.
Specifically, if xk is the parameterization at iteration k, we generate
xk+1 satisfying

xk+1 = xk−αK+∇xE(xk).

It is important to note that the positive (semi-)definiteness of K
ensures that −K+∇xE(xk) will be a descent direction.

To avoid ill-conditioned gradients, we project out the three-
dimensional null space of K at each iteration. Since our precon-
ditioner is the Killing operator, the null space is known a priori as
two constant vectors corresponding to translation of the entire pa-
rameterization in the x or y axes, and a rotation vector about the
origin in R2|V | given by (y1, . . . ,yn,−x1, . . . ,−xn).

Algorithm 1: AKVF Parameterization
Input : A mesh M with vertices V and faces F .
Output: A parameterization x minimizing the Symmetric

Dirichlet energy.

x0 = Tutte(V, F)
Perform flap optimization
while ‖∇xE(xk)‖> ε do

Compute AKVF operator K
Compute∇xE(xk)

Let dk =−K+∇xE(xk)
Perform backtracking line search to find a step size α

xk+1 = xk +αdk

end

5.2. Computing the Search Direction

To find the Riemannian gradient∇KVFE(x) := K(x)+∇xE(x), we
solve a linear system for the search direction d:

K(x)d =∇xE(x). (12)

Instead of naïvely solving (12), we leverage our knowledge of K to
improve performance. First, because K is positive (semi-)definite,
we can compute the pseudoinverse of K efficiently using algorithms
tailored for positive (semi-)definite matrices. In our implementa-
tion, we use PARDISO [PSLG14, PSA14] to leverage recent ad-
vances in multi-core parallel solvers. Second, while our operator
changes numerically from iteration to iteration, its sparsity pattern
is constant. This allows us to symbolically factorize the matrix only
once, significantly reducing computation time.

5.3. Line Search Parameters

At each step, we iterate xk+1 = xk +αdk, where α is a step size,
and dk is the search direction from §5.2. Ideally, we want an α

that does not cause any of the triangles in our parameterization to
flip orientation. Following [SS15], we define a maximal step size
αmax and perform backtracking line search for the optimal α within
[0,0.8αmax]. Specifically, we iteratively scale α

k := ρα
k−1 with

ρ = 0.9 and α
0 = 0.8αmax until we satisfy the first Wolfe condition

E(xk +α
kdk)≤ E(xk)+ c1α

k∇E(xk)T dk,

with c1 = 10−5.

5.4. Flap Optimization

In many cases there may be vertices along the boundary of the
parameterized surface that are adjacent to only one triangle. We
call the triangles that contain such vertices flap triangles. While
the error functions we minimize are nonlinear, flap triangles have
a closed-form solution for error functions that measure isometric
distortion. Let x0,x1,x2 ∈ R2 be vertices of a flap triangle where
x0 is contained by one triangle, which we call the flap vertex. Fur-
thermore, let x̂0, x̂1, x̂2 ∈ R3 be the corresponding locations of the
points on the 3D surface.

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

S. Claici, M. Bessmeltsev, S. Schaefer & J. Solomon / Isometry-Aware Preconditioning for Mesh Parameterization

Figure 5: The UV map obtained after running SLIM on the mesh
in Figure 1 for 500 iterations.

Assume the x1,x2 vertices are constrained. In this case, the Jaco-
bian J(x) that minimizes an isometric distortion will have singular
vectors that aligns with the constrained edge −−→x1x2 and its orthogo-
nal direction. The singular value corresponding to the constrained
edge will simply be |x1−x2|

|x̂1−x̂2| . The remaining singular value will have
a minimum of 1 for isometric distortion measures.

Using this information, we can derive the optimal location of x0

given x1,x2. Let β =
(x̂0−x̂1)·(x̂2−x̂1)
|x̂2−x̂1|2 and γ = |x̂0− x̂1−β(x̂2− x̂1)|.

Then the optimal location of x0 is

x0 = (1−β)x1 +βx2 +
γ

|x2− x1|
(x2− x1)

⊥,

where (x2− x1)
⊥ represents the rotation of the vector x2− x1 by

90 degrees in the plane.

While there are typically not many flap triangles in a parameter-
ization, we can identify them at the beginning of the optimization.
We apply this flap optimization after the initial Tutte embedding
to the unit disk to move each flap vertex to the optimal position
for the current parameterization. Experiments show that this sim-
ple trick reduces the number of iterations necessary to converge by
13% on average.

5.5. Convergence Criteria

Note that simply using the value of the function as a stopping
threshold is not sufficient to determine convergence. This phe-
nomenon is apparent from Figure 1 and its error graph in Figure 9.
While the error graphs of SLIM and AKVF appear similar after 10
iterations, Figure 1 demonstrates the actual parameterizations are
far from each other, which indicates the need for a more sophisti-
cated stopping criterion.

In §6, we use several convergence criteria. For our purposes, we
use the first order criterion ‖∇xE(x)‖ ≤ 10−5. However, in our
comparisons we have observed that competing methods falter when
close to the minimum, and thus we relax our criteria to either a fixed
number of iterates, or a weaker first order condition ‖∇xE(x)‖ ≤
10−3 when comparing with other methods.

6. Results

In this section we illustrate the utility of our preconditioner on a
variety of tasks where geometry-aware search directions are cru-
cial to obtain fast and effective solutions. We first showcase our
approach on 2D mesh parameterization, where we achieve state-of-
the-art performance on a variety of tasks ranging both in mesh and
geometric complexity, and then provide examples of AKVF-based
preconditioning for problems on tetrahedral meshes.

All methods are run on an i7-6700K at 4GHz running Ubuntu
14.04. All methods are implemented in C++11. We utilize all

0 10 20 30 40 50
1

2

3

4

5

6

Iteration

lo
g
(E

n
er
gy

)

AKVF
SLIM
AQP

0 5 10 15 20 25 30 35 40
1

2

3

4

5

6

Time (s)

lo
g
(E

n
er
g
y
)

AKVF
SLIM
AQP

(a) (b)

0 10 20 30 40 50
1

2

3

4

5

6

Iteration

lo
g
(E

n
er
gy

)

AKVF
SLIM
AQP

0 200 400 600 800 1,000
1

2

3

4

5

6

Time (s)

lo
g
(E

n
er
g
y
)

AKVF
SLIM
AQP

(c) (d)

Figure 6: Comparison with SLIM and AQP for larger meshes. The
mesh in (a) and (b) has 550K triangles, and the one in (c) and (d)
has 8.8M triangles. We observe improved performance for our KVF
preconditioner with increased mesh complexity both with respect to
the number of iterations and overall time to convergence.

0 10 20 30 40 50

2

4

6

Iteration

lo
g
(E

n
er
gy

)

AKVF
SLIM
AQP

Newton

0 10 20 30 40 50

2

3

4

5

Iteration

lo
g
(E

n
er
gy

)
AKVF
SLIM
AQP

Newton

Figure 7: Comparison with Newton’s method on a few meshes.
As observed in [RPPSH17] and [KGL16], Newton’s method has
poorer performance for mesh parameterization.

four cores when solving the sparse linear system in (12) using
the PARDISO solver. For a fair comparison with [RPPSH17] and
[KGL16], our method was implemented in the SLIM framework
provided by the authors and has only minor changes apart from the
preconditioner. We have reimplemented AQP in C++ within the
SLIM framework, as the original MATLAB version is significantly
slower. The results for AQP are accelerated using the acceleration
constant defined in [KGL16].

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

S. Claici, M. Bessmeltsev, S. Schaefer & J. Solomon / Isometry-Aware Preconditioning for Mesh Parameterization

6.1. 2D Parameterization

In what follows, we use the energy in (2) as our objective. Our
method can, however, be applied generally to any isometric distor-
tion energy (Figure 3).

Figure 9 showcases our method on nine meshes. The first col-
umn shows the parameterization obtained by our algorithm dis-
played as a UV color grid on the input mesh; the second column
displays the 2D UV map; the third column plots objective value as
a function of iterations; and the fourth column plots objective value
as a function of time. Our plots compare performance to state-of-
the-art algorithms for mesh parameterizations applied to the same
nonlinear objective function. In most cases, we achieve parameteri-
zations that approach or reach the lower bound deformation energy
within fewer than 100 iterations. This yields state-of-the-art per-
formance that is comparable to two currently available methods:
Scalable Locally-Injective Maps (SLIM) [RPPSH17] and Acceler-
ated Quadratic Proxy (AQP) [KGL16]. In addition, as highlighted
in Table 1, we always show faster convergence with respect to a
first order convergence condition than SLIM, which showcases the
effectiveness of the search directions recovered by our precondi-
tioner even in the region of the minimum.

We stress additionally that our method is significantly easier to
implement than SLIM as it requires only a simple, Laplacian-like
matrix construction (§4.2.1) that can be plugged into any standard
gradient descent algorithm.

While there are two meshes on which our method is somewhat
outperformed by SLIM (the camel head and hand in Figure 9), we
note that the gradient vector field of those parameterizations will
always be far from a rigid motion due to poor seam choice. Thus,
the parameterizations obtained by all algorithms have high distor-
tion error caused primarily by the vertices in the center of the initial
parameterization.

One particular advantage of our method is its performance when
the objective value is nearly minimal; in this case, reaching the full
minimum can still require large-scale motion of the parameteriza-
tion to pivot about a few deformed triangles.

As illustrated in Figure 1, our method outperforms SLIM on a
difficult test example with this property. We show our method on
the top row and SLIM on the bottom row. The first column shows
the initial parameterization. We use the same starting parameteriza-
tion as SLIM in this example to highlight differences. The follow-
ing columns show the parameterization at iterations 5, 10, and 20.
Our method and SLIM exhibit similar performance within the first
few iterations, achieving a large reduction in distortion error. How-
ever, we recover better search directions in the following iterations
and converge to the lower-bound energy value of 4. We continue
running SLIM until we reach 500 iterations (Figure 5), and while
more iterations improves the parameterization, it still has larger er-
ror than our parameterization after 10 iterations.

As we rely on a positive (semi-)definite preconditioner in a sim-
ilar vein to a quasi-Newton method, we can guarantee convergence
to a local minimum. Table 1 gives convergence times under a first
order convergence criterion given by ‖∇xE(x)‖ < 10−3. Notice
the discrepancy between the results reported in Table 1 and those
given in the performance plots of Figure 9. In our experiments, we

have frequently observed that beyond running 30 iterations, further
improvements are marginal and are not visible qualitatively.

In Figure 6, we compare with SLIM and AQP on significantly
larger meshes. Our method outperforms both SLIM and AQP on
larger meshes due to the simplicity of Equation (6) when compared
with SLIM, which has to solve 2×2 SVDs on each triangle of the
mesh. While our implementation of SLIM performs all SVDs in
parallel, the timing differences are still significant.

In Figure 7, we show a comparison with Newton’s method on
two meshes on which we observed good performance for New-
ton’s method. This method can get stuck if the Hessian is not pos-
itive semidefinite at a given iteration. We have chosen not to reg-
ularize by projecting on the space of PSD matrices. As observed
in [RPPSH17], regularization does not significantly improve the re-
sults. Confirming results in [RPPSH17,KGL16], our method vastly
outperforms Newton’s method on parameterization tasks.

6.2. 3D Deformation

AKVF-based preconditioning can be applied to volumetric mesh
deformation in a similar fashion to 2D parameterization. Here the
deformation energy measures the distortion from some tetrahedral
rest shape to its deformed shape, typically with point constraints.
We can use our operator defined in (10) to modify the search direc-
tion of the gradient of this volumetric error function as well.

We compare the performance of this volumetric approach on
the cube deformation example from [RPPSH17] with the same
source model and constraints. In this experiment, we minimize
the exponential Dirichlet energy augmented with a least-squares
term w∑x(xi − pi)

2. To make the comparison fair, identically to
SLIM we use Tikhonov regularization to precondition using the
matrix K(x)+cI; we reuse parameter values from their experiment
(w = 105,c = 10−4) as well as the same line search procedure.
Again to match the SLIM implementation, we invert our precondi-
tioner using the conjugate gradient (CG) method; we find that a 1%
tolerance is acceptable for CG convergence. Figure 8 demonstrates
the results on the experiment, in which we ran 100 iterations of each
method. The top row shows that the deformation results are qualita-
tively similar, while the bottom row demonstrates that performance
of the methods is comparable. In particular, our method and AQP
take similar amounts of time, while SLIM is slightly slower.

7. Discussion and Conclusion

Our results and theoretical development demonstrate that KVFs
find value not just in shape analysis but also for identifying struc-
ture in otherwise challenging optimization problems. As verified
in the experiments above, the KVF operator serves as a versatile
preconditioner agnostic to the details of a chosen objective func-
tion. This makes the KVF operator a reasonable “black-box” choice
for accelerating first-order optimization techniques involving ver-
tex positions, reducing the need to compute a potentially dense or
computationally expensive Hessian.

We foresee many additional applications of our machinery out-
side the ones tested in §6. For instance, physical simulation soft-
ware can require solution of complex variational problems for sta-

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

S. Claici, M. Bessmeltsev, S. Schaefer & J. Solomon / Isometry-Aware Preconditioning for Mesh Parameterization

Model #Faces #Vertices SLIM (s) AKVF (s)

Camel 3576 2032 10.76 0.127
Cow 5804 3195 9.296 0.207
Elephant 1796 1105 1.593 0.036
Hilbert Curve 9174 6120 8.319 0.176
Horse 39698 20636 22.92 1.560
Tricera 5660 3163 14.88 0.319
Sine Wave 4406 2339 0.470 0.065
Camel Head 22704 11381 13.97 3.052
Hand 4677 2356 34.34 13.05

Table 1: Time to reach convergence criterion ‖∇xE(x)‖ < 10−3.
We observe good performance close to the minimum using our
algorithm, and thus significantly reduced convergence time. We
achieve equal or lower distortion energy than SLIM in all exam-
ples.

0 20 40 60 80 100

6.5

7

7.5

8

8.5

Iteration

lo
g(

En
er

gy
)

AKVF
SLIM
AQP

0 20 40 60

6.5

7

7.5

8

8.5

Time (s)

lo
g(

En
er

gy
)

AKVF
SLIM
AQP

Figure 8: Comparison of our method against SLIM on a tetrahe-
dral deformation test case from their paper. Top row: deformation
results, SLIM (left) and ours (right).

ble implicit time-stepping [GSS∗15]. Automatic tools for interpo-
lating between frames of an animated mesh sequence similarly
must minimize objectives constructed out of nonconvex elastic
terms and could benefit from preconditioned acceleration [FB11,
HRWW12, HRS∗16].

A drawback of the preconditioners we have explored in this pa-
per is that they are defined for codimension-zero meshes, e.g. trian-
gle meshes in the plane or tetrahedral meshes in space. While KVFs
are most often described in intrinsic language, it may be that sim-
ilar differential equations seeking infinitesimal isometries of poly-
hedra or shell surfaces, e.g. the one considered in [HWAG09], can
be used to extend our preconditioning technique to triangle meshes
in R3 and other important cases for geometry processing.

The description of our technique in Riemannian language in §4.3
suggests potential avenues for improved optimization. In particular,

while our search direction is chosen as the Riemannian descent di-
rection, the subsequent line search is not along a geodesic with re-
spect to the KVF metric. Such a geodesic is likely complicated (and
related e.g. to geodesics in the space of elastic shells [RW13]), but
it may be possible to extend line search to search along circles or
curved arcs like the logarithmic spirals in [SBCBG11a]. The chal-
lenge here will be to approximate geodesic curves in the space of
parameterizations with the KVF metric while staying in a space
simple enough for efficiency purposes.

Specifically for mesh parameterization, a critical next-step will
be automatic computation of seams dividing the surface into disk
patches to be parameterized. This challenging problem involves
minimizing distortion of the mapped patches, choosing an appro-
priate topology for the set of cut curves, and consideration of artis-
tic constraints involving the visibility of the seams on the surface
as it is rendered.

Even without these improvements, KVF-based preconditioning
stands as a simple way to improve the efficiency of numerical tech-
niques in geometry processing. We anticipate this preconditioner
will serve as a tool in the rapidly-developing numerical toolbox for
shape-based optimization problems.

Acknowledgments This work was supported in part by NSF
CAREER award IIS 1148976. J. Solomon acknowledges fund-
ing from an MIT Skoltech Seed Fund grant (“Boundary Element
Methods for Shape Analysis”) and from the MIT Research Sup-
port Committee (“Structured Optimization for Geometric Prob-
lems”), as well as Army Research Office grant W911NF-12-R-
0011 (“Smooth Modeling of Flows on Graphs”).

References
[ABCCO13] AZENCOT O., BEN-CHEN M., CHAZAL F., OVSJANIKOV

M.: An operator approach to tangent vector field processing. In Com-
puter Graphics Forum (2013), vol. 32, pp. 73–82. 3

[AOCBC15] AZENCOT O., OVSJANIKOV M., CHAZAL F., BEN-CHEN
M.: Discrete derivatives of vector fields on surfaces—An operator ap-
proach. ACM Trans. Graph. 34, 3 (2015), 29. 3

[APL14] AIGERMAN N., PORANNE R., LIPMAN Y.: Lifted bijections
for low distortion surface mappings. ACM Trans. Graph. 33, 4 (2014),
69:1–69:12. 2, 4

[BB11] BAUER M., BRUVERIS M.: A new Riemannian setting for sur-
face registration. In MICCAI Workshop on Mathematical Foundations of
Computational Anatomy (2011), pp. 182–193. 3

[BCBSG10] BEN-CHEN M., BUTSCHER A., SOLOMON J., GUIBAS L.:
On discrete Killing vector fields and patterns on surfaces. In Computer
Graphics Forum (2010), vol. 29, pp. 1701–1711. 2, 3, 4

[CLW16] CHIEN E., LEVI Z., WEBER O.: Bounded distortion
parametrization in the space of metrics. ACM Trans. Graph. 35, 6 (2016),
215:1–215:16. 2

[CW13] CHAN K. Y., WAN J. W.: Reconstruction of missing cells by a
Killing energy minimizing nonrigid image registration. In International
Conference of the IEEE Engineering in Medicine and Biology Society
(EMBC) (2013), pp. 3000–3003. 3

[dGDT15] DE GOES F., DESBRUN M., TONG Y.: Vector field processing
on triangle meshes. In SIGGRAPH Asia 2015 Courses (2015), p. 17. 3,
4

[dGLB∗14] DE GOES F., LIU B., BUDNINSKIY M., TONG Y., DES-
BRUN M.: Discrete 2-tensor fields on triangulations. In Computer
Graphics Forum (2014), vol. 33, pp. 13–24. 3

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

S. Claici, M. Bessmeltsev, S. Schaefer & J. Solomon / Isometry-Aware Preconditioning for Mesh Parameterization

[DGM98] DUPUIS P., GRENANDER U., MILLER M. I.: Variational
problems on flows of diffeomorphisms for image matching. Quarterly
of Applied Mathematics (1998), 587–600. 3

[DMK03] DEGENER P., MESETH J., KLEIN R.: An adaptable sur-
face parameterization method. In Proceedings of the 12th International
Meshing Roundtable (2003), pp. 201–213. 2

[FB11] FRÖHLICH S., BOTSCH M.: Example-driven deformations based
on discrete shells. In Computer Graphics Forum (2011), vol. 30,
pp. 2246–2257. 9

[FH05] FLOATER M. S., HORMANN K.: Surface Parameterization: a
Tutorial and Survey. Springer Berlin Heidelberg, 2005, pp. 157–186. 2

[FL16] FU X.-M., LIU Y.: Computing inversion-free mappings by sim-
plex assembly. ACM Trans. Graph. 35, 6 (2016), 216:1–216:12. 2

[FLG15] FU X.-M., LIU Y., GUO B.: Computing locally injective map-
pings by advanced MIPS. ACM Trans. Graph. 34, 4 (2015), 71:1–71:12.
2

[Flo97] FLOATER M. S.: Parametrization and smooth approximation of
surface triangulations. Computer Aided Geometric Design 14, 3 (1997),
231 – 250. 2

[FW06] FLETCHER T., WHITAKER R.: Riemannian metrics on the space
of solid shapes. In MICCAI Workshop on Mathematical Foundations of
Computational Anatomy (2006), pp. 47–57. 3

[GSS∗15] GAST T. F., SCHROEDER C., STOMAKHIN A., JIANG C.,
TERAN J. M.: Optimization integrator for large time steps. TVCG 21,
10 (2015), 1103–1115. 9

[HG00] HORMANN K., GREINER G.: MIPS: An efficient global pa-
rameterization method. In Curve and Surface Design: Saint-Malo 1999
(2000), pp. 153–162. 2

[HRS∗16] HEEREN B., RUMPF M., SCHRÖDER P., WARDETZKY M.,
WIRTH B.: Splines in the space of shells. In Computer Graphics Forum
(2016), vol. 35, pp. 111–120. 9

[HRWW12] HEEREN B., RUMPF M., WARDETZKY M., WIRTH B.:
Time-discrete geodesics in the space of shells. In Computer Graphics
Forum (2012), vol. 31, pp. 1755–1764. 3, 9

[HWAG09] HUANG Q.-X., WICKE M., ADAMS B., GUIBAS L.: Shape
decomposition using modal analysis. In Computer Graphics Forum
(2009), vol. 28, pp. 407–416. 9

[KGL16] KOVALSKY S. Z., GALUN M., LIPMAN Y.: Accelerated
quadratic proxy for geometric optimization. ACM Trans. Graph. 35, 4
(July 2016), 134:1–134:11. 2, 6, 7, 8, 11

[KKDS10] KURTEK S., KLASSEN E., DING Z., SRIVASTAVA A.: A
novel Riemannian framework for shape analysis of 3d objects. In Proc.
CVPR (2010), IEEE, pp. 1625–1632. 3

[KKG∗12] KURTEK S., KLASSEN E., GORE J. C., DING Z., SRIVAS-
TAVA A.: Elastic geodesic paths in shape space of parameterized sur-
faces. Proc. PAMI 34, 9 (2012), 1717–1730. 3

[KMP07] KILIAN M., MITRA N. J., POTTMANN H.: Geometric model-
ing in shape space. In ACM Trans. Graph. (2007), vol. 26, ACM, p. 64.
3

[LPRM02] LÉVY B., PETITJEAN S., RAY N., MAILLOT J.: Least
squares conformal maps for automatic texture atlas generation. In Pro-
ceedings of SIGGRAPH (2002), pp. 362–371. 2

[LZX∗08a] LIU L., ZHANG L., XU Y., GOTSMAN C., GORTLER S. J.:
A local/global approach to mesh parameterization. In Proceedings of the
Symposium on Geometry Processing (2008), pp. 1495–1504. 2

[LZX∗08b] LIU L., ZHANG L., XU Y., GOTSMAN C., GORTLER S. J.:
A local/global approach to mesh parameterization. In Computer Graph-
ics Forum (2008), vol. 27, pp. 1495–1504. 3, 4

[MJBC13] MARTIN T., JOSHI P., BERGOU M., CARR N.: Efficient
non-linear optimization via multi-scale gradient filtering. In Computer
Graphics Forum (2013), vol. 32, Wiley Online Library, pp. 89–100. 3

[MM04] MICHOR P. W., MUMFORD D.: Riemannian geometries on
spaces of plane curves. In J. Eur. Math. Soc. (2004). 3

[Neu85] NEUBERGER J.: Steepest descent and differential equations.
Journal of the Mathematical Society of Japan 37, 2 (1985), 187–195.

[NVW12] NITSCHKE I., VOIGT A., WENSCH J.: A finite element ap-
proach to incompressible two-phase flow on manifolds. Journal of Fluid
Mechanics 708 (2012), 418–438. 3

[NW06] NOCEDAL J., WRIGHT S.: Numerical Optimization. Springer,
2006.

[OBCS∗12] OVSJANIKOV M., BEN-CHEN M., SOLOMON J.,
BUTSCHER A., GUIBAS L.: Functional maps: a flexible repre-
sentation of maps between shapes. ACM Trans. Graph. 31, 4 (2012), 30.
3

[PP93] PINKALL U., POLTHIER K.: Computing discrete minimal sur-
faces and their conjugates. Experimental Mathematics 2 (1993), 15–36.
2

[PSA14] PETRA C. G., SCHENK O., ANITESCU M.: Real-time stochas-
tic optimization of complex energy systems on high-performance com-
puters. Computing in Science & Engineering 16, 5 (2014), 32–42. 6

[PSLG14] PETRA C. G., SCHENK O., LUBIN M., GÄRTNER K.: An
augmented incomplete factorization approach for computing the Schur
complement in stochastic optimization. SIAM J. Sci. Comp. 36, 2 (2014),
C139–C162. 6

[RN95] RENKA R. J., NEUBERGER J.: Minimal surfaces and Sobolev
gradients. SIAM J. Sci. Comp. 16, 6 (1995), 1412–1427. 3

[RPPSH17] RABINOVICH M., PORANNE R., PANOZZO D., SORKINE-
HORNUNG O.: Scalable locally injective mappings. ACM Trans. Graph.
36, 2 (2017), 16. 1, 2, 3, 6, 7, 8, 11

[RW13] RUMPF M., WIRTH B.: Discrete geodesic calculus in shape
space and applications in the space of viscous fluidic objects. Journal on
Imaging Sciences 6, 4 (2013), 2581–2602. 9

[SAPH04] SCHREINER J., ASIRVATHAM A., PRAUN E., HOPPE H.:
Inter-surface mapping. In ACM Trans. Graph. (2004), vol. 23, ACM,
pp. 870–877. 3

[SBCBG11a] SOLOMON J., BEN-CHEN M., BUTSCHER A., GUIBAS
L.: As-Killing-as-possible vector fields for planar deformation. In Com-
puter Graphics Forum (2011), vol. 30, pp. 1543–1552. 2, 3, 4, 5, 9

[SBCBG11b] SOLOMON J., BEN-CHEN M., BUTSCHER A., GUIBAS
L.: Discovery of intrinsic primitives on triangle meshes. In Computer
Graphics Forum (2011), vol. 30, pp. 365–374. 3

[SCOGL02] SORKINE O., COHEN-OR D., GOLDENTHAL R.,
LISCHINSKI D.: Bounded-distortion piecewise mesh parameteri-
zation. In Proc. Visualization (2002), pp. 355–362. 2

[SLMB05] SHEFFER A., LÉVY B., MOGILNITSKY M., BOGOMYAKOV
A.: ABF++: Fast and robust angle based flattening. ACM Trans. Graph.
24, 2 (2005), 311–330. 2

[SPR06] SHEFFER A., PRAUN E., ROSE K.: Mesh parameterization
methods and their applications. Found. Trends. Comput. Graph. Vis. 2, 2
(2006), 105–171. 2

[SS15] SMITH J., SCHAEFER S.: Bijective parameterization with free
boundaries. ACM Trans. Graph. 34, 4 (2015), 70. 2, 3, 4, 6

[TSB16] TAO M., SOLOMON J., BUTSCHER A.: Near-isometric level
set tracking. In Computer Graphics Forum (2016), vol. 35, pp. 65–77.
3, 5

[Tut63] TUTTE W. T.: How to draw a graph. Proc Lond Math Soc 13
(1963), 743–767. 2

[VCD∗16] VAXMAN A., CAMPEN M., DIAMANTI O., PANOZZO D.,
BOMMES D., HILDEBRANDT K., BEN-CHEN M.: Directional field
synthesis, design, and processing. In Computer Graphics Forum (2016),
vol. 35, pp. 545–572. 3

[WGTY04] WANG Y., GU X., THOMPSON P. M., YAU S.-T.: 3d har-
monic mapping and tetrahedral meshing of brain imaging data. Proc.
MICCAI (2004).

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

S. Claici, M. Bessmeltsev, S. Schaefer & J. Solomon / Isometry-Aware Preconditioning for Mesh Parameterization

0 10 20 30 40 50

2

4

6

Iteration

lo
g
(E

n
er
g
y
)

AKVF
SLIM
AQP

0 0.1 0.2 0.3 0.4 0.5 0.6

2

4

6

Time (s)

lo
g
(E

n
er
gy

)

AKVF
SLIM
AQP

0 10 20 30 40 50

2

4

6

Iteration

lo
g
(E

n
er
g
y
)

AKVF
SLIM
AQP

0 0.2 0.4 0.6 0.8

2

4

6

Time (s)

lo
g
(E

n
er
gy

)

AKVF
SLIM
AQP

0 10 20 30 40 50

2

3

4

5

Iteration

lo
g
(E

n
er
g
y
)

AKVF
SLIM
AQP

0 0.1 0.2 0.3 0.4

2

3

4

5

Time (s)

lo
g
(E

n
er
g
y
)

AKVF
SLIM
AQP

0 5 10 15 20 25

5

10

Iteration

lo
g
(E

n
er
g
y
)

AKVF
SLIM
AQP

0 0.2 0.4 0.6 0.8 1

5

10

Time (s)

lo
g
(E

n
er
gy

)

AKVF
SLIM
AQP

0 10 20 30 40 50

2

4

6

Iteration

lo
g
(E

n
er
gy

)

AKVF
SLIM
AQP

0 0.5 1 1.5 2 2.5 3

2

4

6

Time (s)

lo
g
(E

n
er
gy

)

AKVF
SLIM
AQP

0 10 20 30 40 50
1

2

3

4

5

6

Iteration

lo
g
(E

n
er
gy

)

AKVF
SLIM
AQP

0 0.2 0.4 0.6 0.8 1
1

2

3

4

5

6

Time (s)

lo
g
(E

n
er
gy

)

AKVF
SLIM
AQP

0 10 20 30 40 50

1.5

2

2.5

Iteration

lo
g
(E

n
er
gy

)

AKVF
SLIM
AQP

0 0.1 0.2 0.3 0.4 0.5

1.5

2

2.5

Time (s)

lo
g
(E

n
er
g
y
)

AKVF
SLIM
AQP

0 10 20 30 40 50

2

3

4

5

6

Iteration

lo
g
(E

n
er
gy

)

AKVF
SLIM
AQP

0 0.5 1 1.5 2

2

3

4

5

6

Time (s)

lo
g
(E

n
er
gy

)

AKVF
SLIM
AQP

0 10 20 30 40 50
2

4

6

8

10

Iteration

lo
g
(E

n
er
gy

)

AKVF
SLIM
AQP

0 0.2 0.4 0.6 0.8
2

4

6

8

10

Time (s)

lo
g
(E

n
er
gy

)

AKVF
SLIM
AQP

Figure 9: Summary of results on several test meshes using the symmetric Dirichlet energy. From left to right: a color grid showing the
parameterization recovered by our algorithm on the original 3D mesh; the 2D UV map of the parametrization; energy plotted against
iterations for our algorithm, SLIM [RPPSH17] and AQP [KGL16]; energy plotted against time for our algorithm, SLIM and AQP. We note
that the two meshes on which our method is outperformed by SLIM (the camel head and hand) are difficult to parameterize due to poor seam
placement.

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

