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Abstract

We present a second order smooth filling of an n-valent Catmull-Clark spline ring with n biseptic patches. While

an underdetermined biseptic solution to this problem has appeared previously, we make several advances in this

paper. Most notably, we cast the problem as a constrained minimization and introduce a novel quadratic energy

functional whose absolute minimum of zero is achieved for bicubic polynomials. This means that for the regular

4-valent case, we reproduce the bicubic B-splines. In other cases, the resulting surfaces are aesthetically well

behaved. We extend our constrained minimization framework to handle the case of input mesh with boundary.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Curve, surface, solid, and

object representations

1. Introduction

Catmull-Clark subdivision surfaces have become a standard

modeling primitive in computer generated films and video

games [CC78]. The success of this algorithm is due to its

ability to model surfaces of arbitrary genus, possibly with

boundary [Nas87]. The modeling paradigm is simple: a user

specifies a coarse control mesh consisting of vertices, faces,

and edges that approximates a desired shape; the Catmull-

Clark surface smoothly approximates the control mesh in

an intuitive fashion. Artists easily grasp the behavior of

these shapes relative to the control mesh. However, subdi-

vision surfaces contain shape defects at extraordinary ver-

tices (where the number of incident edges is not equal to 4).

In general the surface is only C1 at these isolated points. In

entertainment scenarios, the viewpoint is controlled or the

presence of isolated shape defects is acceptable. For model-

ing high quality shapes, subdivision surfaces are inadequate.

Subdivision surface behavior at extraordinary vertices

has been extensively studied and their shape artifacts are

by now well understood [DS78, Rei95, PR98, Pra98, RS99].

Tangent plane continuity at extraordinary vertices was for-

mally established in [Rei95]. However, no modification to

the subdivision rules will result in curvature continuity at

these points [Pra98]. Modifications that bound the otherwise

unbounded curvature at extraordinary vertices have appeared

[Sab91, ADS06, GU07]. A weak form of curvature continu-

ity has been achieved by locally projecting the control mesh

to a flat spot with zero curvature [Rei98, PU98]. True curva-

ture continuity has been obtained by blending a disk shaped

region about the extraordinary vertex with a quadratic shape

[Zor06, Lev06]. All of these schemes are concerned with the

limiting behavior of the subdivision process, and not the re-

moval of the underlying singularities in the mapping from a

manifold domain to an embedding space.

Figure 1: a) Each subdivision step adds a new spline ring to

the interior of the hole created by an extraordinary vertex. b)

The work presented in this paper fills the hole in a Catmull-

Clark spline ring with n biseptic patches P0, . . . ,Pn−1. Ex-

amples of vertex types 1, 2, and 3 are also shown.

These singularities, corresponding to the extraordinary

vertices of the control mesh, are a result of the inherently
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functional spline machinery used by many subdivision al-

gorithms. That is, Catmull-Clark surfaces are bicubic ten-

sor product B-splines, albeit over procedurally defined con-

trol meshes with infinite structure. Such a componentwise

functional spline is a deformation of a regular planar lattice,

so modeling an arbitrary genus surface with a more general

tessellation requires singularities. This fact is invariable ig-

nored in the theoretical study of extraordinary vertex behav-

ior under subdivision. Instead that study focuses on so-called

spline rings, a local collection of surface patches that form

an n-sided hole about an extraordinary vertex, see Figure 1a.

As subdivision proceeds, a new spline ring is formed inside

the hole such that the old and new spline rings join with the

smoothness of the underlying B-spline. In the limit, the n-

sided hole becomes infinitesimally small, but never vanishes.

This infinite set of polynomials and the limiting behavior at

extraordinary vertices complicates evaluation and process-

ing of these surfaces [HKD93, Sta98] whereas surfaces com-

posed of a finite set of polynomials are substantially simpler.

1.1. Problem Statement and Contributions

The problem we address can be reduced to the following:

Fill the hole in an n-valent Catmull-Clark spline

ring with n tensor product patches that join

each other and the spline ring with second order

smoothness.

See Figure 1b for an illustration. Our solution to this prob-

lem requires bidegree 7 patches. This result was originally

reported in [Loo04]. While that work established the exis-

tence of a biseptic solution space, ad-hoc means were used

to remove the extra degrees of freedom. Here we make sev-

eral improvements and contributions; specifically

1. The derivation of the underdetermined biseptic solution

space is based entirely on properties of the correspon-

dence maps between adjacent patches and the necessary

cocycle condition these maps must obey about vertices.

2. Our surface is defined as a constrained minimization over

a novel energy functional that achieves an absolute min-

imum of zero for bicubic patches and results in aestheti-

cally pleasing shapes otherwise.

3. We solve for data independent basis functions explicitly,

as an off-line preprocess. Since the basis functions are

solved independent of the surface, we can manipulate

these surfaces in realtime.

4. We define basis functions to handle meshes with bound-

ary such that the surface interpolates the cubic B-spline

curve defined by the mesh boundary.

Filling a spline ring with second order smooth surfaces has

practical applications in surface design. We use our results to

construct second order smooth surfaces over refined quadri-

lateral control meshes, where each quad has at most one in-

cident extraordinary vertex. Refinement is needed to isolate

extraordinary vertices as is done for Catmull-Clark evalua-

tion [Sta98]. Unlike Catmull-Clark surfaces, our surfaces are

second order smooth everywhere and contain a finite number

of polynomial patches.

1.2. Previous Work

Many papers addressing the problem of constructing first

and second order smooth patch complexes have appeared

over the last two decades. We mention here only those that

explicitly join tensor product polynomials with second or-

der smoothness at extraordinary vertices. In [Pra97] an n-

valent Catmull-Clark spline ring is filled with bidegree 6

patches; however, 4n such patches are needed. Similarly,

[GZ99] form a second order smooth join over extraordinary

vertices with 4n bidegree 5 patches. In [Pet02] a combination

of 2n bidegree 3×5 and 2n bicubic patches would be needed

to fill an n-sided hole surrounded by bicubics. In [KP07], a

collection 16n patches of bidegree 4× 4 and 6× 6 are used

to form a smooth complex surrounded by bicubic patches.

While other works have achieved lower bidegree, with re-

spect to total control point count, bidegree 7 with n patches

is still the best result. This makes the scheme attractive for

GPU implementation since total data throughput is mini-

mized. In this paper, we strive to improve shape quality, and

to make the results more practically applicable.

This paper is organized as follows. In Section 2 we present

aspects of geometric continuity necessary to derive our re-

sults. In Section 3 we specify the correspondence maps be-

tween adjacent patches as required by the definition of ge-

ometric continuity. In Section 4 we use the correspondence

maps to derive sets of constraints on the coefficients of ad-

jacent patches needed for second order smoothness. In Sec-

tion 5 we present a novel quadratic energy functional, then

show how this functional is minimized subject to our con-

straints in Section 6. We solve for data independent basis

functions, with support and boundary constraints in Sec-

tion 7. Finally, we present results and conclude with Sec-

tion 8.

2. Geometric Continuity

Given a pair of surface patches Pi,Pi+1 : [0,1]× [0,1]→ R
m,

we say Pi and Pi+1 meet with kth order geometric continuity

denoted Gk [DeR85], if there exists a map θ such that Pi

meets Pi+1 ◦θ with parametric continuity Ck, that is

Pi
Gk

= Pi+1 ⇒ Pi
Ck

= Pi+1 ◦θ .

More formally, this condition requires that the kth order

derivatives of the two patches after reparameterization with

respect to θ coincide. We refer to the map θ : R
2 → R

2 as

the correspondence map between Pi and Pi+1. Technically θ ,

along with k of its transversal derivatives, only needs to be

defined on a line corresponding to the common patch bound-

ary. However we find it convenient to define correspondence
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maps in Bézier form over the entire unit square; this way

transversal derivatives on edges and consistent mixed partial

derivatives at vertices are easily specified.

The derivatives of Pi+1 ◦θ can be found via the chain rule

and yield a matrix equation of the form

Di = (Di+1 ◦θ ) ·Θ

where Di is a vector of the partial derivatives of Pi (i.e. Di =
[

∂ Pi

∂ u
∂ Pi

∂ v
∂ 2Pi

∂ u2 ...
]

) and Θ is a matrix obtained using

the chain rule that encodes the partial derivatives of θ . We

refer to Θ as the chain rule matrix of θ .

If we make the simplifying assumption that θ is the iden-

tity function along the common boundary, then the above

equation reduces to

Di = Di+1 ·Θ, (1)

when evaluated on the boundary. This assumption is reason-

able as any other choice of θ would lead to higher degree

boundary curves with more smoothness constraints. Equa-

tion 1 tells us how to transform the derivatives w.r.t. the do-

main of Pi in terms of the derivatives of Pi+1 and θ .

For a cyclic collection of n patches Pi incident on a com-

mon vertex with correspondence maps θi between patches

Pi and Pi+1, i = 0, . . . ,n− 1 (indices taken modulo n), sat-

isfying geometric continuity results in a cocycle condition

among the patches. If we evaluate equation 1 at the common

vertex for all patches, we find that

D0 = D0 ·Θn−1 ·Θn−2 · . . . ·Θ1 ·Θ0,

for n patches incident on that vertex. Therefore, this relation-

ship results in the additional requirement that

I = Θn−1 ·Θn−2 · . . . ·Θ1 ·Θ0 (2)

when evaluated at the common vertex [Hah89]. For Gk con-

tinuity a correspondence map must encode all kth order

transversal derivatives in the versal direction. If we differen-

tiate k times in this direction, will get mixed partials of order

2k. These derivatives must agree at the common vertex in or-

der to get a polynomial parameterization. Therefore, for Gk

continuity the chain rule matrices must encode derivatives

up to order 2k.

3. Correspondence Maps

We will construct two types of correspondence maps on

edges joining three types of vertices:

1. an extraordinary vertex,

2. an edge adjacent neighbor of a type 1 vertex,

3. a face adjacent diagonal neighbor of a type 1 vertex,

see Figure 1b. Note that a type 1 vertex is n-valent, ver-

tex types 2 and 3 are always 4-valent. Over the edge be-

tween vertex types 1 and 2 we define interior correspon-

dence maps; over the edge between vertex types 2 and 3 we

define exterior correspondence maps.

3.1. Interior Correspondence Maps

We define interior correspondence maps in terms of the maps

φn : (u,v) → (x,y) defined by

φn,x(u,v) = b1(u)T

[
0 cos

(
2π
n

)

1 1

]

b1(v),

φn,y(u,v) = b1(u)T

[

0 sin
(

2π
n

)

0 tan
(

π
n

)

]

b1(v),

where bd(·) are degree d Bernstein polynomials. The geom-

etry of φn is illustrated in Figure 2.1. Given that φn creates an

angle of 2π
n

around the extraordinary vertex, the correspon-

dence map from patch Pi to Pi+1 is φ−1
n ◦

(
r−1
n ◦φn

)
where

rn is a counterclockwise rotation of 2π
n

about the origin.

We verify the cocycle condition at a type 1 vertex using

the chain rule matrices Φn and Rn for φn and rn respec-

tively. We form the composition of the correspondence maps
(
φ−1

n ◦ r−1
n ◦φn

)
from patches 0 through n−1 and evaluate at

(0,0), corresponding to the extraordinary vertex to get

I =
(

Φ−1
n ·R−1

n ·Φn

)n
= Φ−1

n ·
(

R−1
n

)n
·Φn.

Notice that
(
R−1

n

)n
= I because r−1

n is a rotation of 2π
n

. The

above expression only depends on Φn being locally invert-

ible at (0,0). The cocycle loop of correspondence maps in-

cident on a type 1 vertex is illustrated in Figure 2.1.

3.2. Exterior Correspondence Maps

The second type of correspondence map we need is defined

over an edge between vertex types 2 and 3; this edge corre-

sponds to the boundary of the spline ring. Unlike the interior

correspondence maps, we must carefully solve for the ex-

terior correspondence maps. In previous work [Loo04] the

same correspondence maps were derived by appealing to the

embedding space of the resulting patches. Here we derive the

correspondence maps strictly in terms of abstract adjacency

relations of the underlying tessellation.

We begin by defining maps ψn : (u,v) → (x,y), where n

is the valence of the nearby extraordinary vertex. The exte-

rior correspondence maps will be defined by ψn(u,1) and

ψn(1,v), where u,v ∈ [0,1]. We require ψn to be the identity

on the edges (u,0),(u,1),(0,v), and (1,v). Parameter values

(1,0) and (0,1) correspond to type 2 vertices; (1,1) corre-

sponds to the type 3 vertex. Figure 2.2 illustrates the cocycle

loop where four patches meet at a type 2 vertex. Note that

this vertex might share an edge with another extraordinary

vertex of valence m, which is possible given the minimum

separation of extraordinary vertices we require. We can fac-

tor the cocycle composition into two parts, corresponding to
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Figure 2: The cocycle maps for the 3 vertex types : 1) extraordinary vertex, 2) edge sharing neighbor of a type 1 vertex 3) face

sharing diagonal neighbor of a type 1 vertex

the two neighboring extraordinary vertices to get

I =

I
︷ ︸︸ ︷

Q ·Ψn ·S ·
(

R−1
n ·Φn

)−1
·Φn ·Ψ

−1
n

·

I
︷ ︸︸ ︷

Q ·Ψm ·S ·
(

R−1
m ·Φm

)−1
·Φm ·Ψ−1

m , (3)

where Q is the chain rule matrix for q(u,v) = (u,−v) the

reflection across the u axis, S is the chain rule matrix for

s(u,v) = (v,u) the reflection across the diagonal u = v, Rn is

the chain rule matrix for a 2π
n

rotation about the origin, and

Ψn is the chain rule matrix for ψn. Note that parameter for

evaluation of these matrices corresponds to the type 2 ver-

tex. Both factors of equation 3 represent the identity and are

the same up to valence. The factor involving n will impose

constraints of various partial derivatives on ψn at the type 2

vertex.

Additional constraints on ψn come from the cocycle con-

dition at the type 3 vertex. Figure 2.3 illustrates the cocy-

cle loop where four patches meet at a type 3 vertex. We as-

sume that this vertex may be a diagonal neighbor of four ex-

traordinary vertices. By assuming the symmetry ψn(u,v) =
ψn(v,u), the cocycle composition at a type 3 vertex can be

factored into four parts, corresponding to the 4 arbitrary va-

lence diagonal neighbors

I =

I
︷ ︸︸ ︷

Ψk · (S ·Ψk ·S)−1 ·

I
︷ ︸︸ ︷

Ψℓ · (S ·Ψℓ ·S)−1

·

I
︷ ︸︸ ︷

Ψm · (S ·Ψm ·S)−1 ·

I
︷ ︸︸ ︷

Ψn · (S ·Ψn ·S)−1 . (4)

This expression holds since S ·Ψn ·S = Ψn.

We use the constraints imposed on the derivatives of ψn

by equations 3 and 4 to find ψn,x(u,v) =

b4(u)T












0 0 0 0

1
4

5c3
n−3c2

n−15cn+18

12 (cn−2)(2cn−3)
c2

n+2cn−6

12 (cn−2)
1
4

1
2

cn+3
6

c2
n+3cn−9

9 (cn−2)
1
2

3
4

cn+9
12

cn+9
12

3
4

1 1 1 1












b3(v),

where cn = cos
(

2π
n

)
. By the symmetry condition, we also

have ψn,y(u,v) = ψn,x(v,u). The derivation of this solution

is presented in Appendix A. Note that when n = 4, ψ4 = I.

4. Patch Smoothness Constraints

We now use the correspondence maps to determine sec-

ond order smoothness constraints on the coefficients of the

patches Pi, i = 0, . . . ,n−1.

4.1. External Constraints

A Catmull-Clark spline ring surface is completely charac-

terized by a 3-ring of points about an extraordinary vertex.

However, the second order behavior of the spline ring bound-

ary can be described by a 2-ring. We label the points of this

2-ring in a cyclic fashion, as shown in Figure 3. Note that

we have n seven point sections and the central vertex is du-

plicated n times; doing so will give us a circulant system of

equations in Section 4.3.

We characterize the second order behavior of the spline

ring boundary with a set of n bicubic patches. The control

points of these bicubic Bézier patches are found by applying

the cubic knot insertion operator

M = 1
6






1 0 0 0

4 4 2 1

1 2 4 4

0 0 0 1




,
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Figure 3: A 2-ring a with point labeling.

on the 2-ring control points. This will convert from B-spline

to Bernstein form resulting in n bicubic Bézier patches

Hi (u,v) =

b3(u)T MT








· a10
i+2 a11

i+1 a21
i+1

a10
i−1 a00

i a10
i+1 a20

i+1

a11
i−1 a10

i a11
i a12

i

a12
i−1 a20

i a21
i a22

i








Mb3(v),

where i = 0, . . . ,n−1 and a
jk
i are control mesh vertices from

Figure 3. Note that, due to the undefined control point (rep-

resented by a ”·” above), the patches Hi can only be evalu-

ated along the external boundary (u,1) and (1,v); however,

all derivatives up to second order are well defined on this

boundary. Furthermore, these derivatives will meet the sur-

rounding spline ring with Ck continuity.

Next, we use the maps ψn from Section 3.2 to reparame-

terize the bicubic patches Hi to get constraints on the exter-

nal edge of our patches; that is

∂ j

∂ u j Pi (1,t) = ∂ j

∂ u j (Hi ◦ψn)(1,t) , j = 0,1,2.

Expanding this expression using the chain rule results in the

following external constraints on patch Pi

Pi(1,t) = Hi(1,t), (5)

∂
∂ u

Pi(1,t) = ∂
∂ x

Hi(1,t) ∂
∂ u

ψn,x(1,t)

+ ∂
∂ y

Hi(1,t) ∂
∂ u

ψn,y(1,t), (6)

∂ 2

∂ u2 Pi(1,t) = ∂
∂ x

Hi(1,t) ∂ 2

∂ u2 ψn,x(1,t)

+ ∂
∂ y

Hi(1,t) ∂ 2

∂ u2 ψn,y(1,t)

+ ∂ 2

∂ x2 Hi(1,t)
(

∂
∂ u

ψn,x(1,t)
)2

+2 ∂ 2

∂ xy
Hi(1,t) ∂

∂ u
ψn,x(1,t) ∂

∂ u
ψn,y(1,t)

+ ∂ 2

∂ y2 Hi(1,t)
(

∂
∂ u

ψn,y(1,t)
)2

. (7)

The constraints along the boundary (t,1) are defined simi-

larly. All terms on the right hand sides of Equations 5, 6,

and 7 are polynomials of known degree. From this, we can

deduce by degree counting, that the patches Pi must be bide-

gree 7.

To determine the number of constraints given by equa-

tions 5, 6, and 7, we note that each of these 3 equations is

a degree 7 polynomial with 8 degrees of freedom resulting

in 24 constraints. Therefore we have 48 constraints for both

edges of the external boundary. However, at u = v = 1 (cor-

responding to a type 3 vertex), the cocycle condition guaran-

tees that the mixed partial derivatives will agree up to second

order, meaning that 9 of these constraints will be dependent;

so there are only 39 external constraints per patch, or 39n for

all patches sharing the type 1 vertex.

4.2. Internal Constraints

We now derive constraints along internal patch edges. We

combine the internal correspondence map
(
φ−1

n ◦ r−1
n ◦φn

)

between the pair of surface patches Pi(0,t) and Pi+1(t,0),
with the definition of second order geometric continuity to

get the relation

∂ j+k

∂ u jvk Pi(0,t) = ∂ j+k

∂ u jvk

(

Pi+1 ◦φ−1
n ◦ r−1

n ◦φn

)

(t,0)

where j+k = 0,1,2. Expanding this gives us G0, G1 and G2

constraints

Pi(0,t) = Pi+1(t,0), (8)

cn(1− t)
(

∂
∂ u

Pi+1 (t,0)+ ∂
∂ v

Pi (0,t)
)

=
(

∂
∂ v

Pi+1 (t,0)+ ∂
∂ u

Pi (0,t)
)

, (9)

2c2
n (1− t)

(
∂
∂ v

Pi+1 (t,0)− ∂
∂ u

Pi (0,t)
)

+

2cn (1− t) (1+cn (1− t))
(

∂ 2

∂ uv
Pi+1 (t,0)− ∂ 2

∂ uv
Pi (0,t)

)

= (1+cn (1− t))
(

∂ 2

∂ v2 Pi+1 (t,0)− ∂ 2

∂ u2 Pi (0,t)
)

. (10)

We count the number of constraints determined by these

equations as follows. Since patches Pi are biseptic, we can

deduce (by degree counting) the number of constraints in

equations 8, 9, and 10, are 8, 8, and 9 respectively; there-

fore we have 27 constraints per internal edge. However, the

external constraints derived in the previous section specify

the 9 second order mixed partial derivatives corresponding

to the type 2 vertex at Pi+1(1,0) and Pi(0,1). By the cocy-

cle condition, these derivatives will automatically satisfy 8,

9, and 10 resulting in 9 dependent constraints. Therefore the

geometric continuity conditions introduce 16n internal con-

straints.

4.3. Constraint System

The 16n internal constraints combined with the 39n external

constraints results in a system of 55n equations. Each bisep-

tic patch Pi has 64 coefficients, so we have a system of 55n

c© 2008 The Author(s)
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equations in 64n unknowns. All of our constraints are poly-

nomial equations that can written in terms of biseptic Bézier

control points p
jk
i and two-ring control mesh vertices alm

i .

We can write the constraints as a block circulant system

Cp = Wa, (11)

that expands to












c0 c1 · · · 0

0 c0

.

.

.

.

.

.

.
.
. 0

c1 · · · 0 c0





















p0

p1

.

.

.

pn−1










=












w0 w1 · · · wn−1

wn−1 w0

.

.

.

.

.

.

.
.
. w1

w1 · · · wn−1 w0





















a0

a1

.

.

.

an−1










,

where pi are the unknown Bézier control points of patch Pi,

and ai the seven known vertices of the ith two-ring section

as labeled in Figure 3. Since this system is underdetermined,

we introduce an energy functional and find the solution that

minimizes this functional with respect to the constraints.

5. Bicubic Energy

Existing energy functionals, e.g. thin plate or biharmonics,

have the disadvantage that they are not zero for bicubic sur-

faces. Our constraint system will be consistent with tensor

product B-splines when n = 4. In order to generalize this

case, we must define a new energy functional. We therefore

introduce an energy functional, that to our knowledge has

not previously appeared in the CAGD literature, whose abso-

lute minimum of zero is achieved for a bicubic tensor prod-

uct patch, and all higher degree parameterizations of such a

patch.

Let F(u,v) be a tensor product patch. Our bicubic energy

functional is defined as the integral

energy =
∫ 1

0

∫ 1

0

(
∂ 4

∂ u4 F(u,v)
)2

+
(

∂ 4

∂ v4 F(u,v)
)2

dudv.

In our case, F = Pi is a biseptic patch. Since the coefficients

of Pi are at most squared, our energy functional can be writ-

ten as a quadratic form

pT
i E pi,

where E is a symmetric 64×64 matrix. Because ∂ 4/∂u4 and

∂ 4/∂v4 are identically zero for all bicubic patches, any vec-

tor pi consistent with a bicubic patch (or a degree elevated

form) will be in the kernel of E, implying pT
i E = E pi = 0.

We find the bicubic energy of the collection of patches Pi

by the product pT Ep, where E is a block diagonal matrix

whose n blocks are the single patch bicubic energy matrix

E.

6. Constrained Minimization

We can minimize quadratic energy pT Ep subject to con-

straints Cp = Wa using Lagrange multipliers. Differentiat-

ing with respect to p yields

∂

∂p

(

pT Ep
)

=
∂

∂p

(

pT CT − aT WT
)

Λ,

2Ep = CT Λ.

These equations can be represented by a single block matrix
[

E CT

C 0

][
p

Λ

]

=

[
0

W

]

a.

This system can be put into block circulant form by permut-
ing its rows and columns to get



















E cT
0

c0 0

0 0

c1 0
· · ·

0 cT
1

0 0

0 cT
1

0 0

E cT
0

c0 0

.

.

.

.

.

.

.
.
.

0 0

c1 0

0 0

c1 0
· · ·

0 cT
1

0 0

E cT
0

c0 0



































p0

λ0

p1

λ1

.

.

.

pn−1

λn−1

















=



















0

w0

0

w1
· · ·

0

wn−1

0

wn−1

0

w0

.

.

.

.

.

.

.
.
.

0

w1

0

w1
· · ·

0

wn−1

0

w0




























a0

a1

.

.

.

an−1










,

Rather than solving this 119n × 119n system directly, we

transform the problem from the spatial to frequency domain

by applying the Discrete Fourier Transform to the blocks.

The Discrete Fourier Transform and Inverse Discrete Fourier

Transform are given by

x̂ j =
n−1

∑
i=0

e
2π

√
−1 i j

n xi and xi =
1

n

n−1

∑
j=0

e
−2π

√
−1 i j

n x̂ j.

We use the DFT to put the above system into block diagonal

form, where the solution is found by solving the n individual

119×119 blocks
[

E ĉH
j

ĉ j 0

][
p̂ j

λ̂ j

]

=

[
0

ŵ j

]

â j,

for j = 0, . . . ,n− 1, where ĉH
j denotes the conjugate trans-

pose of ĉ j. The patch coefficients pi are found by taking the

IDFT of the solutions p̂ j.

7. Basis Functions

To this point, we have assumed that the two-ring data ai ∈
R

m comes from a control mesh. If we let ai take the form

[0, . . . ,0,1,0, . . . ,0] then we are instead solving for the ba-

sis function associated with some a
jk
i , corresponding to the

non-zero element. Since our constraint systems do not in-

volve any actual data, only valence, we can solve for the

c© 2008 The Author(s)

Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.



C. Loop & S. Schaefer / G2 Tensor Product Splines over Extraordinary Vertices

basis functions a priori, store the resulting basis patches and

multiply them by local mesh data at runtime. Since a two-

ring contains n sections of seven points, we only need to

find seven basis functions for each valence n. We label these

seven basis functions A00, A10, A20, A11, A21, A12, and A22,

where the indices correspond to the indices of a
jk
i to which

they are associated.

An obvious question to ask about these basis function is:

are they non-negative? By inspecting the Bernstein coeffi-

cients of the basis patches, we find the answer to be no, but

just barely. There are a few negative coefficients on the or-

der of 10−3, so this prevents us from claiming the convex

hull property. We should point out that these negative val-

ues do not come from the external constraints; so a different

(yet to be determined) energy functional could lead to the

convex hull property. Alternatively, we could find the con-

vex minimum to our constrained minimization problem; but

this is complicated by the fact that we solve our system in

the frequency domain, and convexity must be satisfied in the

spatial domain. We leave this option for future work.

Another issue concerning the basis function is their sup-

port; that is, the collection of faces where a basis function

non-zero. Presently, every basis function supported over an

extraordinary vertex, will have support over all faces inci-

dent on that vertex. Ideally, the support of a basis function

should not extend beyond the two-ring of its correspond-

ing vertex. Otherwise, an extraordinary patch will depend

on vertices outside the 1-ring of a quadrilateral face (i.e.,

vertices not connected by an edge to one of the quad face

vertices). This extended support occurs for basis functions

A20, A21, A12, and A22. Note that the patches outside the

two-ring of the basis function are nearly zero, but not abso-

lutely. We illustrate the point for the basis function A21 in

Figure 4. To deal with this issue, we enforce additional sup-

port constraints on patches associated with basis functions

A20, A21, A12, and A22.

Figure 4: Contours from −1/2000 to 1/2000 by 1/20000.

Red are positive contours, green zero, and blue negative.

This basis function reaches a maximum height 4/9 at the

solid dot, so the band of contours shown represents 0.225%

of the height of the basis function. The basis function A21 is

shown a) without support constraints, and b) with support

constraints

7.1. Support Constraints

To enforce ideal support we solve modified constraint sys-

tems. The cases of A20, and A21 are similar; we treat A12 as

an instance of A21 since they are the same up to diagonal re-

flection. In these cases, we want the basis functions to have

support over two adjacent patches Pi(u,v) and Pi+1(u,v) in-

cident on the extraordinary vertex. We impose external con-

straints 5, 6, and 7 on these two patches, as well as the

internal geometric continuity constraints 8, 9, and 10 on

the shared boundary Pi(0,t) = Pi+1(t,0). Next, we add con-

straints to force the basis function support boundary Pi(t,0),
and Pi+1(0,t) to go to zero, along with all derivatives up to

second order

∂ k

∂ vk Pi(t,0) = 0, ∂ k

∂ uk Pi+1(0,t) = 0,

for k = 0,1,2. All patches other than Pi and Pi+1 are set to

zero. We then solve for minimum bicubic energy as before.

Since we only need to solve for two patches, we do so in the

spatial domain.

Enforcing two-ring support on the basis function A22 is

similar, except we only need to solve for a single patch. We

use the external boundary constraints, along with constraints

that force all derivatives up to second order along boundaries

Pi(0,t) and Pi(t,0) to zero.

Prior to enforcing the support constraints, the basis func-

tion were guaranteed to sum to 1 since the columns of the

matrix W in equation 11 sum to 1. Adding support con-

straints to select basis functions will cause this property to

be violated. We can restore a partition of unity by simply

defining

A00 = 1 − ∑
i jk

Ai
jk.

7.2. Boundary Basis Functions

Not all control meshes are closed. Frequently, artists model

control meshes with boundary. For Catmull-Clark subdivi-

sion surfaces, the subdivision rules are modified so that the

surface interpolates the cubic B-spline curve defined by the

boundary edges [Nas87, BLZ00]. We can adapt this behav-

ior to our surfaces by imposing mesh boundary constraints

that force the surface to interpolate the boundary cubic B-

spline curve.

We assume a boundary extraordinary vertex is surrounded

by a half two-ring of mesh control points. We denote the

valence of a boundary extraordinary vertex by m, the number

of incident faces. We use the same correspondence maps as

before, with the caveat that n = 2m.

First we need to modify the external boundary constraints

to take into account the presence of a mesh boundary. We
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define two bicubic patches

H̄0 (u,v) = b3(u)T MT








a10
2 a11

1 a21
1

a00
0 a10

1 a20
1

a10
0 a11

0 a12
0

a20
0 a21

0 a22
0








M̄b3(v),

and

H̄m−1 (u,v) =

b3(u)T M̄
T






a10
m−2 a00

m a10
m a20

m

a11
m−2 a10

m−1 a11
m−1 a12

m−1

a12
m−2 a20

m−1 a21
m−1 a22

m−1




Mb3(v),

where

M̄ = 1
6





6 4 2 1

0 2 4 4

0 0 0 1



.

We define two new mesh boundary constraints as

∂ k

∂ uk P0 (1,t) = ∂ k

∂ uk (H̄0 ◦ψn) (1,t) ,

∂ k

∂ vk Pm−1 (t,1) = ∂ k

∂ vk (H̄m−1 ◦ψn) (t,1) ,

for k = 0,1,2. We use the external patch boundary con-

straints 5, 6 and 7 for boundaries P0 (t,1) and Pm−1 (1,t), and

for both external boundaries of patches Pi, i = 1, . . . ,m− 2.

We include the internal geometric continuity constraints 8,

9, and 10 between pairs of patches Pi,Pi+1, i = 0, . . . ,m−2.

Finally, we include the boundary cubic B-spline constraints

P0 (t,0) =
[

a10
m a00

0 a10
0 a20

0

]
· M · b3(t),

Pm−1 (0,t) =
[

a10
0 a00

m a10
m a20

m

]
· M · b3(t).

We then solve to minimize bicubic energy as before.

Figure 5: The control mesh, patch structures of the Catmull-

Clark (top) and our surface (bottom) and the reflection lines.

Notice that the valence 8 vertex from the Catmull-Clark sur-

face causes a noticeable kink in the reflection lines that is

absent with our G2 surface.

Figure 6: From left to right: the control mesh, the patch

structure of a Catmull-Clark surface with bicubic patches

shown in gray (top) and our surface with biseptic patches

shown in blue (bottom), reflection lines and a zoom in close

to an extraordinary boundary vertex. For the Catmull-Clark

surface, we use the boundary rules of [BLZ00].

Figure 7: Comparison of Gaussian curvature for a Catmull-

Clark surface (left), our technique (middle) and [Loo04]

(right).

8. Results

We show several examples of our surfaces in figures 5 to 11.

The quality of our shapes is quite good in general compared

with Catmull-Clark subdivision, especially near boundary

and high valence extraordinary vertices. One issue that we

have noticed are curvature ‘hotspots’, high positive Gauss

curvature, for valence n = 3; similar to the behavior of

Catmull-Clark surfaces. We have not treated this as a special

case in anyway; though doing so may result in better shapes.

The lack of a convex hull property warrants additional work

on this scheme.
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Appendix A: Solving for ψn

We now use the constraints implied by the cocycle condi-

tions on vertices to solve for a mapping ψn that will mini-

mize the bidegree of our G2 surface spline. In the G2 case,

the cocycle condition must hold for all second order mixed

partial derivatives. In general, the kth order derivatives will

transform via Equation 1 in terms of all kth order derivatives

of the correspondence maps. However at type 2 and 3 ver-

tices this is not the case since at these 4-valent vertices, vari-

ous mixed partial derives of the mappings φn and ψn vanish.

Therefore, the matrices in Equations 3 and 4 are 8× 8 and

contain the derivatives:

∂
∂ u

, ∂
∂ v

, ∂ 2

∂ u2 , ∂ 2

∂ u∂ v
, ∂ 2

∂ v2 , ∂ 3

∂ u2∂ v
, ∂ 3

∂ u∂ v2 , ∂ 4

∂ u2∂ v2 .

Specifically, let

Ψn =










1 0 0 x11 0 x21 x12 x22

0 1 0 y11 0 y21 y21 y22

0 0 1 0 0 2x11 0 2x2
11 +2x12

0 0 0 1 0 2y11 2x11 2x21 +4x11y11 +2y21

0 0 0 0 1 0 2y11 2y2
11 +2y21

0 0 0 0 0 1 0 4x11

0 0 0 0 0 0 1 4y11

0 0 0 0 0 0 0 1










,

where xi j = ∂ i+ j

∂ ui∂ u j ψn,x(1,0). While yi j can be defined simi-

larly, we note that since (by assumption) the x and y compo-

nents of ψn are symmetric, that is ψn,x(v,u) = ψn,y(u,v), we

need only solve for ψn,x. Therefore yi j = ∂ i+ j

∂ u j∂ ui ψn,x(0,1).
Multiplying together the matrices in Equation 3 leads to the

following four constraints on ψn,x

x11 = −cn, x21 = 0,
y12 = −2cn (y11 +cn) , y22 = −2cn (2y21 −y12) .

It is possible to satisfy these constraints with a bidegree 3

mapping; with this solution, the derivative ∂
∂ u

ψn,x(1,v) will

be degree 3. This term gets squared under the chain rule lead-

ing to higher degree surfaces than necessary. Instead we can

satisfy the above constraints with a bidegree 4× 3 polyno-

mial, leaving additional freedom to lower the overall surface

degree. We can write this polynomial ψn,x(u,v) =

b4(u)T







0 0 0 0

1
4

cn(c2
n (7cn+6)−18(cn+2)α)+27

12(cn−3)(2cn−3)
c2
n+3cn−18α
12(cn−3)

1
4

1
2

cn+3
6

α 1
2

3
4

cn+9
12 β 3

4

1 1 1 1







b3(v).

We now solve for the 2 degrees of freedom α and β so that
∂

∂ u
ψn,x(1,v) is degree 2 and ∂

∂ v
ψn,x(u,1) is degree 3. These

constraints result in

α = c2
n+3cn−9

9(cn−2)
, β = 9+cn

12 .

As shown in a Section 4.1, the bidegree of the resulting sur-

faces are minimized.
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