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as well as their properties. In this chapter, we explore the deep connection
ween barycentric coordinates and higher order parametric representations of
curves, surfaces, volumes in arbitrary dimension. In the case of curves, these curves
are known as Bézier curves, which are used in applications from font representa-
tions to controlling animations. The extension to convex surface patches, called
S-Patches [7], is more recent. As originally proposed, S-Patches were parametric,
multi-sided surface patches restricted to convex domains. However, these restric-
tions were more of a function of the limited set of generalized barycentric coor-
dinates, namely Wachspress coordinates, available at that time. Today we have
generalized barycentric coordinate functions that do not require convexity and ex-
tend to arbitrary dimension. Hence, we will investigate S-Patches within their full
generality afforded by modern barycentric coordinates with generalized domains
and in arbitrary dimension.

Q HAPTER 7?7 introduced several constructions of barycentric coordinates
be

1.1 INTRODUCTION
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Figure 1.1 An example cubic Bézier curve (left) and the curve degree elevated
to a quartic (right).

1.1.1 Bézier Form of Curves

To begin we consider one of the simplest instantiations of barycentric coordinates.
Consider the domain defined by the interval [0, 1]. This interval yields barycentric
coordinate functions ¢; where

o(x) (1—x),
o) — o (1.1)

Note that these functions satisfy all of the barycentric coordinate properties from
Chapter ?77; in particular, these functions reproduce constant and linear functions,

po(z) + ¢1(x) = 1,
0(]50(.’1))+1¢1($) = .

If we examine the terms of the binomial expansion of (¢o(z) + ¢1(2))™, we obtain
functions of the form

B (z) = (T) (1— )™, (1.2)

where m is the degree of the functions BY"(z). These functions are special functions
called Bernstein basis functions. Associating these functions with control points f;
yields a Bézier curve

F(a) = Y BP'(0)f;.
j=0

Note that F(x) trivially reproduces constant functions due to the fact that ¢g and
¢1 form a partition of unity. For example, if f; = ¢, then

m

c= ZB;n(l‘)C =c((1—z)+x)™.
7=0
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Figure 1.2 An example pyramid diagram. The values at the base are multiplied
by the constants on the arrows and summed to produce the result at the apex
of the pyramid.

In addition, F'(x) can also reproduce all polynomial functions up to degree m. This
last property follows directly from the linear reproduction property of barycentric
coordinates. In particular, to reproduce a function x* where k < m there exists
coefficients f; such that

F(z) = (do(z) + ¢1(2))" (0 ¢o(z) + 1 - ¢1(2))" = 1" Fak = 2*

where the coefficients f; are given by collecting the coefficients of B"(x) in the
polynomial expansion above. For example, to reproduce the function z, the coeffi-
cients are given by f; = % Such properties also follow directly from the theory of
blossoming/polar forms [8], which is beyond the scope of this chapter.

In addition, the barycentric coordinate functions ¢; also impart a number of
useful geometric properties on the resulting Bézier curves. For example, Bézier
curves interpolate their end points due to the Lagrange property of barycentric
coordinates. Bézier curves also fall within the convex hull of their control points over
the interval [0, 1] since 0 < ¢;(z) < 1 for all z € [0, 1]. The curves are also affinely
invariant; that is, transforming each control point by an affine transformation T
transforms the Bézier curve by T'. Figure 1.1 shows an example of a Bézier curve
where the f; are points in R2.

1.1.2 Evaluation

While we can evaluate Bézier curves by evaluating the polynomial expressions in
the Bernstein basis functions, a more elegant solution exists via de Casteljau’s
algorithm. To do so, we introduce a graphical notation for a linear combination of
two control points. Figure 1.2 shows a simple pyramid diagram. The arrows denote
taking the product of the value at the base of the arrow with the scalar value listed
along the arrow. The result of this product is then added to the sum at the end
of the arrow. Hence, this figure denotes taking fy, fi and multiplying these values
by a, b respectively to form the result afy 4 bf;. Using this notation, de Casteljau’s
algorithm can be written in a very elegant fashion as a pyramid diagram shown
in Figure 1.3 [3]. Note that each level of the pyramid produces lower order Bézier
functions with the value of the curve appearing at the apex of the pyramid.
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Figure 1.3 The de Casteljau algorithm for cubic Bézier curves.

1.1.3 Degree Elevation

Degree elevation for Bézier curves is simply finding a Bézier curve of degree m—+1 to
represent a Bézier curve of degree m. One benefit of performing degree elevation is
that the process introduces an additional control point that can be used to control
the shape of the curve. Furthermore, the addition of this new control point does
not change the shape of the curve. Such degree elevation is always possible since
every Bézier curve of degree m is also a Bézier curve of degree m + 1.

To derive degree elevation, it is useful to notice a connection between the Bern-
stein basis functions of different degrees. Using Equation (1.2), we can show that

6o(x) B (x) = m;_L L@ B (@),

m+1
m+1—j

m—+1 _
Bj (z) =

Therefore, we can elevate the degree of a Bézier curve by simply multiplying a
degree m Bézier curve by (¢o(x) + ¢1(x)), so that

Fla) = (Z70Bl@);) (9o(@) + 61(2))
= S By @) (i )

Figure 1.1 (right) shows an example of elevating the degree of a Bézier curve.

1.2 MULTISIDED BEZIER PATCHES IN HIGHER DIMENSIONS

Section 1.1.1 provides some hint as to how we might extend the univariate curve
construction to domains such as polygons or even polytopes in higher dimensions
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through the use of generalized barycentric coordinates. In particular, we use the
extension of Equation (1.1) to more generalized domains. Given a polygon P with
vertices v; € R?, the generalized barycentric coordinate functions ¢; satisfy

Z?:1¢i(w) = 1,
Z?:1¢i($)vi = @ (1'3)

for all points € R? (although & may be restricted to P for some barycentric
coordinate constructions).

To build S-Patches, we examine the functions that arise from the multinomial
expansion of the barycentric basis functions

(Z @-(w)) i > (%) 1_1 pul)

where the index £ is a vector of n non-negative integers, |€| is the sum of the entries
of £, and (}) is the multinomial coefficient (’}) Setting By (x) to be
the corresponding term in this expansion yields

5@ = (1) Zf[lww (1.4

_ m!
T L1808,

These basis functions are the generalization of the Bézier basis functions from
Section 1.1.1. In fact, if we use the barycentric basis functions from Equation (1.1),
we obtain the exact same curves albeit with a different indexing scheme. If we
associate values fy with each of these basis functions, we obtain a multi-sided Bézier

function
f@)=">" By (@)fe,

|[e|=m

which is also known as an S-Patch. Like univariate Bézier curves, S-Patches can
reproduce all polynomials up to total degree m, which follows directly from Equa-
tion (1.3). For example, to reproduce x, the control points are given by

=Y D (15)

i=1

Unlike univariate curves, the barycentric coordinates functions in Equation (1.3)
are not necessarily polynomials. Nevertheless, we will refer to the S-Patch basis
functions By’(x) to be a function of degree m indicating the total degree of the
individual barycentric coordinates functions ¢;.

1.2.1 Indexing For S-Patches

For curves, indexing control points is trivial as each basis function is simply given
an index j = 0,...,m based on an ordering of the Bernstein basis functions. How-
ever, this simple indexing scheme does not extend to higher dimensions. As already
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(00011)

(00002) (00200)

(10001)

(20000) (11000) (02000)

Figure 1.4 Indexing of a quadratic pentagonal S-Patch using the specified con-
nectivity rule.

alluded to in Equation (1.4), S-Patches use a multi-index to refer to control points.
Each control point f, is associated with an index vector of length n non-negative
integers whose sum is the degree m of the patch. Given a polygon P, we typically
draw the control points in canonical position such that fy are placed such that
F(x) = x. Luckily, this combination is solely a function of P, independent of what
barycentric basis we choose, and is given by Equation (1.5).

In addition, there is a simple rule for drawing connectivity of a simple 2D S-
Patch. We connect two control points fp and f3, if there exists an index 0 < j <n
such that

£i = h; i#j,j+1
Liy1—1 = h
£j+1 = hj

where the arithmetic on j is performed modulo n. Figure 1.4 shows an example
of this indexing for a quadratic pentagonal S-Patch. While drawing this connec-
tivity makes sense for 2D domains, S-Patches extend beyond 2D to polytopes in
higher dimensions. There, the cyclic ordering of the indices used in 2D to identify
connectivity does not generalize to higher dimensions. While we can generalize the
connectivity rules to higher dimensions, the information imparted by the connec-
tivity in higher dimensions becomes more difficult to discern. This connectivity is
not essential to evaluation algorithms or other properties of S-Patches in higher
dimensions, so we simply omit it.

Note that something curious happens to the S-Patch control points for certain
polygons. Figure 1.5 shows an example of two quadratic, quadrilateral patches. One
example has 10 control points while the other appears to have 9 control points.
The issue is that two of the control points corresponding to the (1010) and (0101)
index overlap according to Equation (1.5) in the left example and not the right
example. To reproduce polynomial functions, these control points must have the
same value, which leads to a loss of degrees of freedom. However, in the more
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Figure 1.5 An example of ambiguous indexing for S-Patches. The left shows an
example where two control points overlap in the parametric domain. The right
shows the same indexing for a different base polygon where the overlapping
control points separate.

general case of modeling shapes with S-Patches, these two control points may have
different values despite being drawn in the same location. It is useful to note that,
in the situation on the left of the figure, if we require the overlapping control
points to have the same function value, which effectively reduces the number of
control points to 9, the S-Patch is identical to a tensor-product Bézier patch when
using Wachspress coordinates as the barycentric coordinate functions. Therefore,
tensor product Bézier patches as well as triangular Bézier patches (S-Patches with a
simplicial domain) are all special cases of S-Patches [7]. Indeed, the basis functions
for Wachspress coordinates are identical for the (1010) and (0101) control points
in this example. However, the basis functions for two overlapping control points do
not have to be identical and, in fact, rarely are in the general case.

1.2.2 Evaluation

Similar to Bézier curves, one possible method for evaluating an S-Patch is simply to
multiply the control points by the corresponding basis functions from Equation (1.4)
evaluated at the point in question. However, there also exists a de Casteljau-like
algorithm that utilizes the hierarchical relationship between the control points.
Given an evaluation point x, we compute the value of the barycentric basis functions
¢i(x) at the evaluation point using the polytope P. Now, we proceed in a recursive
fashion. Let f; be the control points at level k — 1 where |j| = k — 1 and f, with
|| = m be the initial control points. Then, we compute the f; for all |j| =k —1

fi =Y 0i@) firy
1=1
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Figure 1.6 The de Casteljau algorithm applied to a quadratic, pentagonal S-
Patch. The left image depicts the calculation for one point of the first level of
the algorithm. The right image shows the computation of the final evaluation
point.

where I? is the i'" row of the n x n identity matrix. The value of the S-Patch is
then given by fo. Figure 1.6 depicts this hierarchical evaluation algorithm.

1.2.3 Degree Elevation

While Loop et al. [7] mention degree elevation for S-Patches, the authors provide
no explicit formula. However, degree elevation is not difficult to derive. Let fy be
the values of the control points for an S-Patch function of degree €| = m and fj
be control points of the same S-Patch function of degree |j| = m + 1. Then

> By (@)fe (ZW"’”)): > B @)y (16)

[e[=m l|=m+1
Note that the basis functions of various degrees are related to each other via

m—+1
Ji

By a) = Bj jn () i(x) (1.7)
for 7; > 0. Expanding the left-hand side of Equation (1.6) and using Equation (1.7)
yields the formula for the m 4 1 degree control points f;,

2 Ji
fi= Z o 1fj_1in. (1.8)
3i>0
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Figure 1.7 An example of an S-Patch with a convex domain. From left to right:
the base polygon P shaded gray, the control point structure for the quadratic
S-Patch, and an example S-Patch in 3D.

1.3 APPLICATIONS

While the original definition of S-Patches [7] used convex, multi-sided polygon do-
mains, this restriction was more a function of the barycentric coordinates available
at that time [11] than any limitation of the construction. Many different types
of barycentric coordinates have been developed since then (see Chapter ??). The
majority of these constructions are not limited to a particular dimension for the
domain and do not require convex domains. While any of these constructions can
be used to create S-Patches, we utilize Mean Value Coordinates [1, 2, 4, 6] here in
these examples.

1.3.1 Surface patches

Perhaps the most commonly used application of S-Patches is to fill multi-sided holes
in surfaces. Figure 1.7 shows an example of such a multi-sided patch using a convex
domain. Due to the interpolatory properties of barycentric coordinates, the curves
along the boundary of the domain are solely a function of the control points along
that boundary and form a Bézier curve. In this case, the six-sided patch is bounded
by six quadratic Bézier curves.

Given that the original definition of S-Patches [7] used Wachspress coordi-
nates [11], the S-Patch domain was required to be convex. Convexity is no longer
a requirement with many barycentric coordinate constructions, though the mis-
conception of this requirement for S-Patches persists. Figure 1.8 (right) shows an
example of a quadratic S-Patch with a concave domain. Figure 1.8 (middle) shows
a 2D image of the control point structure of this patch. Unlike convex domains, the
control points of S-Patches with concave domains may lie outside of the original
polytope.

S-Patches can be formed with domains that are even more general than these
convex or concave examples. In fact, S-Patches can support domains of nearly
arbitrary shape that may even contain one or more holes. The restrictions on the
domain follow directly from the barycentric coordinates used to construct the S-
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Figure 1.8 An example of an S-Patch with a concave domain. From left to right:
the base polygon P shaded gray, the control point structure for the quadratic
S-Patch, and an example S-Patch in 3D. Note that, unlike the example in
Figure 1.7, the control points do not all lie within the domain P.

Figure 1.9 An example of an S-Patch whose domain contains a hole. From left
to right: the base polygon P shaded gray, the control point structure for the
quadratic S-Patch, and an example S-Patch in 3D.

Patch. For barycentric coordinate constructions like mean value coordinates, the
domain may even contain holes like the example in Figure 1.9.

1.3.2 Spatial Deformation

S-Patches can be used for applications other than filling multi-sided holes on sur-
faces as well. Though rarely thought of in this way, S-Patches can be used for
image and surface deformation as well. In fact, free-form deformations [9] (FFDs)
as well as cage-based deformations [5, 6] are all special cases of deformation using
S-Patches.

To perform such spatial deformation, we use S-Patches to construct a map
F :R? — R? where d = 2 for images and d = 3 for surfaces and volumes. F is then
given by

F(z)= ) Bf'(z)pe.

|e]=m

Hence, we control the deformation by manipulating the control points p, € R<.
The key to creating a map that is useful for deformation is to construct such a
function that can produce the identity transformation; that is, F(x) = @ for some
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Figure 1.10 Image deformation using S-Patches. The left image shows the im-
age and a point to evaluate the deformation at where each control point lists
its basis functions using a quadratic S-Patch with Wachspress coordinates.
The middle image shows the weights associated with the evaluation point
after evaluating the basis functions. Moving the control points induces a de-
formation on the image shown on the right.

configuration of control points. Luckily, Equation (1.5) already provides the location
of the control points to reproduce this function. We refer to this configuration of
control points as the bind pose.

Now, given a shape, for each point @ in the shape, we compute x as a weighted
combination of the control points py where the weights are simply given by the
values of the basis functions Bj*(x). Notice that the weights B}*(x) are constant
for each point & and can be precomputed, which yields a fast deformation function.
When py satisfy Equation (1.5), F(x) is the identity map. However, as the user
manipulates the control points away from the bind pose, the map produces a smooth
deformation of the underlying shape.

Deforming a shape such as an image is simple with this function. Given an
image such as the one shown in Figure 1.10, we surround the image with some
base polygon P. In this example, we use a rectangle and compute the deformation
using a quadratic S-Patch. Then, we sample the deformation using a regular grid
over the image. For each grid point, we compute the weights of the deformation
function. As the user manipulates the control points, we simply apply the weights
to the deformed control point positions to produce a deformed grid. Bilinearly in-
terpolating the deformation within each grid cell generates the final deformation.
Notice that the grid in this case may be as fine as the pixels in the input image,
although such fine resolution is not typically necessary to create a smooth-looking
deformation. Figure 1.10 shows the result of such a deformation. In this case, the
deformation is equivalent to using a tensor-product Bézier patch when using Wach-
spress coordinates, which is called a free-form deformation [9] (a special case of an
S-Patch).

Surface deformation follows a similar route. In this case, we are typically given
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Figure 1.11 An example of surface deformation using linear S-Patches. The
initial surface of a horse is surrounded by a low resolution approximation
called a cage (left). The right two images show different deformations where
the head and torso are kept the same size but the neck and legs are compressed
or stretched.

a triangulated surface that we wish to deform with vertices x;. Figure 1.11 (left)
shows an example of a 3D model of a horse containing 48485 such vertices. First,
we construct a polytope to surround the horse typically with fewer vertices vy than
the actual horse. In this example, the cage, shown on the left of the figure, contains
only 51 control points. Next, we compute each x; as a weighted combination of the
vg. As the user manipulates the control points, we apply the constant weights for
each vertex to the deformed control point locations to create the location of the
deformed vertex of the surface as shown on the middle and right of Figure 1.11.

Unlike the original definition of free-form deformations that relies on tensor-
product Bézier functions of various degrees with cube domains, cage-based defor-
mations can conform to the shape of the object. And while cage-based deformations
are not typically thought of this way, these deformations are obviously S-Patch
deformations of degree 1. This insight means that we can construct volumetric
cage-based deformations of higher degree as well. Unfortunately, the number of
control points for these deformations grows quite rapidly. For example, the cage in
Figure 1.11 has 51 control points as a linear S-Patch. A quadratic S-Patch would
contain 1326 control points. Moreover, the majority of those control points exist
in the interior of the cage, which would make it difficult for a user to manipulate
those points. Hence, higher degree cage-based deformations are not practical from
a user-interface perspective. One alternative would be to use selective degree ele-
vation [10] to avoid inserting more control points than desired as the degree of the
patch is elevated. However, such a method is beyond the scope of this chapter, and
we refer the interested reader to the corresponding reference.
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