
Exact Evaluation of Limits and Tangents for

Non-Polynomial Subdivision Schemes

S. Schaefer ∗

3112 Texas A&M University, College Station, TX 77802

J. Warren

6100 South Main, Houston, TX 77251

Abstract

In this paper, we describe a method for exact evaluation of a limit mesh defined via
subdivision and its associated tangent vectors on a uniform grid of any size. Other
exact evaluation technique either restrict the grids to have subdivision sampling and
are, hence, exponentially increasing in size or make assumptions about the underly-
ing surface being piecewise polynomial (Stam’s method is a widely used technique
that makes this assumption). As opposed to Stam’s technique, our method works
for both polynomial and non-polynomial schemes. The values for this exact evalu-
ation scheme can be computed via a simple system of linear equation derived from
the scaling relations associated with the scheme or, equivalently, as the dominant
left eigenvector of an upsampled subdivision matrix associated with the scheme. To
illustrate one possible application of this method, we demonstrate how to generate
adaptive polygonalizations of a non-polynomial quad-based subdivision surfaces us-
ing our exact evaluation method. Our tessellation method guarantees a water-tight
tessellation no matter how the surface is sampled and is quite fast. We achieve tes-
sellation rates of over 33.5 million triangles/second using a CPU implementation.

1 Introduction

Curves and surfaces defined via subdivision have become a fixture of the com-
puter modeling and animation industry. Commercial modeling packages such
as Maya as well as leading animation studios such as Pixar use subdivision

∗ Corresponding author.
Email addresses: schaefer@cs.tamu.edu (S. Schaefer), jwarren@cs.rice.edu

(J. Warren).

Preprint submitted to Elsevier 22 May 2008

Fig. 1. Adaptive tessellation of a subdivision surface that is non-polynomial every-
where using our algorithm. From left to right: patch structure from base surface,
adaptive tessellation based on approximate curvature, view-dependent tessellation,
and the shaded view-dependent surface without wireframe.

surfaces as one of their basic modeling primitives. As a result of this prolif-
eration, methods for manipulating and processing subdivision surfaces are a
topic of practical importance in Computer Graphics.

Perhaps the biggest impediment to developing such methods is the nature
of how shapes are defined via subdivision. Given a coarse base mesh p0, a
subdivision scheme defines an increasingly detailed sequence of meshes p1, p2,
p3, . . . via the recurrence

pj+1 = Spj (1)

Here, S is an operator that refines the mesh pj to form the new mesh pj+1. For
most simple subdivision schemes, the meshes pj can be modeled as a vector
of control points and the operator S can be viewed as a linear operator (i.e; a
matrix) that acts on pj . If the operator S is chosen appropriately, the sequence
of meshes p0, p1, p2, . . . converges to a limit mesh p∞ that approximates the
coarse mesh p0 [17].

The definition of the final mesh p∞ in terms of limits appears to be awkward in
comparison to other modeling schemes such as B-splines where the associated
curve or surface has a direct definition in terms of piecewise polynomials.
For schemes with explicit piecewise polynomial definitions, computing the
exact position of points on associated curves or surfaces corresponds to just
evaluating the appropriate polynomial at a particular parameter value [12].
For subdivision surfaces, this exact evaluation process is more difficult since
there is no explicit definition of the limit surfaces in terms of polynomials.

Currently, the authors are only aware of two methods for computing the exact
limit positions of points on a subdivision surface. One approach is to simply

2

apply the subdivision scheme several times and then apply a limit stencil 1

to reposition the vertices of the resulting mesh so that they lie on the limit
surface. This limit stencil can be computed as the dominant left eigenvector of
the subdivision matrix S associated with the scheme [4]. The drawback of this
approach is that the final mesh size must be compatible with the subdivision
process. (In the case of binary subdivision, the mesh size must be uniform and
increases exponentially by a factor of 4.) This same type of evaluation also
arises in the evaluation of wavelet basis functions in the tensor-product setting
that are defined from recursive relationships [16] again with the restriction to
the exponential sampling defined by subdivision on grids of spacing 1

2n .

An alternative approach, developed by Stam [15], allows for direct evaluation
of certain subdivision schemes near extraordinary vertices. Stam’s basic idea
for evaluating a subdivision surface near an extraordinary vertex is to subdi-
vide the mesh until the desired point lies on a locally uniform portion of the
mesh and then evaluate using the piecewise polynomial definition associated
with the uniform rules for the scheme. For schemes like Catmull-Clark [2]
or Loop [10] whose uniform rules generate piecewise polynomial limit sur-
faces, this approach works well. Unfortunately, methods such the butterfly
scheme [19] and

√
3 scheme [8] do not generate piecewise polynomial limit sur-

faces in the uniform case. For these schemes, Stam’s exact evaluation method
simply does not apply.

Contributions

We describe a method for exact evaluation of a limit mesh defined via sub-
division on a uniform grid of any size. As opposed to Stam’s method, our
technique operates on subdivision schemes that produce polynomial or non-
polynomial curves/surfaces. However, unlike Stam’s method which takes ad-
vantage of the piecewise polynomial nature of the surface, our technique does
not allow evaluation at arbitrary parameter values. Instead we compute all of
the exact evaluation stencils over a uniform grid via a simple system of lin-
ear equations derived from the scaling relations associated with the scheme or,
equivalently, as the dominant left eigenvector of an upsampled subdivision ma-
trix associated with the scheme. We then show how to use precomputed grids
of these exact evaluation stencils to create fast, adaptive polygonalizations of
non-polynomial quad-based subdivision surfaces.

1 A stencil is a set of weights applied to a set of locally-adjacent vertices in the
mesh. Stencils are also sometimes called masks or rules in subdivision terminology.

3

2 Exact evaluation via scaling relations

The key to our exact evaluation method is that fact that the limit functions
associated with a subdivision scheme satisfy a recurrence relation based on the
entries of the subdivision matrix S. To explain our method, we consider two
cases in this section: uniform curve schemes and non-uniform curve schemes.
The extension of our method to the case of surfaces is then relatively straight-
forward. (Such a surface extension is considered in Section 5.)

In the case of uniform curve schemes, the columns of the subdivision matrix S
are two-shifts of a single fundamental sequence of numbers si. If the subdivi-
sion is convergent, the limit curve p∞ associated with the coarse curve p0 can
be parameterized by a single variable x yielding the associated limit function
p∞[x]. Due to the linearity of the subdivision process, this limit function p∞[x]
can be written as a linear combination of translates of a single scaling function
φ[x]. Specifically, if the ith point of the jth discrete curve pj , pi

j, is treated as

lying at the parameter value x = i
2j , the limit function p∞[x] can be written

as a linear combination of the integer translates of the scaling function

p∞[x] =
∑

i∈Z

pi
0φ[x − i] (2)

where Z is the set of integers.

Combining Equations 1 and 2 implies that the function φ[x] satisfies the scaling

relation

φ[x] =
∑

i∈Z

siφ[2x − i] (3)

Notice that this scaling function holds for all values of x and not just at the
points x = i

2j produced by subdivision. Our goal is then to use this scaling
relation to compute the exact values of the scaling function φ[x] on a uniform
grid; i.e; for a given fixed positive integer n, compute φ[α] where α ∈ 1

n
Z.

To this end, let us assume that the scaling function φ[x] is supported on the
interval [−m, m]. Substituting x = α into the scaling relation where α lies
strictly in the range (−m, m) yields a set of 2mn − 1 homogeneous equations
in 2mn − 1 variables.

φ[α] =
∑

i∈Z

siφ[2α − i].

Note that if α /∈ (−m, m), the value φ[α] is zero due to the sparsity assumption.

Since these equations are homogeneous, their solution only specifies the values
φ[α] up to at most a fixed common multiple. To arrive at specific values for
φ[α], we observe that, for stationary schemes, convergence implies that the
sum of the integer translates of the scaling function must be identically 1 [17,

4

p.71].
∑

i∈Z

φ[x − i] = 1 (4)

Substituting x = α for α = 0, 1
n
, 2

n
, . . . , n−1

n
yields n auxiliary non-homogeneous

equations.
∑

i∈Z

φ[α − i] = 1

Using these two systems of equations, we then solve for the unknowns φ[α]. If
the subdivision scheme is convergent, the actual values of φ[α] are a solution to
this system of equations. Although we have no formal proof that this system
of equations always has these values as their unique solution, every example
scheme that we have tried always yields a single solution. Developing a proof
of uniqueness is one of our topics for future research. Also notice that this
evaluation method cannot evaluate the surface at arbitrary parameter values
(specifically irrational numbers) but is restricted to rational parameter values.

To complete this subsection, we compute the values of the scaling function for
the four-point interpolatory scheme of [3] for n = 3. To this end, we observe
that the scaling relation for this scheme has the form

φ[x] =
1

16
(−φ[2x + 3] + 9φ[2x + 1] + 16φ[2x] + 9φ[2x − 1] − φ[2x − 3]) (5)

Given this scaling function is support on the interval [−3, 3], we form 19
equations in 19 variable by substituting x = α for α = −9

3
, −8

3
, −7

3
, . . . , 7

3
, 8

3
, 9

3

into the scaling relation. Adding the three partition of unity constraints

3
∑

i=−2

φ[α − i] = 1

for α = 0, 1
3
, 2

3
yields a system of 22 equation in 19 unknowns. Assembling and

solving these equations yields a solution vector
{

φ[−9
3

], φ[−8
3

], . . . , φ[8
3
], φ[9

3
]
}

of the form
1

5589
{0,−1, 16, 0,−256,−410, 0, 2000, 4240,

5589, 4240, 2000, 0,−410,−256, 0, 16,−1, 0}
Figure 2 shows a plot of the solution vector for n = 21.

Given that our ultimate goal is to perform exact evaluation on subdivision
surfaces with extraordinary vertices, we must eventually move from the uni-
form case to the non-uniform case. To conclude this section, we consider a
stationary, but non-uniform curve example. Consider a non-uniform cubic B-
spline whose knots ti satisfy ti = i if i > 0 and ti = 2i if i < 0. If we subdivide
this spline by inserting a new knot between every pair of existing knots, the
resulting subdivision scheme is a stationary one that satisfies pj+1 = Spj .

5

�� �� � � � � �

���

���

���

���

�

Fig. 2. Plot of the basis function values returned from our method for the four-point
scheme with n = 21.

Restricted to the two-ring of the origin, this matrix S has the form

1
8

25
32

3
32

0 0

0 5
8

3
8

0 0

0 5
24

29
40

1
15

0

0 0 3
5

2
5

0

0 0 3
20

29
40

1
8

The remaining rules for the scheme away from the origin are the standard
rules for cubic B-spline subdivision.

The first question that we must address in examining this scheme is how should
we parameterize the control mesh pj . The standard technique for parameter-
izing both curve (and surface meshes) is to assign a uniform parameterization
based on mesh spacing. However, the subdivision matrix itself contains none
of this information. Therefore, we still assign the mesh point pj

i the parameter
value x = i

2j even though the associated subdivision rules are derived from
non-uniform b-splines. Given this uniform parameterization, we may still con-
sider piecewise linear functions pj[x] and their associated limit function p∞[x].
Now, our goal is to compute the exact values of p∞[α] for α = i

n
and verify

that these values are consistent with the values produced by the piecewise
polynomial definition of the underlying B-spline.

The key to this computation is to observe that the infinite subdivision matrix
S has five types of columns. Three columns lying in the one-ring of the origin
are distinct due to the effect of the non-uniform knot spacing at the origin.
The remaining columns to both the left and right of the origin are two-shifts of
the columns for uniform cubic B-splines. (We treat the left columns and right
columns as being of two different types for the sake of simpler pedagogy.) Each
of these column types has its own associated scaling function φ−2[x], φ−1[x],

6

φ0[x], φ1[x], φ2[x]. Now, the entries of each column specify the scaling relation
for the associated scaling function, i.e.

φ−2[x] = 1
8
φ−2[2x + 2] + 1

2
φ−2[2x + 1]+

3
4
φ−2[2x] + 1

2
φ−2[2x − 1] + 1

8
φ−2[2x − 2]

φ−1[x] = 1
8
φ−2[2x + 2] + 1

2
φ−2[2x + 1]+

25
32

φ−2[2x] + 5
8
φ−1[2x − 1] + 5

24
φ0[2x − 2]

φ0[x] = 3
32

φ−2[2x + 2] + 3
8
φ−1[2x + 1]+

29
40

φ0[2x] + 3
5
φ1[2x − 1] + 3

20
φ2[2x − 2]

φ1[x] = 1
15

φ0[2x + 2] + 2
5
φ1[2x + 1]+

29
40

φ2[2x] + 1
2
φ2[2x − 1] + 1

8
φ2[2x − 2]

φ2[x] = 1
8
φ2[2x + 2] + 1

2
φ2[2x + 1]+

3
4
φ2[2x] + 1

2
φ2[2x − 1] + 1

8
φ2[2x − 2]

To solve for the exact values of these scaling functions φn[x], we simply repeat
the same construction used in the uniform case. In particular, we substitute
x = α where α = i

n
into these scaling relations, construct an auxiliary system

of equations enforcing a partition of unity and solve the resulting system of
equations.

Clearly, the scaling functions φ−2[x] and φ2[x] are exactly the scaling functions
for uniform cubic B-splines. And indeed, the exact values produced by our
method concur with the exact values for the uniform cubic B-splines. The
three remaining scaling functions φ−1[x + 1], φ0[x] and φ1[x − 1] agree with
the scaling functions associated with the non-uniform cubic B-splines with
one apparent exception: the scaling functions are not smooth at the origin.
In fact, this tangent discontinuity is due to the reparameterization of x = 2t
for t > 0 used in relating the B-spline parameterization and the uniform
parameterization for our curve mesh. Accounting for this reparameterization,
our exact evaluation method produced the same values as generated by non-
uniform cubic B-splines.

3 Exact evaluation via left eigenvectors of an upsampled subdivi-

sion matrix

The previous section described a method for deriving a set of equations whose
solution was the exact values of the scaling function on the grid 1

n
Z. In this

7

section, we sketch the theoretical underpinnings of our method by relating
the linear system generated by these equations to a traditional method for
computing the exact values of a subdivision scheme on Z. For those interested
solely in implementing our method for surface schemes, we suggest skipping
this section.

In the uniform curve case, computing the exact values of the scaling function
φ[x] on the integer grid Z is well-known and relatively straight forward [17].
Recall the fundamental subdivision process of Equation 1. Iterating this pro-
cess yields

pj = Sjp0.

Observe that if we set pi
0 = 1 and 0 otherwise, the limit function p∞[x] is

simply the scaling function φ[x]. In this case, the value of the scaling function
φ[x] on Z are simply the entries of the row of S with index zero. For con-
vergent subdivision schemes, this row is simply the dominant left eigenvector
associated with the subdivision scheme. In particular, the values satisfy

{., φ[−1], φ[0], φ[1], .} = {., φ[−1], φ[0], φ[1], .}S.

Notice that this matrix formulation consists of exactly the same equations
that instantiating the fundamental scaling relation with x ∈ Z generates.

Interestingly, instantiating the fundamental scaling relation with x ∈ 1
n
Z can

also be interpreted in terms of a subdivision process. If we reparameterize via
x = x̂

n
, the scaling function satisfies the relation

φ[
x̂

n
] =

∑

i∈Z

siφ[2
x̂

n
− i].

Now, if we define a new scaling function φ̂[x̂] = φ[x̂
n
], this reparameterized

scaling function is a stretched copy of φ with its support widened by a factor
of n. Applying this definition, we arrive at a new recurrence relation of the
form

φ̂[x̂] =
∑

i∈Z

siφ̂[2x̂ − in].

Observe that due to the indexing, only every nth translate of φ̂[x̂] is used in
the recurrence.

To define the effect of this upsampling, we introduce a generating function
notation for the subdivision mask. Given a uniform subdivision matrix S rep-
resenting binary subdivision, the columns of S will be two-shifts of a funda-
mental set of numbers si that encode the scaling relationship for the basis
function. Collecting these numbers as coefficients of a polynomial yields the
subdivision mask s[z] associated with the scheme:

s[z] =
∑

i∈Z

siz
i.

8

One advantage of expressing the subdivision process in terms of a subdivision
mask is that the subdivision process can be succinctly expressed via the re-
currence pj+1[z] = s[z]pj [z

2] where pj [z] is the generating function with terms
of the form pi

jz
i.

If we define a new subdivision mask ŝ[z] in terms of an upsampled version
of the original subdivision mask s[z] via ŝ[z] = s[zn], the subdivision process
corresponding to this mask has a scaling relation of the form

φ̂[x̂] =
∑

i∈Z

ŝiφ̂[2x̂ − i].

Now, the exact values of new scaling function φ̂[x̂] on Z are exactly the values
of the original scaling function φ[x] on the grid 1

n
Z. To compute these values,

we simply construct the subdivision matrix Ŝ corresponding to the upsampled
mask ŝ[z]. Each column of this upsampled subdivision matrix Ŝ is a two-shift
of a column of S with n − 1 zeros inserted between each entry.

To compute the desired exact values, we construct a local version of the ma-
trix Ŝ and compute its dominant left eigenvectors. If n is a power of 2, this
dominant eigenvector is unique up to a scale factor. We can derive the exact
value by constraining the scaled entries to satisfy the partition of unity prop-
erty. Similarly, when Ŝ has several dominant eigenvectors (which is the usual
case), we solve for a linear combination of these eigenvectors that satisfies the
partition of unity property.

In the case of non-uniform schemes, the derivation of this upsampled subdivi-
sion matrix whose dominant left eigenvectors contain the exact values is subtle
and would take this paper in a theoretical direction too far from the main fo-
cus of this journal. Instead, we leave this topic to a future paper. However,
to illustrate that such a construction is possible, we consider the case of the
non-uniform cubic B-spline curve scheme of the previous section.

In this case, the curve scheme may be expressed as a vector-valued subdivision
scheme using the ideas of [11]. The basic idea behind vector-valued subdivision
is to treat the initial control mesh p0 as being a vector consisting of separate
several distinct meshes. The subdivision process then mixes entries in the
coarse vector via matrix multiplication to form each entry of the refined vector.
This process can be modeled quite succinctly using generating functions. If
p0[z] is a vector consisting of m generating functions, the subdivision mask
for a vector subdivision scheme is an m × m matrix of generating functions
s[z]. The vector-valued subdivision process is then modeled by the standard
recurrence pj+1[z] = s[z]pj [z

2].

For our second example, we can model our non-uniform curve scheme as a

9

vector-valued uniform curve scheme. In this framework, pj[z] is a vector of
five generating functions. The matrix mask s[z] associated with our vector-
valued scheme has the form

b[z] 25
32

+ 1
2z

+ 1
8z2

3
32z2 0 0

0 5z
8

3
8z

0 0

0 5z2

24
29
40

1
15z2 0

0 0 3z
5

2
5z

0

0 0 3z2

20
z
2

+ 29
40

+ 1
8z2 b[z]

where b[z] = z2

8
+ z

2
+ 3

4
+ 1

2z
+ 1

8z2 . Given this uniform scheme, we can now
compute the exact values of the scaling functions φ−2[x], φ−1[x], φ0[x], φ1[x],
and φ2[x] on Z. To this end, we simply construct the subdivision matrix S
associated with this scheme and compute its dominant left eigenvector. In
this case, the matrix S is a block matrix whose entries are the subdivision
matrices Sij corresponding to the entries sij[z] of the matrix subdivision mask
s[z]. If each of these block is chosen to be of size 3× 3 (due to the support of
the scaling functions), the appropriate finite portion of S is

1
2

1
2

0 1
2

0 0 0 0 0 0 0 0 0 0 0
1
8

3
4

1
8

1
8

25
32

0 3
32

0 0 0 0 0 0 0 0

0 1
2

1
2

0 1
2

0 0 0 0 0 0 0 0 0 0

0 0 0 0 5
8

0 3
8

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 5
8

0 3
8

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 5
24

0 29
40

0 1
15

0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 3
5

0 2
5

0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 3
5

0 2
5

0 0 0 0

0 0 0 0 0 0 0 0 0 0 1
2

0 1
2

1
2

0

0 0 0 0 0 0 0 0 3
20

0 29
40

1
8

1
8

3
4

1
8

0 0 0 0 0 0 0 0 0 0 0 1
2

0 1
2

1
2

.

Now, the dominant left eigenvector for this matrix is a multiple of the block
vector containing the exact values of the functions φh[x] for h = −2, . . . , 2 and
x = −1, 0, 1. Enforcing the partition of unity constraints on this eigenvector
yields the desired exact values.

In general, we compute the exact values for our non-uniform curve scheme on

10

the grid 1
n
Z by simply constructing the upsampled matrix subdivision mask

ŝ[z] = s[zn] and computing the dominant left eigenvectors of its corresponding
upsampled subdivision matrix Ŝ (i.e; a block matrix whose entries are subdi-
vision matrices corresponding to the mask sij[z

n]). Applying the partition of
unity constraints to these left eigenvectors yields the desired exact values.

4 Tangent masks

Before we conclude our discussion on curves, we should say something about
the exact evaluation of tangents at rational parameter values. While exact
evaluation of the limit surface is important and tangents can be numerically
approximated from these data points, we may desire more accurate tangents.
Later, when we explore surfaces, these tangent masks will be used to compute
normals for the purposes of shading the surface via lighting calculations.

Fortunately, evaluating the derivative of these basis functions (i.e. computing a
tangent mask) is very similar to exact evaluation of the original basis functions.
In fact, the derivative of these basis functions also satisfy a scaling relationship.
Differentiating Equation 3 yields a scaling relationship of the form

φ′[x] =
∑

i∈Z

2siφ
′[2x − i].

While the machinery for the evaluation of these tangent functions φ′[x] is the
same as the original scaling function φ[x], the normalization from Equation 4 is
no longer valid as the tangent masks must necessarily sum to zero. However,
the nullspace of the system of equations or, equivalently, the sub-dominant
eigenvectors of the matrix from Section 3 will yield the tangent mask for
the curve. To normalize the resulting tangent mask, we suggest the auxiliary
constraint

∑

i∈Z

(i − x)φ′[x − i] = 1,

which requires that the tangent mask applied to the linear function x must
yield a derivative of 1.

To illustrate this technique, we will compute the tangent mask of the four-
point scheme at parameter value 1

3
. Differentiating Equation 5 yields a scaling

relationship for the derivative of the basis function of

φ′[x] =
1

8
(−φ′[2x + 3] + 9φ′[2x + 1] + 16φ′[2x] + 9φ′[2x − 1] − φ′[2x − 3]).

Given that φ′[x] is supported over the same interval [−3, 3] as the func-
tion φ[x], we can evaluate the scaling relationship of φ′[x] at x = α for

11

-1-2-3 1 2 3

-0.5

-1

0.5

1

-1-2-3 1 2 3

-0.5

-1

0.5

1

Fig. 3. Plot of the derivative of the four-point basis function with n = 31.

α = −9
3

, −8
3

, . . . , 8
3
, 9

3
, which gives 19 equations in 19 unknowns. Adding the

normalization constraint

3
∑

i=−2

(i − α)φ′[α − i] = 1

for α = 0, 1
3
, 2

3
creates a total of 22 equations in 19 unknowns, which yields a

solution of

1

540
{0,−1, 8,−45,−64,−1, 360, 656, 584, 0,−584,−656,−360, 1, 64, 45,−8, 1, 0}.

Figure 3 shows a plot of φ′[x] for the four-point scheme for n = 31. Collecting
these terms for parameter value 1

3
gives the tangent mask

(φ′[
7

3
], φ′[

4

3
], φ′[

1

3
], φ′[

−2

3
], φ′[

−5

3
], φ′[

−8

3
]) =

1

540
(−8, 1,−584, 656,−64,−1).

5 Exact evaluation stencils for non-polynomial surface schemes

So far we have only considered exact evaluation for curve subdivision schemes.
But subdivision surfaces are far more prevalent in graphics and we would like
to extend the evaluation techniques for curves to non-polynomial subdivision
surfaces as well. In theory, the upsampling method presented in Section 3 can
be extended to the bivariate case. However, the size of the matrix becomes
large quickly and, unlike curves, there is no simple ordering of the basis func-
tions that produces the upsampled matrix structure that was so readily visible
with curves.

In this section, we explain how to modify the construction in Section 2 for
surfaces. More importantly, we pay special attention to extraordinary vertices
(valence 6= 4 for quad schemes or valence 6= 6 for triangle schemes). We then

12

740 740

312

312

28 28

28 28

18 18

1 1

1 1

740 740

312

312

28 28

28 28

18 18

1 1

1 1

Fig. 4. The exact evaluation stencil for the midpoint of an edge for the
√

3 subdivi-
sion scheme (with an implicit normalization of 2256).

show how we can use this exact evaluation method to create a fast, adaptive
tessellation of quadrilateral subdivision surfaces.

5.1 Uniform case

In general, surface subdivision schemes are very similar to curve subdivision
schemes except that the basis function φ[x] is now parameterized by a bivariate
parameter x that represents a vector of two numbers. Equations 3 and 4 are
identical except that the summations are over the 2D grid i ∈ Z×Z. Evaluating
the equations on the grid [−m, m]× [−m, m] at intervals of 1

n
yields a finite set

of equations whose solution is the value of the basis function over that grid.

This method works well for most uniform subdivision schemes, however, some
subdivision schemes such as

√
3 introduce a rotation into the uniform grid

complicating the parameterization. As long as the change in parameterization
can be encoded in the right-hand side of Equation 3, the method presented
here will still work. An easier solution is to realize that, after two levels of
subdivision,

√
3 becomes a ternary subdivision scheme and aligns with the

primal grid again simplifying the parameterization. Figure 4 shows the exact
evaluation stencil for

√
3 subdivision at the midpoint of an edge computed us-

ing this technique. Notice that because two rounds of
√

3-subdivision produces
a ternary subdivision scheme, no vertex will ever lie at this position for any
finite level of subdivision. However we can still solve for the exact evaluation
stencil despite the fact that the surface is non-polynomial.

5.2 Extraordinary vertices

Surfaces with extraordinary vertices behave similar to the non-uniform curve
case in Section 2 in that we have special rules in a small region around the ex-

13

traordinary vertex. Also, similar to non-uniform curves, we will have different
basis functions corresponding to different vertices to account for the modified
subdivision rules in the vicinity of the extraordinary vertex.

Like Stam’s exact evaluation method [15], we will assume that we have a sur-
face whose extraordinary vertices are sufficiently separated (no other extraor-
dinary vertices in the (m−1)-ring of an extraordinary vertex). For subdivision
schemes with basis functions supported over the two-ring, this means that each
quad of the surface can contain only one extraordinary vertex. Under this as-
sumption, the m-ring of an extraordinary vertex can be radially parameterized
by the sector number k as well as a uniform, bivariate parameter x. There-
fore, the basis functions are of the form φh[k, x]. Furthermore, we do not use a
shifted parameterization as for curves in Equation 3 but use a global param-
eterization in the vicinity of the extraordinary vertex. This parameterization
then leads to the basis function refinement rules

φh[k, x] =
∞
∑

j=0

∑

r

sh,j,rφj[k − r, 2x].

where φh[k, x] is the hth basis function associated with the hth vertex and sh,j,r

encodes the coefficients in the hth column of the subdivision matrix. Notice
that we can reduce the number of basis functions in the equation by noting
that the functions are only non-zero in their m-ring and that basis functions
outside the m-ring of the extraordinary vertex are simply translates of basis
functions on the edge of the m-ring yielding a finite summation. Unfortunately,
these equations are not sufficient to uniquely determine the values of the basis
functions but, like curve subdivision, convergent surface subdivisions schemes
must also have the property that the basis functions at a single point sum to
1. This property adds the additional constraint that

∞
∑

j=0

∑

r

φj[k − r, x] = 1.

To find the exact value of the basis functions, we simply evaluate these equa-
tions on the grid [0, m2] × [0, m2] at intervals of 1

n
producing a finite set of

equations in a finite number of variables. The solution to this system of equa-
tions is the exact values of the different basis functions.

5.3 Tangent masks

In the ordinary case, tangent masks for surfaces operate in a similar manner
to curves except we evaluate the derivatives in a specific parametric direction.
For tensor-product surfaces the result is trivially the curve limit mask ten-

14

4
1

4
1

4
1

4
1

3
1

3
1

12
1

12
1

12
1

12
1

v9
4

v9
1

v9
1

v9
1

v9
1

v9
1

v9
4

v9
4

v9
4

v9
4

9
4

4
1

4
1

4
1

4
1

3
1

3
1

12
1

12
1

12
1

12
1

v9
4

v9
1

v9
1

v9
1

v9
1

v9
1

v9
4

v9
4

v9
4

v9
4

9
4

Fig. 5. Subdivision rules for our non-polynomial subdivision scheme at vertices of
valence v.

sored with the curve derivative mask. However, the presence of extraordinary
vertices complicates exact computation of these tangent masks.

This complication comes from the fact that the parameterization around the
extraordinary vertex is non-uniform and some basis functions locally scale by
a different factor (not 2 as in the curve case). At the extraordinary vertex,
this scaling factor is given by the sub-dominant eigenvalue of the subdivision
matrix [5]. However, the scaling of the different functions around the extraor-
dinary vertex is more complex. Unfortunately, we do not yet have a simple
method for directly solving for the tangent mask in the neighborhood of an
extraordinary vertex.

Fortunately, we can still exactly compute tangent masks using a combination
of Stam’s algorithm [15] and our exact evaluation algorithm over ordinary
regions of the mesh. To evaluate the tangent functions at a rational param-
eter value (i,j)

n
, we subdivide the mesh until (i,j)

n
lies in a completely uniform

grid. Notice that this process can be accomplished efficiently using the eigen-
decomposition of the subdivision matrix as in [15]. However, unlike Stam’s
algorithm, we do not make the assumption that the surface is piecewise poly-
nomial in this regular region. Instead, we use the tangent masks from the
ordinary case with grid spacing 1

n
to evaluate the tangent at (i,j)

n
.

5.4 A non-polynomial quad subdivision example

To illustrate our algorithm, we will construct a non-polynomial, approximat-
ing subdivision scheme for quadrilateral surfaces whose basis functions are
supported over the two-ring. In the ordinary case (valence = 4), the subdivi-

15

sion scheme will be the tensor-product of a non-polynomial curve subdivision
scheme with the rules

p2i
k+1 = 1

6
pi−1

k + 2
3
pi

k + 1
6
pi+1

k

p2i+1
k+1 = 1

2
pi

k + 1
2
pi+1

k

The eigenvalues of this curve subdivision scheme are of the form 1, 1
2
, 1

6
, 1

6
, 1

6
, 0, . . .

and the resulting curves are C1 with bounded curvature but have no piecewise
polynomial representation. We then generalize these rules to the extraordinary
case resulting in the surface subdivision rules shown in Figure 5.

Like the corresponding curve subdivision scheme, this surface subdivision
scheme creates surfaces that are C1 everywhere, non-polynomial and have
bounded curvature everywhere except at extraordinary vertices. We have also
verified the smoothness of the subdivision scheme at extraordinary vertices by
analyzing the eigenvalues and eigenvectors using the techniques of Reif [13]
and Levin and Levin [9] but omit the details here for the sake of brevity.
All of the surfaces in this paper were generated using this non-polynomial
subdivision scheme.

Notice that, in general, this subdivision scheme is strictly worse than Catmull-
Clark subdivision [2] (which produces C2 surfaces almost everywhere) and
would not be used in practice. Other subdivision schemes such as Kobbelt’s
interpolatory quad scheme [7] or even butterfly subdivision [19] have no poly-
nomial representation. However, their basis functions are supported over the
three-ring. This does not cause problems for our method, but the increased
support means larger equations and more complexity. For the purposes of
illustration, we have opted for a simpler, non-polynomial subdivision scheme.

If we naively attempt to solve the equations from Section 5.2 to perform
exact evaluation, the number of variables produced is extremely large. For our
example, a valence 6 vertex with n = 3 yields a system of equations in 781
variables. However, much of this work is unnecessary. Many of these equations
redundantly solve for the ordinary basis function. By taking advantage of the
fact that the basis functions in the two-ring are actually ordinary and that
the one-ring basis functions become ordinary outside the one-ring, we can
reduce the number of equations dramatically. Since we know the value of
the basis functions outside the one-ring, we can also reduce the grid that we
evaluate the equations on to [0, 1] × [0, 1]. Finally, the basis functions will
express a reflection symmetry because the subdivision rules are rotationally
symmetric reducing the equations further. Combining these methods produces
a drastically reduced system of equations and, for our valence 6 example with
n = 3, produces only 51 variables (as opposed to 781 before). Figure 6 shows
two exact evaluation stencils for our example subdivision scheme at valence 5

16

	
�� 		��

����

�

	�

���	

��

	��

�	�

	��

��

���	 ���� 	�

	���� �	���

��

���

	��

	��

�	���

		�

���

�

	����

	
�	

�	�

	
�	

	���� 		�
 �

	
�� 		��

����

�

	�

���	

��

	��

�	�

	��

��

���	 ���� 	�

	���� �	���

��

���

	��

	��

�	���

		�

���

�

	����

	
�	

�	�

	
�	

	���� 		�
 �

Fig. 6. Exact evaluation stencils for our non-polynomial subdivision scheme at
x =

(

1
3 , 0

)

and x =
(

1
3 ,

1
3

)

.

with n = 3. Notice that there is an implied normalization that the entries of
stencils sum up to 1.

5.5 Adaptive tessellation of subdivision surfaces

Using the exact evaluation technique from Section 5 we can develop a very
efficient adaptive polygonalization technique for arbitrary subdivision surfaces
(polynomial or non-polynomial). Previous work in adaptive tessellation of sub-
division surfaces has largely concentrated on polynomial subdivision schemes.
Both Shiue et al. [14] and Bolz et al. [1] focus on adaptive tessellation of sub-
division surfaces using the GPU but take very different approaches. Shiue et
al. perform subdivision directly on the GPU by encoding two-ring neighbor-
hoods in a spiral fashion. Since the authors are performing subdivision, the
density of the surface increases exponentially with the level of subdivision.
Using this method the authors achieve a tessellation rate of about 2 million
triangles/second for a Catmull Clark surface (though later results and a more
recent GPU indicate tessellation rates of about 7 million triangles/second).

Bolz et al. take a different approach to adaptive tessellation of subdivision
surfaces. Instead of performing subdivision dynamically, the authors precom-
pute samples of the basis functions for each valence and then apply these basis
functions to the control points inside the GPU. These basis functions are pre-
computed using subdivision and, hence, the grid sizes increase exponentially
as in [14]. The authors also allow for adaptive tessellation by using different
subdivision levels on each patch of the surface. To fill the gaps in the surface
caused by different levels of subdivision, the authors simply fan triangles to
the neighboring vertices and achieve an impressive tessellation rate of about

17

Fig. 7. Left: uniform sampling grids generated by exact evaluation on rational grids
do not necessarily align along their boundaries. Right: our adaptive tessellation
takes the dual of the mesh and produces water-tight tessellations.

24 million vertices/second using the GPU.

Both of these methods also pay special attention to numerical errors because
the fact that the same vertex will be created multiple times from different
patches possibly producing gaps in the surface due to inexact arithmetic. In
contrast, we provide an adaptive tessellation technique based on our exact
evaluation scheme that does not have to pay special attention to creating a
watertight surface since each vertex is created only once. We also do not re-
strict the tessellation rates of neighboring patches (for example, enforcing that
the tessellation rates can only differ by one level) and always guarantee that
our surfaces are closed. Furthermore, we can sample the subdivision surface
on any rational grid

(

1
n

)

as opposed to the exponential grids
(

1
2n

)

created via
subdivision leading to much finer granularity in the adaptivity and results in
less polygons for the same degree of approximation of the surface.

Our adaptive tessellation routine is inspired by another adaptive tessellation
technique for implicit surfaces called Dual Contouring [6]. Dual Contouring
generates adaptive, watertight tessellations of implicit surfaces defined over
octrees by creating the topological dual of edges of the octree crossed by the
implicit surface. We take a similar approach for surfaces and note that simply
performing exact evaluation for polygons using different grid sizes produces a
mesh with many gaps along the edges (see Figure 8). Instead of using these
grids as the polygons, we use a dual grid whose vertices are located parametri-
cally at the centroid of each quad. The dual of a uniform quadrilateral grid is
simply another quadrilateral grid. Notice that this dual grid also has vertices
that lie at rational parameter values and, hence, can be evaluated exactly such
that the vertices are located on the limit surface using our method. Along the

18

Fig. 8. Left: gaps in surface due to different sampling rates. Right: closed, adaptive
tessellation using our algorithm.

shared edges between patches, grid vertices that do not align between patches
create triangles while coincident vertices create quads. Finally, at the vertices
of the mesh, we create a v-gon surrounding the vertex of valence v. Figures 7
and 8 show examples of tessellations produced by this technique. Notice that,
since each vertex is created exactly once, we do not have to worry about
floating point errors and we always obtain a watertight tessellation of the sur-
face. Zorin and Schroder [18] also developed a related method for adaptively
tessellating Doo-Sabin surfaces in the case of grids restricted to subdivision
sampling.

This adaptive tessellation technique works well for quadrilateral surfaces be-
cause the dual of a quadrilateral grid is also quadrilateral. If triangle subdi-
vision schemes are desired, the same process can be used. Also notice that,
like the quadrilateral case, the dual vertices lie at rational parameter values
and can be exactly evaluated. Figure 9 shows an example of this technique.
However, the dual of a regular triangle grid is a hexagonal tiling. Therefore
these hexagons must be triangulated before display. A simple solution is to
insert a new vertex at the centroid of each dual polygon and create a triangle
fan from the edges of the dual polygon to the centroid. In general, this new
vertex will not lie directly on the limit surface. If the user desires the inserted
vertex to lie on the limit surface, then the parametric location of the primal
vertex the polygon is dual to can be used for evaluation; however, we should
note that it is possible to create poorly shaped triangles with this technique if
the tessellation levels of adjacent triangles are not restricted. This tessellation
technique produces a

√
3-split [8] internally over each triangle and results in

another, more refined, regular grid of triangles. Along edges where the grid res-
olution does not match or at extraordinary vertices, the method still produces
a water-tight tessellation.

19

Fig. 9. Left: uniform sampling of triangle grids generated by exact evaluation on ra-
tional grids. Right: the dual tessellation creates n-gons, which must be triangulated
before display.

6 Implementation and results

In terms of implementation, we use the technique from Section 5 to pre-
compute an exact evaluation table for a restricted set of valences (we use
3-8) at different sampling rates (Figure 6 shows two example entries in the
table). These tables are quite small and take up about 2.5 MB of space for
n = 1-24 and valences 3-8. We also use a half-edge data structure for the base
mesh to efficiently collect the vertices in the one-ring of each quad for exact
evaluation.

When computing the dual of the evaluation grids to create a water-tight tes-
sellation, we consider the faces, edges and vertices of the base mesh separately.
Faces of the base mesh contain a uniform grid whose dual is another uniform
grid and is trivial to compute. Along edges, we take the list of dual vertex in-
dices from the two adjacent patches and perform a merge operation based on
the two grid sizes to create the edge polygons, which is quite fast. Finally, we
collect all of the dual vertex indices adjacent to each vertex for the polygons
dual to the control mesh vertices.

Figures 1, 8, 10 and 11 show examples of adaptive tessellations produced by
our method for subdivision surfaces that are non-polynomial everywhere. At
runtime we compute the tessellation parameters for each patch and many
different tessellation criteria could be used such as curvature. We calculate
view-dependent tessellation rates by projecting each quad from the base sub-
division surface onto the screen, computing its maximal edge length and di-
viding by the maximal number of pixels we would like edges on the adaptively
tessellated surface to be. Using our tessellation method, we are able to achieve
tessellation rates of over 33.5 million triangles/second on an Intel Core 2 6700
PC using the Intel compiler. Notice that, unlike other techniques, no GPU

20

Fig. 10. View dependent tessellation using rational sampling (top left) and expo-
nential, subdivision sampling (top right). An alternate view of the same tessellation
(bottom).

is being used to perform tessellation. We expect a GPU implementation to
achieve even more dramatic performance gains.

Figure 10 compares our tessellation algorithm using rational sampling
(

1
n

)

on the top left versus samples generated via subdivision on exponentially in-
creasing grids

(

1
2n

)

on the top right using the same view dependent tessellation
criteria. The bottom left and right of the figure show the same tessellations
from another viewpoint. The changes in resolution are much more subtle with
our tessellations than those produced by subdivision. Hence, our technique is
able to achieve much finer granularity when approximating the surface and re-
sults in far fewer polygons. In this example, the method based on exponential
grids requires over 40% more polygons than our method to achieve the same
level of approximation.

7 Conclusions and Future Work

In this paper we have demonstrated that it is possible to evaluate any sta-
tionary subdivision scheme at rational values. Our technique was based on
enumerating a system of equations relating the basis functions to one an-
other using the subdivision matrix. Solving this system of equations provides
the samples of the basis functions and leads to the exact evaluation stencils.
While this process is somewhat expensive for large sampling grids, the sten-

21

Fig. 11. Left: patch structure. Right: adaptive tessellation of a non-polynomial sub-
division surface.

cils can be pre-computed once and saved. We then showed how we could use
this exact evaluation method to create adaptive tessellations of quadrilateral
subdivision surfaces, which led to impressive tessellation rates.

There are several open problems we would like to consider in the future. One
is to attempt to extend the upsampling method in Section 3 from curves to
surfaces so that we do not have to manually enumerate the equations for the
scaling relationship. Unfortunately, the parameterization of surfaces with ex-
traordinary vertices is complicated and we have not created a simple technique
for doing so yet.

While all of the subdivision schemes we tried provided a unique evaluation
stencil from our equations, we currently have no proof of uniqueness. In the
future, we would like to develop such a proof. One might expect problems to
occur when evaluating more degenerate subdivision schemes such as linearly
dependent subdivision schemes, but our experiments linearly dependent sub-
division schemes did not produce any difficulties and the equations still had
unique solutions.

Finally, we intend to explore the idea of using pre-computed stencils to facil-
itate modeling using linear surfaces schemes that have C2 smoothness. Typ-
ically, such schemes require complicated basis functions with support much
larger than that of subdivision schemes such as Catmull-Clark. Our idea is
to isolate the complexity of the evaluation of the basis functions in a pre-
computation phase in which stencils for various values of n and various lo-
cal neighborhood topologies are constructed. Given these stencils, our task
is to then develop a mesh indexing scheme that characterizes the topological
structure of the local neighborhood of a quad (or triangle) allowing for fast
application of the appropriate stencil to perform exact evaluation.

Acknowledgements

22

We would like to thank Bay Raitt for the models of the “Monster Frog” and
“Big Guy” as well as Ergun Akleman for the shape in Figure 11.

References

[1] J. Bolz, P. Schröder, Evaluation of subdivision surfaces on programmable
graphics hardware.
URL citeseer.ist.psu.edu/bolz04evaluation.html

[2] E. Catmull, J. Clark, Recursively generated b-spline surfaces on arbitrary
topological meshes, Computer Aided Design 10 (6) (1978) 350–355.

[3] N. Dyn, J. Gregory, D. Levin, A four point interpolatory subdivision scheme
for curve design, Computer Aided Geometric Design 4 (1987) 257–268.

[4] M. Halstead, M. Kass, T. DeRose, Efficient, fair interpolation using catmull-
clark surfaces, Computer Graphics 27 (Annual Conference Series) (1993) 35–44.

[5] M. Halstead, M. Kass, T. DeRose, Efficient, fair interpolation using catmull-
clark surfaces, in: SIGGRAPH ’93: Proceedings of the 20th annual conference
on Computer graphics and interactive techniques, 1993.

[6] T. Ju, F. Losasso, S. Schaefer, J. Warren, Dual contouring of hermite data,
ACM Trans. Graph. 21 (3) (2002) 339–346.

[7] L. Kobbelt, Interpolatory subdivision on open quadrilateral nets with arbitrary
topology, in: Computer Graphics Forum (Proc. EUROGRAPHICS ’96), 15(3),
1996.

[8] L. Kobbelt, sqrt(3)-subdivision, in: SIGGRAPH ’00: Proceedings of the 27th
annual conference on Computer graphics and interactive techniques, 2000.

[9] A. Levin, D. Levin, Analysis of quasi uniform subdivision, Applied and
Computational Harmonic Analysis 15(1) (2003) 18–32.

[10] C. Loop, Smooth subdivision surfaces based on triangles, Masters Thesis.,
University of Utah, Dept. of Mathematics.

[11] C. Micchelli, J. Sauer, On vector subdivision, Math. Z. 229 (1998) 621–674.

[12] L. Ramshaw, Blossoms are polar forms, Computer Aided Geometric Design
6 (4) (1989) 323–358.

[13] U. Reif, A unified approach to subdivision algorithms near extraordinary
vertices, Computer Aided Geometric Design 12 (2) (1995) 153–174.

[14] L.-J. Shiue, I. Jones, J. Peters, A realtime gpu subdivision kernel, ACM Trans.
Graph. 24 (3) (2005) 1010–1015.

23

[15] J. Stam, Exact evaluation of catmull-clark subdivision surfaces at arbitrary
parameter values, in: SIGGRAPH ’98: Proceedings of the 25th annual
conference on Computer graphics and interactive techniques, 1998.

[16] G. Strang, Wavelets and dilation equations: a brief introduction, SIAM Review
31 (4) (1989) 614–627.

[17] J. Warren, H. Weimer, Subdivision Methods for Geometric Design: A
Constructive Approach, Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 2001.

[18] D. Zorin, P. Schröder, Subdivision for modeling and animation (2000).
URL http://mrl.nyu.edu/ dzorin/sig00course/coursenotes00.pdf

[19] D. Zorin, P. Schröder, W. Sweldens, Interpolating subdivision for meshes
with arbitrary topology, in: SIGGRAPH ’96: Proceedings of the 23rd annual
conference on Computer graphics and interactive techniques, 1996.

24

