A Factored Interpolatory Subdivision
Scheme for Quadrilateral Surfaces

Scott Schaefer, Joe Warren

Abstract. This paper presents a new C ! interpolatory subdivision
scheme for quadrilateral meshes based on the idea of factoring a com-
plex scheme into several simpler passes. To illustrate this point we
first factor the well-known four point rule for interpolatory curve sub-
division into linear subdivision followed by a simple differencing pass.
This subdivision method is then extended to surfaces by generalizing
each of these passes to quadrilateral meshes (including those with ex-
traordinary vertices). Finally, we demonstrate that this extension can
also be interpreted as defining a subdivision scheme for interpolating
curve networks.

§1. Introduction

Subdivision has become an excellent tool for modeling due to its ability
to construct smooth surfaces with minimal effort. Using these techniques,
artists are able to manipulate a coarse description of a model. The com-
puter then subdivides the model to obtain a new, smooth version that
follows the original shape. Moving the vertices of the coarse mesh, also
referred to as “control points”, affects the shape of the smooth surface and
allows for a very intuitive modeling paradigm.

Interpolatory subdivision schemes are a special subset of all subdivi-
sion schemes where there is the added requirement that the limit surface
interpolates the original control points. These methods can give the artists
an even more intuitive feel for the shape of the final, smooth surface be-
cause the vertices that they position actually lie on the limit surface. One
example of an interpolatory scheme for curves is the classic four-point
scheme described in [2]. Kobbelt [3] provided an interpolatory subdivision
scheme for arbitrary quadrilateral meshes that extended the curve method

Curve and Surface Fitting: Saint-Malo 2002 1
XXX (eds.), pp. 1-10.

Copyright © 2002 by Nashboro Press, Nashville, TN.

ISBN XXX.

All rights of reproduction in any form reserved.

2 S. Schaefer, J. Warren

in [2], and Zorin [7] proved that Kobbelt’s surface scheme was C?! for all
valences of vertices.

Recently, there has also been an interest in subdivision schemes that
are combinations of simple steps or factored schemes that break apart a
single subdivision scheme into simpler passes. These factored methods
can be simpler to implement because large, complex subdivision masks
can be calculated by performing several small, locally supported passes
over the mesh. Lounsbery et al. [4] present a subdivision scheme as
being factored into separate passes over the mesh. The authors describe
an approximating subdivision method in two passes: linear subdivision
and averaging. First, a temporary mesh is generated by performing linear
subdivision on the input mesh and then an averaging pass where vertices
are replaced by the average of the centroids of the adjacent faces.

Zorin and Schroder [8] extended the ideas of Lounsbery et al. and
developed an approximating scheme that generalized B-splines of bidegree
up to nine. In that paper the authors factor B-spline subdivision into
linear subdivision plus repeated dualing of the mesh where vertices are
positioned at the barycenter of polygons. Stam [5] produced a similar
method that generalized B-splines of arbitrary degree to surfaces using
an even/odd technique. Although both methods are capable of producing
surfaces with high degrees of continuity, the surfaces produced are still
only C! at extraordinary vertices.

We develop a new subdivision scheme for surfaces similar to [4] in that
we factor our subdivision scheme into two different steps: linear subdivi-
sion and differencing. Our method also differs in that it is an interpolatory
subdivision scheme as opposed to an approximating method. First, we de-
rive a stationary, interpolatory scheme for curves that appears in [2] and
show how it factors into linear subdivision followed by differencing. Next,
the curve scheme is extended onto quadrilateral surfaces by generalizing
the different passes onto vertices of arbitrary valence. Finally, we show
how this surface subdivision scheme is a subdivision scheme for interpo-
lating curve networks as well.

§2. Curve Subdivision

We begin by constructing an interpolatory scheme for curves. A subdi-

vision scheme for curves is interpolatory if it is of the form pgj 1 = pk

and p5tl = 3 so(j_i)410% where pf is the ith vertex at the k** level of
subdivision and s; is the 4t coefficient of the subdivision mask. When
considering an interpolatory subdivision scheme for curves, we will assume
that all of these control points are spaced uniformly in a parametric space
(see figure 1, left). Our subdivision scheme will then take this set of ver-
tices and produce a new set of vertices on an interval that is twice as fine

as the original. Then all that is required is to develop a rule to insert new

Interpolatory Subdivision 3

£(t) £(t)

Fig. 1. The coefficients used to generate the point in the middle on the cubic
polynomial interpolating those four points (left). The coefficients to
generate the same point after performing one round of linear subdivision
(right).

vertices, p’;j;ll, between each of the given control points because the old

vertices are interpolated and, therefore, not modified.

Now we derive the well-known four point scheme of [2] as an example
of such a subdivision scheme. Consider four consecutive control points
that have uniformly spaced parametric components associated with them.
These points define a unique cubic polynomial that interpolates them.
The new point being inserted into the curve should be positioned in the
middle of the four points and such that it lies on the cubic function defined
by those points. This will give the subdivision scheme the property that if
all of the control points are uniformly sampled off a cubic function, then
this scheme will reproduce that cubic function. The new point’s position
can then be solved for in terms of the four control points (see figure 1,
left). Since the points are spaced uniformly in the parametric space, the
coefficients will not depend on the spacing of the control points and yields
the subdivision scheme in equation (1). This is exactly the well-known
four point scheme of [1] and [2] with the tension parameter set to 1.

k+1 _ k&
by =D

-1 9 9 1 (1)
k+1 k k k k
Doy = TP + 16Pi + 16Pi+1 ~ 1gPi+2

When analyzing subdivision schemes, it can often be useful to rep-
resent a subdivision mask as a generating function [6]. We define a gen-
erating function s[z] for curves to be s[z] = Y, s;2° where s; is the
ith coefficient of the subdivision mask or zero when that coefficient does
not exist. We will also represent the control points as a generating func-
tion where p*[z] = Y pFa?. Then one step of subdivision is represented as
pFtiz] = s[x]*p*[x?]. One advantage that generating functions provide is
that they make it simple to break apart a subdivision scheme into separate
passes over the mesh (such as linear subdivision and repeated averaging as

4 S. Schaefer, J. Warren

ANNAWANE

Fig. 2. Subdividing a curve by performing linear subdivision and then differenc-
ing. Two rounds of subdivision are shown.

in [8]); just factoring the generating function provides the necessary tool
to split a subdivision step into separate passes over the mesh. We define
this subdivision method with multiple passes to be a factored subdivision
scheme. These factored subdivision schemes can be easier to implement
because each pass can be typically represented on the one-ring of a vertex,
which does not require complicated mesh traversal algorithms and data-
structures to be built. Accumulating these local passes together allows
very large, complex passes to be calculated in a simple manner.

Representing our subdivision mask as a generating function, s[z] for

equation (1) is s[z] = gz 73+ S + 1+ %z — 23, If we divide this
mask with the generating function for linear subdivision %x_l +1+ %a:, we

obtain the subdivision mask % +1+ %’”‘ﬁ. The right-hand
side of figure 1 shows the set of control points after linear subdivision and
the weights of the points that result in the same subdivision scheme as on
the left-hand side of figure 1.

One round of subdivision is now: apply linear subdivision and then
apply the mask % + 1+ %”“_”32 to the resulting curve. We
can interpret the second mask as taking each point and adding into it the
average of the second differences of the vertices on the adjacent edges.
Figure 2 shows an example of this process. First, we take the initial curve
defined by a triangular shape and perform linear subdivision to produce
a new curve. The old vertices from the previous curve are highlighted for
clarity. Next, this new curve has the differencing pass applied to it. The
resulting curve corresponds to one round of subdivision. We then continue
this process to subdivide the curve further.

In this framework linear subdivision isolates the change in topology
(adding new vertices) and the differencing mask isolates the positioning
of that geometry. Generalization of linear subdivision to surfaces is trivial
so we only need to concentrate on generalizing the difference mask. Also
notice that before we factored the subdivision scheme, the original ver-
tices were left alone but new vertices had the four-point mask applied to
them (see equation (1)). Now the rule for all of the vertices after linear
subdivision has become uniform in that the differencing pass is applied

Interpolatory Subdivision)

Fig. 3. Different types of points that need to be considered when subdividing
the mesh. They are (from left to right) vertex, edge, and face points.

to all of the vertices regardless if the vertices were originally on the curve
or inserted during linear subdivision. The original vertices, pf, are in-
terpolated because the second difference mask, —z~' + 2 — z, is 0 for
the adjacent vertices since they are the result of linear subdivision (i.e.

k k
—pk 4+ 2(BEPiay _ pk | — (). While the fact that this rule is uniform is
trivial for curve schemes, it will become more important with surfaces as
there will not only be original vertices and edge vertices, but face vertices
as well.

§3. Closed Surface Subdivision

We next generalize the curve subdivision scheme to surfaces by first taking
the tensor product of the derived curve scheme’s masks. This extension
produces a method for quadrilateral surfaces that works in the regular case
where the valence of a vertex is four (we define the valence of a vertex to
be the number of quads incident to the vertex). The challenge is deriving
a generalization of the masks to extraordinary vertices (valence # 4) that
reproduces the regular case and is smooth in the limit.

Kobbelt [3] took a different approach when he generalized this same
mask for curves to quadrilateral surfaces. He considered the three different
types of points generated in one round of subdivision: vertex points, edge
points, and face points (see figure 3). Vertex points were left alone because
they were the original control points and don’t change in this interpolatory
scheme. Edge points were generated by applying the curve rule to the
edges of the mesh to produce a new vertex in the middle of an edge.
Face points were then an application of the curve scheme to four edge
points. Therefore, the only generalization that Kobbelt needed to extend
this scheme to quadrilateral meshes was to generalize the curve rule to the
case of an edge vertex that is adjacent to an extraordinary vertex. The
rule that he derives in the extraordinary case is shown in figure 4.

We define a curve network to be a set of vertices and edges that
connect those vertices. It is possible to define a curve network on a surface
by choosing a subset of vertices and edges on the coarse control polygon to

6 S. Schaefer, J. Warren

Fig. 4. Kobbelt’s rule for positioning an edge point near an extraordinary vertex.

be part of that curve. If subdivision rules are defined for the curve network,
then it can be subdivided as well. As long as the surface subdivision
scheme produces a surface that interpolates the subdivided curve network,
then the shape of the surface can be controlled by manipulating the control
points of the original curve network. Specifying the position of the curve
network gives a very intuitive feel for the shape of the final subdivided
surface.

Note that Kobbelt’s subdivision scheme cannot be viewed as a subdi-
vision scheme for interpolating curve networks because the rule for posi-
tioning a new vertex on an edge relies not only on edge adjacent vertices,
but face adjacent vertices as well (see figure 4). The subdivision method
that we present will have the property that the position of new edge points
is only determined by edge adjacent vertices and, hence, can be viewed as
a subdivision scheme for curve networks.

In contrast to the way Kobbelt extended his subdivision scheme onto
surfaces, we have factored the subdivision mask into linear subdivision
and differencing. We only need to generalize those two masks to surfaces.
Generalizing linear subdivision is trivial and just becomes bilinear subdi-
vision. Now all that is left is to generalize the difference mask. Note that
this rule is uniform for all vertices: vertex, edge, and face. This property
makes the method easier to implement due to the two uniform masks that
are applied to the surface.

To extend the difference mask to surfaces we use the tensor prod-
uct, which can be represented as the product of two generating functions
slz,y] = sz] * sly] = Y sis;xty’. These coefficients can easily be viewed
as a 2D matrix.

Interpolatory Subdivision 7

Fig. 5. Positioning of a vertex by adding in face differences and edge differences.

1 1 -2 —6 —2 1 1 1 -2 1
-2 41z 4 2] —2 4 —2

-~ . 1—-6 12 12 — —_— 1 —2 1
64 \-2 412 4 64 0 0 0
1 —2 —2 0 0 0

[=XoYolola]
QOeooo,
QOOOO,

[oXeloloRa)

2]
coQoco
coooo

Soocoo™
cococo
|
COoOrRNK
| |
cCoN RN
|
O N+
Soococo™
cococo
|
HNHOO
| |
NIRNCO
|
goRoo,
|
cowoco
=
coc®oo
|
| RewrH |
0 PN
=
co®oco
|
QOowoo,
“coocco™
o oococo
Rel=l-I=I-3p

)

This scheme is then interpreted as: linearly subdivide the mesh and
then for each point add in the average of the face differences (the tensor
of the second difference mask shown above) from each of the face-adjacent
vertices and the edge differences from the edge-adjacent vertices. Figure 5
illustrates this process. After linear subdivision we add in the face differ-
ences (represented as gray regions) to reposition the point as shown in the
top of the figure. Next we add in the edge differences (highlighted in the
bottom of the figure), which produces the final position of the point after
one round of subdivision.

In the curve case, the original vertices were interpolated because the
edge differences were necessarily zero since the adjacent vertices were the
result of linear subdivision. The same is true here; the edge differences are
still zero and the face differences are as well for the same reason. Vertices
that are added on the edges of quads during linear subdivision are only
affected by the edge differences because the face differences are 0. Face
points are the only points that are affected by both the face differences
and the edge differences.

3.1 Extraordinary Vertices

Unfortunately, this scheme in its current incarnation does not handle ex-
traordinary vertices. Figure 6 shows the masks that need to be computed
in the extraordinary case. The top row shows the face masks that need to
be calculated for the different types of points (vertex, edge, and face) and
the bottom row shows the corresponding edge masks. As seen on the far

8 S. Schaefer, J. Warren

Fig. 6. Face differences and edge differences that need to be computed in the
extraordinary vertex case.

right of the figure, we need to generalize the difference operator for faces
to extraordinary vertices. The edge difference mask also needs work since
it is unclear how it should behave when it is centered on an extraordinary
vertex (see middle of bottom row).

To calculate the face difference at an arbitrary valence vertex, we
process each polygon containing the specified vertex and accumulate the
mask 1 —x —y + zy. This process will result in the mask shown in figure 7
(left). This mask is then divided by 4n where n is the valence of the
vertex.

Fig. 7. Face difference at an extraordinary vertex (left). Edge difference rule
at an extraordinary vertex across the highlighted edge (middle). Edge
difference rule at a valence three vertex (right).

Extending the edge rule —z~1+2—1 to extraordinary vertices requires
more work. This rule needs to have the property that, at a vertex of
valence four, the rule is —z~! + 2 — z to maintain the tensor product
structure. Figure 7 (middle) shows the edge rule at an extraordinary
vertex. The rule is essentially symmetric except that the differences on
edges adjacent to the highlighted edge are zero so that the tensor product
case is reproduced. Note that this ordering of the edges is implicitly stored

Interpolatory Subdivision 9

Fig. 8. Subdivision of an “A” containing vertices of valence three to five. Far
right also shows the curve network interpolated by the surface.

in the polygons containing these vertices. Using this resulting difference
we divide it by 2n and add it into the vertex to be repositioned.

However, there is a problem with the mask shown in figure 7 (middle).
The mask fails to produce a surface that is C! in the case of a vertex of
valence 3. To overcome this continuity issue, we provide a different rule
to use in the case where the valence is 3. Instead of using the difference
mask of figure 7 (middle), we use the mask in figure 7 (right). Essentially
only half of the difference along the other edges is subtracted out.

Notice that the edge rules that we have described only require other
edge vertices. The face differences for edge vertices are necessarily zero
and none of the edge differences require face-adjacent vertices. Therefore,
the subdivision rules that we have described so far can be viewed as a
subdivision scheme for curve networks as well. Specifically, the edges of
the original control surface define a curve network that, when subdivided,
the surface made up of that network will pass through.

Figure 8 shows an example mesh being subdivided using these rules
for extraordinary vertices. The “A” depicted in the figure contains vertices
of valence three on the “feet” and also of valence five where the “feet”
connect. The mesh on the far right also shows the curve network defined
by the edges of the original mesh that the surface interpolates.

§4. Conclusions

We have derived a C! interpolatory subdivision scheme for curves and
closed quadrilateral surfaces. After factoring the curve subdivision scheme
into linear subdivision and differencing, we extended this method onto
surfaces by generalizing the individual passes onto extraordinary valence
vertices. This extension revealed that this subdivision scheme could also
be thought of as a subdivision scheme for curve networks.

References

1. Deslauriers, G., and S. Dubuc, Symmetric iterative interpolation pro-
cesses, Constructive Approximation 5 (1989), 49-68.

10

S. Schaefer, J. Warren

. Dyn, N., J. Gregory, and D. Levin, A four point interpolatory subdivi-

sion scheme for curve design, Comput. Aided Geom. Design 4 (1987),
257-268.

Kobbelt, L., Interpolating subdivision on open quadrilateral nets with
arbitrary topology, Computer Graphics Forum 15(3) (1996), 409-420.

Lounsbery, M., T. DeRose, and J. Warren, Multiresolution analy-
sis for surfaces of arbitrary topological type, ACM Transactions on
Graphics 16(1) (1997), 34-73.

Stam, J., On subdivision schemes generalizing B-spline surfaces of
arbitrary degree, Comput. Aided Geom. Design 18 (2001), 383-396.

. Warren, J., and H. Weimer, Subdivision Methods for Geometric De-

sign: A Constructive Approach, Morgan Kaufmann, San Francisco,
2002.

Zorin, D., A method for analysis of C'-continuity of subdivision sur-
faces, STAM Journal of Numerical Analysis 37 (2000), 1677-1708.

Zorin, D., and P. Schréder, A unified framework for primal/dual sub-
division schemes, Comput. Aided Geom. Design 18(5) (2001), 429—
454.

Scott Schaefer

Department of Computer Science
Rice University

6100 Main St.

Houston, TX 77005
sschaefe@rice.edu

Joe Warren

Department of Computer Science
Rice University

6100 Main St.

Houston, TX 77005
jwarren@rice.edu

