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Fig. 1. Top row shows example shapes made from the control points below. In all cases, local maxima of curvature only appear at the control points, and the
curves are G2 almost everywhere.

We present a method for constructing almost-everywhere curvature-continuous,

piecewise-quadratic curves that interpolate a list of control points and have

local maxima of curvature only at the control points. Our premise is that

salient features of the curve should occur only at control points to avoid the

creation of features unintended by the artist. While many artists prefer to

use interpolated control points, the creation of artifacts, such as loops and

cusps, away from control points has limited the use of these types of curves.

By enforcing the maximum curvature property, loops and cusps cannot be

created unless the artist intends for them to be.

To create such curves, we focus on piecewise quadratic curves, which

can have only one maximum curvature point. We provide a simple, iterative

optimization that creates quadratic curves, one per interior control point,

that meet with G2
continuity everywhere except at in�ection points of the

curve where the curves are G1
. Despite the nonlinear nature of curvature,

our curves only obtain local maxima of the absolute value of curvature only

at interpolated control points.
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1 INTRODUCTION
Curve modeling has a long history in computer graphics, �nding

use in drawing, sketching, data ��ing, interpolation, as well as ani-

mation. �is rich application space has led to decades of research

for both representing and modifying curves. �e goal of such curve

representations is to provide the user with control over the shape

of the curve while building a curve that has certain geometric prop-

erties. �ese properties may include smoothness, interpolation of

various points, and locality.

In this paper we focus on interpolatory curves; that is, curves

that interpolate their control points. While much research has

concentrated on approximating curves, many users prefer direct

control over salient geometric features of the curve such as the

position of the curve. Yet interpolatory curves have a maligned

past as they can o�en generate geometric features such as cusps

and loops away from control points that the user has a hard time

controlling (see Figure 2).

Our premise is that salient geometric features should appear only

at control points for interpolatory curves. Position is one such

example of a feature that is automatically enforced in interpolatory

curve constructions. However, the question is then: what other

features should appear only at control points? Levien et al. [Levien
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Fig. 2. Comparison of our result with otherC2 curves. From le� to right: 6-point interpolatory subdivision curve [Deslauriers and Dubuc 1989],C2 Catmull-Rom
spline [Catmull and Rom 1974], C2 interpolating cubic B-spline [Farin 2002], our curve.

and Séquin 2009] argue that points of maximal curvature are also

salient features. Indeed, we can see that lack of control of points of

maximal curvature has led to many of the historical problems with

interpolatory curve constructions. For example, the propensity to

produce cusps is due to a local maximum of curvature (in this case,

in�nite curvature) being produced away from the control points.

We propose to create interpolatory curves where the local maxi-

mum of the absolute value of the curvature of the curve only appears

at control points, which we call κ-curves. In addition, we build such

curves using piecewise quadratic curves that meet with G2
continu-

ity everywhere except at in�ection points, where the join is G1
. We

should point out that the primary application envisioned for these

splines is more for artistic design, as opposed to CAD. �us the

occasional lack of G2
continuity is not an issue. Also, because we

envision these curves to be controlled by artists, the curve should

change continuously under continuous motion of the control points.

�is last property is trivially satis�ed by many curve constructions,

but not all. For example, Figure 3 shows an example of continuous

movement of control points for a clothoid curve [Havemann et al.

2013] that produces a discontinuous change of the resulting curve.

2 RELATED WORK
�ere are large numbers of interpolatory curve constructions that

have been developed, and we cannot provide an exhaustive list but

refer to [Hoschek and Lasser 1993] for many such methods. Catmull-

Rom splines [Barry and Goldman 1988; Catmull and Rom 1974] are

one of the more common interpolatory curve representations and

are combinations of Lagrange interpolation with B-spline basis

functions. Subdivision curves [Deslauriers and Dubuc 1989; Dyn

et al. 1987] can also be used to model interpolatory splines. Cubic

splines, formed from approximating B-splines, interpolate points

with C2
continuity through the solution to a tridiagonal system

of equations [Farin 2002]. Di�erent parameterizations, such as

centripetal or chordal, can be used to control the shape of these

curves as well. In the case ofC1
Catmull-Rom splines, such a choice

can guarantee that no cusps appear except at control points [Yuksel

et al. 2011]. However, these results do not extend toC2
Catmull-Rom

splines. While all of these constructions build interpolatory curves,

even with curvature continuity, none allow control over curvature.

Figure 2 shows a comparison of many of these methods versus our

construction. Note that all of these curves create cusps or have local

maximum curvature points away from control points except for our

curve.

More related to our method are classes of curves that, not only

interpolate control points, but control curvature in some way. Hi-

gashi et al. [Higashi et al. 1988] restricted the locations of control

points of Bézier curve to obtain monotonic curvature and create a

C2
spline. “Class A” Bézier curves [Farin 2006; Mineur et al. 1998]

have monotonic curvature, but few degrees of freedom and can be

di�cult to control. Clothoids, also known as Euler spirals, [Have-

mann et al. 2013; McCrae and Singh 2009; Schneider and Kobbelt

2000] are perhaps the best known such curve. �ese curves have

the property that the curvature of the curve changes linearly with

respect to arc length. Hence, piecewise clothoid curves have local

maximum curvature magnitude at the interpolated points. Such

curves would be ideal for our purposes except that continuous

motion of the control points does not always create a continuous

deformation of the curve as is illustrated in Figure 3. Log-aesthetic

curves [Miura and Gobithaasan 2014; Miura et al. 2013; Yoshida

et al. 2009; Yoshida and Saito 2017] are similar to clothoids (indeed

clothoids are a special case) and have curvature plots that increase

exponentially with respect to arc length. Levein et al. [Levien and

Séquin 2009] also describe a two parameter spline family modulo

conformal transformations.

Fig. 3. Moving one control point continuously for a piecewise clothoid curve
can result in a discontinuous change in the curve as shown on the right
where the curve suddenly flips over.

In addition to controlling curvature, our method uses piecewise

quadratic curves that meet with G2
continuity. Most curve con-

structions require cubic curves to generate C2
or G2

curves, but G2

quadratic curves have appeared in the past. Schaback [Schaback

1989] created a piecewise quadratic G2
Bézier curve to interpolate

a list of non-in�ecting points. �is approach creates a quadratic

Bézier curve between interpolated points but tends to produce �at

curves at the interpolated points. Feng et al. [Feng and Kozak 1996]

modi�ed this approach and build aG2
quadratic curve to interpolate

a list of points with associated tangent directions where the end

points of each quadratic appear between interpolated points. Gu

et al. [Gu et al. 2009] used quadratic Bézier curves to interpolate a

list of points with arbitrary tangent directions with G1
continuity.
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Fig. 4. Cubic curves with di�erent number of local maximum curvature
points. From le� to right: a cubic curve with one, two, and three local
maximum curvature points highlighted in green.

Our approach to creating G2
quadratic curves di�ers from all these

approaches, and we develop an explicit solution of the join point

between two quadratics to enforce G2
continuity. In addition, we

consider the added condition that control points are interpolated at

maximal curvature magnitude locations.

3 GEOMETRIC CONSTRAINTS
We begin by considering the geometric properties that we require of

these curves. Speci�cally, given an ordered set of points p1 . . .pn ∈
R2

, we would like to construct a curvature continuous curve (G2

curve) such that the curve interpolates the pi ; that is, there exists

parameters ti such that p(ti ) = pi . We make the additional assump-

tion that these points form a closed curve and should be treated

cyclically (we relax this assumption in Section 4).

Furthermore, we would like any local maximums of the curvature

magnitude (the absolute value of curvature) to exist only at the pi .
�is last criterion is based on the assumption that points at which

the curve bends the most, at least locally, are salient features of the

curve and should be under direct control of the user. Notice that

this last property does not imply that the derivative of the curvature

magnitude must be zero at every pi . Hence, curvature may be

locally increasing or decreasing at a interpolated point pi . However,

if a maximum of the curvature magnitude exists, it appears at an

interpolated point.

3.1 Interpolation at Local Maximums of Curvature
Like many curve methods, we focus on piecewise polynomial curves

as our curve representation. We represent our curves in Bézier form.

Given a set of control points ci, j , the ith Bézier curve of degree d is

given by

ci (t) =
d∑
j=0

d!

(d − j)!j! (1 − t)
d−j t jci, j

where t ∈ [0, 1].
However, controlling curvature for polynomial curves is di�cult

at best. Cubic parametric curves can have three local maxima of the

curvature magnitude in any given segment. Figure 4 shows several

parametric cubic Bézier curves with the local maxima of curvature

magnitude highlighted. While “class A” Bézier curves exist [Farin

2006] and have monotonic curvature, they are extremely restrictive

and have few degrees of freedom.

Given that maximal curvature is so di�cult to control for poly-

nomial curves, we opt for an extremely simple representation for

our curves, which we construct out of piecewise quadratic Bézier

Fig. 5. The notation for our control points ci,0. . .2, interpolated input points
pi and the G2 join condition

curves; one curve (ci (t)) for each interpolated point pi . Individual

quadratic curves have the property that they possess at most one

point of maximum curvature, which is crucial for our application.

Let ci,0, ci,1, ci,2 ∈ R2
be the three control points for the quadratic

curve ci (t). �e curvature of this curve is given by

κi (t) =
det( ∂ci (t )∂t ,

∂2ci (t )
∂t 2
)

| | ∂ci (t )∂t | |3

=
∆(ci,0, ci,1, ci,2)

| |(1 − t)(ci,1 − ci,0) + t(ci,2 − ci,1)| |3
(1)

where ∆ gives the area of the triangle speci�ed by its arguments.

Taking the derivative of κi (t) and se�ing the equation equal to zero

gives the parameter ti for the point of maximal curvature in terms

of the Bézier coe�cients for the ith Bézier curve

ti =
(ci,0 − ci,1).(ci,0 − 2ci,1 + ci,2)
| |ci,0 − 2ci,1 + ci,2 | |2

. (2)

Now to construct a curve ci (t) such that ci (ti ) = pi , we will show

that, for any ci,0, ci,2, and pi , there exists a choice of ci,1 such that

pi is interpolated at the point of maximal curvature. Starting with

the condition

ci (ti ) = pi ,
we solve for the point ci,1 and obtain

ci,1 =
pi − (1 − ti )2ci,0 − t2

i ci,2

2ti (1 − ti )
. (3)

Substituting Equation 3 into Equation 2 results in a cubic equation

in terms of ti .

| |ci,2 − ci,0 | |2t3

i + 3(ci,2 − ci,0).(ci,0 − pi )t2

i

+(3ci,0 − 2pi − ci,2).(ci,0 − pi )ti − ||ci,0 − pi | |2 = 0. (4)

While this equation could have three real roots, which would mean

the solution is not unique, we show in Appendix A that this equation

has exactly one real root in [0, 1] for any choice of ci,0,pi , ci,2. Given

that there is exactly one root of this cubic, �nding the root is simple,

and there are many ways to do so. We use the exact formula for

roots of a cubic in our implementation. Even in the degenerate case

where all three points form a straight line (i.e; pi = (1 − α)ci,0 +
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αci,2), the cubic trivially has one root of ti = α . Once we have

ti , substituting this value into Equation 3 completes the quadratic

curve that interpolates pi at the point of local maximum curvature

magnitude.

3.2 Smoothness
While we have discussed a local construction for interpolating points

where the curve has maximum curvature magnitude, we aim to

piece these curves together to form a curvature continuous (i.e; G2

curve). Note that it is not possible to create a G2
everywhere curve

using piecewise quadratics if the sign of curvature changes along

the curve. �e reason is that quadratic curves cannot possess zero

curvature unless the curve is trivially a straight line. Hence, unless

our curves are strictly convex, we cannot hope to build piecewise

quadratic curves that are G2
everywhere.

Our compromise is to build piecewise quadratic curves that are

G2 almost everywhere. �e only place where our curves will lose

continuity of curvature will be at points where the curve changes

from convex to concave or vice versa. Hence, unlike standard spline

constructions, the geometric smoothness of our piecewise construc-

tion changes dependent on the geometry of the curve instead of how

the curve is decomposed into polynomial pieces. Conditions for

joining quadratic curves with G2
smoothness have been discussed

before [Schaback 1989]. However, given that it is not well known

that building curvature continuous quadratic curves is even possible,

we derive the conditions here and provide a closed-form solution,

which will then be part of our optimization in Section 4.

Our curves consist of one quadratic curve, with control points

ci,0, ci,1, ci,2, per interpolated pointpi . �eC0
continuity conditions

between curves are trivial and simply require that ci,2 = ci+1,0. G1

continuity is simple as well and requires that

ci,2 = (1 − λi )ci,1 + λici+1,1 (5)

where λi ∈ (0, 1).
ForG2

continuity, we consider the convex curve in Figure 5. Since

ci,2 is a linear combination of ci,1 and ci+1,1, the question is if there

is a choice of λi ∈ [0, 1] that leads to curvature continuity. G2

continuity requires κi (1) = κi+1(0). Using Equation 1 and writing

the G2
condition in terms of the control points and λi yields

∆(ci,0, ci,1, ci+1,1)
|ci,1 − ci+1,1 |3λ2

i
=

∆(ci,1, ci+1,1, ci+1,2)
|ci,1 − ci+1,1 |3(1 − λi )2

. (6)

�is condition creates a quadratic equation in terms of λi that has

exactly one root in (0, 1), which is

λi =

√
∆(ci,0, ci,1, ci+1,1)√

∆(ci,0, ci,1, ci+1,1) +
√
∆(ci,1, ci+1,1, ci+1,2)

.

When the convexity of the curve changes, the curve cannot be

G2
since quadratic curves cannot have zero curvature unless they

degenerate to a line. In this case, we choose λi by minimizing the

di�erence of the curvature magnitude squared

min

λi
(|κi (1)| − |κi+1(0)|)2.

Since the curvatures of are opposite signs, such a minimization is

equivalent to solvingκi (1)+κi+1(0) = 0 for λi . Using the expressions

Fig. 6. Iterations of our optimization showing convergence with control
points (black boxes) and maximum curvature positions (green dots). From
le� to right: our initial guess, a�er 1 iteration, a�er 2 iterations, and final
convergence a�er 30 iterations.

for curvature in Equation 6, we again �nd one root for the quadratic

equation in (0, 1) given by

λi =

√��∆(ci,0, ci,1, ci+1,1)
��√��∆(ci,0, ci,1, ci+1,1)

�� +√��∆(ci,1, ci+1,1, ci+1,2)
�� . (7)

Note that this equation is identical to the previous expression for λi
except for the absolute value. Hence, this expression uni�es both

cases. In the purely convex case, this choice of λi yields a G2
curve

whereas the curve is G1
when the convexity of the curve changes.

However, in this case, the absolute value of curvature (but not the

sign of curvature) matches at the join between curves.

�e above equations for for λi will be unde�ned if both triangle

areas in the denominators are zero, which can happen when enough

of the ci, j are co-linear or coincident. �is case can be robustly

handled by adding a small constant, ϵ = 10
−10

, to the square roots

of each such area.

4 OPTIMIZATION
Using the geometric conditions in Section 3, we combine these

conditions together to generate an optimization to �nd a curve

that satis�es these properties. To do so, we adopt a local/global

approach [Liu et al. 2008; Sorkine and Alexa 2007]. Our degrees of

freedom in the optimization are the o�-the-curve points ci,1 since

ci,2 = ci+1,0 by the C0
condition and ci,2 = (1 − λi )ci,1 + λici+1,1

by the G1
and G2

conditions.

Given the current solution for ci,0, ...,2, we perform a local step

and estimate the λi using Equation 7 and then update the ci,0 and

ci,2 using Equation 5. Next we compute the maximum parameters

ti from Equation 4. For the �rst iteration, we use the initial guess

that λi =
1

2
and ci,1 = pi . Using these locally computed values, we

assume the ti and λi are constant and solve a global, linear system

for the ci,1 such that (1) ci (ti ) = pi and (2) the constraints from

Equation 5 hold. �ese constraints lead to linear equations for each

pi in the unknowns ci−1,1, ci,1, ci+1,1 of the form:

pi = (1 − λi−1)(1 − ti )2ci−1,1 + λi t
2

i ci+1,1+

(λi−1(1 − ti )2 + (2 − (1 + λi )ti )ti )ci,1.
Solving this circulant, tridiagonal system of linear equations leads

to updated positions for the ci,1. We then repeat this solving process

until convergence.

�is optimization converges quickly and each iteration is fast

to compute since we only solve a small, sparse linear system of

equations. Figure 6 shows the progress of our optimization. A�er
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Fig. 7. Our curve (brown) shown with control points as block boxes. Green
points are positions of local maximal curvature magnitude. We also draw
the curvature normal for the curve (purple). Our curve is G2 everywhere as
shown in the highlighted region except at inflection points where the curve
is G1 and the sign, but not magnitude, of the curvature changes.

just one iteration, our result is very close to the �nal solution, but

some maximum curvature points do not coincide with control points

yet. A�er two iterations, the result is nearly indistinguishable from

our �nal result. Even for large curves with many control points,

our optimization yields results beyond interactive speeds due to its

simplicity. Furthermore, it is possible to make the optimization even

faster by starting with the results from the user’s previous control

point con�guration, although we have found such improvements to

be unnecessary.

4.1 Curves with Boundaries
Our discussion has concentrated on closed curves. Handling curves

with end-points is a simple modi�cation to our current approach.

Letp1...n be interior control points andp0, pn+1 be the end-points of

the curve. For the curve c1(t), which interpolates p1, we simply add

the requirement that c1,0 = p0. Likewise, we constrain cn,2 = pn+1.

Such a change makes sure that p0 and pn+1 do not appear at local

maximum curvature points, but instead are points of local minimal

curvature. Figure 9 shows an example of a curve with end-points

using this method.

5 RESULTS
Our curves are designed to have maximal curvature magnitude at

the control points pi . Figure 7 shows the control points as hollow

boxes and displays all local maxima of curvature magnitude as green

points on the curve. Hence, green points should appear within each

control point box for our curve. �ese are the points where the

curve, locally, bends the most. Despite its complex shape, no cusps

or loops exist in the curve. Figure 1 demonstrates shapes composed

Fig. 8. The red control point is not at a critical point of curvature, which is
decreasing. However, all local maxima of curvature magnitude appear at
control points.

of many curves. In all cases, local maxima of curvature magnitude

only appear at control points.

Figure 7 also displays the continuity of the curve through the

curvature normal (the normal whose length is proportional to cur-

vature of the curve at that point). For a curvature continuous (G2
)

curve, the magnitude of the curvature normal should change contin-

uously over the curve. �is is true for our curve everywhere except

at the in�ection points of the curve. At these points the curvature

normal �ips orientation but maintains the same magnitude.

Note that it is possible that a control point does not exist at a

maximum curvature point as demonstrated in Figure 8. In this case,

the curvature is decreasing at the highlighted point. However, all

points of maximum curvature magnitude appear at control points.

Unlike curves such as clothoids, continuous motion of the control

points results in continuous deformation of the curve. Clothoids use

estimates of curvature that change continuously with motion of the

control points. When moving from positive to negative curvature,

the curvemust pass through a point of in�nite positive curvature to a

point of in�nite negative curvature (a cusp) in order for the geometry

of the curve to change continuously. Clothoids vary curvature

piecewise linearly between control points and cannot possess such

behavior. In contrast, our curves can generate in�nite curvature,

though only at control points. Having unbounded curvature is not a

unwanted artifact but precisely the property that creates continuous

motion of the curve. However, the cost of this continuous motion is

a curvature pro�le that is not as “fair” as clothoids. Figure 9 depicts

the creation of a cusp at a control point as the user manipulates

the curve with our method. �is �gure, and many of the shapes in

Figure 1, also demonstrate open curves with end points.

Since our optimization produces a global solution, the in�uence

of one control point is technically global. �at is, moving one point

changes the shape of the entire curve. However, practically, the

in�uence of one point is quite bounded. Figure 10 shows an example

curve where we move a single control point and draw the original

curve (blue) behind the new curve (brown). �e �gure illustrates

that very li�le movement of the curve occurs outside of just a few

control points away from the modi�ed shape.
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Fig. 9. The creation of a cusp, which can only happen at control points with
our method.

6 IMPLEMENTATION
�e κ-curve system was implemented as a tool in a commercial

illustration package, Adobe Illustrator
1
. Adobe Illustrator is instru-

mented to report the amount of time users spend using each of the

available tools. �e new tool, called the “curvature” tool, is a direct

competitor for the much older “pen” tool that uses cardinal splines.

Even though there are experienced and exacting artists with many

years invested in the the pen tool, six months a�er the release of

the curvature tool 35% of the combined use of the two tools was

with the newer curvature tool on desktop devices. On devices with

touch screens, the curvature tool captured 66% of the combined use

of the two tools. While more studies are needed to fully understand

artists preferences, this usage data strongly suggests that our model

is a welcome addition to professional work–�ows.

7 CONCLUSIONS AND FUTURE WORK
Interpolatory curves typically su�er from shape artifacts and use

high degree polynomials with large support for even low continuity

curves. Our curves change this paradigm. We use low degree curves,

yet achieve higher-order continuity. Despite their global nature,

we have demonstrated that the in�uence of an input point is local

for practical applications. Moreover, the input points coincide with

features of the curve; namely, local maxima of curvature magnitude.

Even though the user has no direct control over the tangent angle

or curvature at the input points, the system automatically chooses

natural values for these parameters. In fact one may see this work a

way of automatically choosing natural and pleasing tangent angles

and curvatures based only the input points. Finally, our curves

change continuously under continuous motion of the control points.

�ese two combined properties make them ideal for a number of

creative tasks including vector design and motion path keyframing.

In summary, we believe that κ-curves solve many of the problems

that have plagued interpolatory curves, rendering them much more

suitable for modern design applications.

While we have focused on non-rational quadratic Bézier curves

here, this work could be extended rational quadratic curves. �e

extra degrees of freedom could conceivably allow for an independent

“tension” control at each interpolated point, allowing more artistic

control of the shape of the curve. However, rational curves would

not solve the problem of lack of G2
continuity at in�ection points.

1
�e actual implementation in Adobe Illustrator di�ers slightly from what was pre-

sented in this paper due to compatibility and other issues, but the underlying technology

is essentially the same.

Fig. 10. The original curve in blue with the new curve in brown drawn on top.
While control points have a global influence on the curve, that influence
drops dramatically with distance from the control point, which creates the
e�ect of local influence.
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A UNIQUENESS OF MAX CURVATURE SOLUTION
Proof. To show Equation 4 has exactly one real root in [0, 1], we

�rst write its coe�cients in Bézier form, which leads to an extremely

simple expression. Let v0 = ci,0 − pi and v2 = ci,2 − pi . �en the

Bézier coe�cients are

(−|v0 |2,
−v0 · v2

3

,
v0 · v2

3

, |v2 |2)

Given that we are interested in roots of this polynomial, we divide by

the positive constant |v0 | |v2 | to obtain an even simpler expression

for the coe�cients

(−r ,− cos(θ )
3

,
cos(θ )

3

,
1

r
) (8)

where r = |v0 |
|v2 | and θ is the angle between the vectors v0 and

v2. Note that polynomials in Bézier form follow Descartes’ rule of

signs for bounding the number of roots of a polynomial [Lane and

Riesenfeld 1981]. Since the �rst coe�cient is negative while the last

coe�cient is positive, there exists at least one root on the interval

[0, 1]. If cos(θ ) ≥ 0, then Descartes’ rule of signs indicates exactly

one root in [0, 1]. �erefore, we consider the case where cos(θ ) < 0.

However, under this assumption, the polynomial with Bézier

coe�cients from Equation 8 is monotonically increasing over the

interval [0, 1]. We verify this fact by computing the derivative of

the polynomial, which yields the quadratic Bézier coe�cients

(3r − cos(θ ), 2 cos(θ ), 3
r
− cos(θ )).

Both the �rst and the last coe�cient are positive since cos(θ ) < 0

and r > 0. Furthermore, we can compute the minimum value of this

quadratic, which is

3r − cos(θ )(1 + r2 + r cos(θ ))
1 + r2 − 2r cos(θ )

.

�is value is also strictly positive because 1 + r2 + r cos(θ ) > 0.

Since the derivative of the quadratic at 0 is 6(cos(θ ) − r ), which is

negative, the cubic function with Bézier coe�cients in Equation 8 is

monotonically increasing and has exactly one real root in [0, 1]. �
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