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Abstract vision. Given a coarsbasemeshpg, a subdivision scheme

defines an increasingly detailed sequence of meshes,
In this paper, we describe a method for exact evaluation ps, . .. via the recurrence
of a limit mesh defined via subdivision on a uniform grid
of any size. Other exact evaluation technique either retstri Pjt1 = Sp; 1)
the grids to have subdivision sampling and are, hence, ex-

ponentially increasing in size or make assumptions about , N
the new meslp;;. For most simple subdivision schemes,

the underlying surface being piecewise polynomial (Stam’s _
method is a widely used technique that makes this assumpthe meshesp; can be modeled as a vector of control points

tion). As opposed to Stam’s technigue, our method worksand t.he operata$ can be viewed as a Iir!ear operator (i.e; a
for both polynomial and non-polynomial schemes. The val- Matrix) that acts om;. If the operatorS'is chosen appro-

ues for this exact evaluation scheme can be computed vidTi2tely, the sequence of mesh@spi, ps, ... converges to

a simple system of linear equation derived from the scal- & iMit Meshp., that approximates the coarse mesH16].

ing relations associated with the scheme or, equivalently, The definition of the f|_nal mesbo_c in terms of limits .

as the dominant left eigenvector of an upsampled subdivi-2PP€ars to be awkward in comparison to other modeling
sion matrix associated with the scheme. To illustrate one SCheémes such as B-splines where the associated curve or
possible application of this method, we demonstrate howSurface has a direct definition in terms of piecewise polyno-

to generate adaptive polygonalizations of a non-polyndmia Mials. For schemes with explicit piecewise polynomial defi-
quad-based subdivision surfaces using our exact evalua-Nitions, computing the exact position of points on assedat

tion method. Our method guarantees a water-tight tessel-CUrves or surfaces corresponds to just evaluating the appro

lation no matter how the surface is sampled and is quite priate polynomial at a particular parameter value [11]. For
fast. We achieve tessellation rates of o8&r5 million tri- subdivision surfaces, this exact evaluation process i€mor

angles/second using a CPU implementation. diﬁicu!t since there is no explicit definition of the limit su
faces in terms of polynomials.
Currently, the authors are only aware of two methods for
. computing the exact limit positions of points on a subdi-
1. Introduction vision surface. One approach is to simply apply the sub-
division scheme several times and then apply a Istén-
Curves and surfaces defined via subdivision have be-cil® to reposition the vertices of the resulting mesh so that
come a fixture of the computer modeling and animation in- they lie on the limit surface. This limit stencil can be com-
dustry. Commercial modeling packages such as Maya agputed as the dominant left eigenvector of the subdivision
well as leading animation studios such as Pixar use subdi-matrix S associated with the scheme [4]. The drawback of
vision surfaces as one of their basic modeling primitives. this approach is that the final mesh size must be compatible
As a result of this proliferation, methods for manipulating with the subdivision process. (In the case of binary sub-
and processing subdivision surfaces are a topic of practicadivision, the mesh size must be uniform and increases ex-

importance in Computer Graphics. 1 — ) ) )
. . . . A stencil is a set of weights applied to a set of locally-adjacver-
Perhaps the biggest impediment to de\{ebp'ng SUCh_tices in the mesh. Stencils are also sometimes called masksesrirul
methods is the nature of how shapes are defined via subdisubdivision terminology.

Here, S is an operator thakefinesthe mestyp; to form




Figure 1. Adaptive tessellation of a subdivision surface that is non-polynomial everywhere using
our algorithm. From left to right: patch structure from base surface, adaptive tessellation based on
approximate curvature, view-dependent tessellation, and the shaded surface.

ponentially by a factor of 4.) This same type of evaluation 2. Exact evaluation via scaling relations

also arises in the evaluation of wavelet basis functionisen t

tensor-product setting that are defined from recursive rela  The key to our exact evaluation method is that fact that
tionships [15] again with the restriction to the expondntia the limit functions associated with a subdivision scheme
sampling defined by subdivision on grids of spac'bég satisfy a recurrence relation based on the entries of the sub

An alternative approach, developed by Stam [14], allows division matrix S. To explain our method, we consider
for direct evaluation of certain subdivision schemes ngare tWo cases in this section: uniform curve schemes and non-
traordinary vertices. Stam'’s basic idea for evaluatingta su uniform curve schemes. The extension of our method to the
division surface near an extraordinary vertex is to suldgivi  case of surfaces is then relatively straightforward. (Saich
the mesh until the desired point lies on a locally uniform Surface extension is considered in Section 4.)
portion of the mesh and then evaluate using the piecewise !N the case of uniform curve schemes, the columns of the
polynomial definition associated with the uniform rules for Subdivision matrixS are two-shifts of a single fundamental
the scheme. For schemes like Catmull-Clark [2] or Loop [9] Seduence of numbers. If the subdivision is convergent,
whose uniform rules generate piecewise polynomial limit the limit curvep,, associated with the coarse cupgcan
surfaces, this approach works well. Unfortunately, method De parameterized by a single variablgielding the associ-
such the butterfly scheme [18] and3 scheme [7] do not  ated limit functionp.[z]. Due to the linearity of the subdi-
generate piecewise polynomial limit surfaces in the unifor ~ Vision process, this limit functiop. [z] can be written as a
case. For these schemes, Stam’s exact evaluation methotinear combination of translates of a single scaling fuoreti

simply does not apply. la]. Specifically, if tr_]ez‘th point of thej*" discrete curve
pj, b}, is treated as lying at the parameter value 57, the
Contributions limit function p.. [x] can be written as a linear combination

We describe a method for exact evaluation of a limit of the integer translates of the scaling function

mesh defined via subdivision on a uniform grid afy _ i .

size. As opposed to Stam’s method, our technique oper- Peole] = Zp()d)[z d @)
ates on subdivision schemes that produce polynomial or
non-polynomial curves/surfaces. The stencils for this ex- WhereZ is the set of integers.

act evaluation scheme can be computed via a simple system Combining Equations 1 and 2 implies that the function
of linear equation derived from the scaling relations assoc ¢[z] satisfies thecaling relation

ated with the scheme or, equivalently, as the dominant left )

eigenvector of an upsampled subdivision matrix associated Pla] = Z sif[2a — ] ®)
with the scheme. We then show how to use this exact eval- i€z

uation scheme to create adaptive polygonalizations of non-Notice that this scaling function holds fatl values ofx
polynomial quad-based subdivision surfaces. and not just at the points = 2% produced by subdivision.

i€z



Our goal is then to use this scaling relation to compute the
exact values of the scaling functigiz] on a uniform grid;

i.e; for a given fixed positive integer, computep|a] where

a € %Z. To this end, let us assume that the scaling function
¢[z] is supported on the intervalm, m]. Substitutinge =

« into the scaling relation where lies strictly in the range
(—m,m) yields a set omn — 1 homogeneous equations
in 2mn — 1 variables.

dla] =Y sip[20 — ).

i€z

-3 -2

Figure 2. Plot of the basis function values
returned from our method for the four-point
Note that ifa ¢ (—m,m), the valuep|a] is zero due to the scheme with n = 21.
sparsity assumption.
Since these equations are homogeneous, their solution

%ndﬁis?ec[pes th_e vaIue;S{a]_L_Jp to at most a fixed common for o = 0, 3, 2 yields a system 020 equation in17 un-

ple. To arrive at specific values faia], we observe knowns. Assembling and solving these equations yields a
that, for stationary schemes, convergence implies that the_, ... vector{cb 1, 6[=7] 617, 6[2]) of the form
sum of the integer translates of the scaling function must be> A

identically1 [16, p.71].
——{0,-1,16,0, —256, —410, 0, 2000, 4240,

5589
; oz —i] =1 ) 5589, 4240, 2000, 0, —410, —256,0, 16, —1}
Substitutingr = afora = 0,1, 2 ... =L yieldsn aux- Figure 2 shows a plot of the solution vector fok= 21.
iliary non-homogeneous equations. Given that our ultimate goal is to perform exact evalua-
tion on subdivision surfaces with extraordinary verticgs,
Z(;S[a —il=1 must eventually move from the uniform case to the non-
i€z uniform case. To conclude this section, we consider a sta-

tionary, but non-uniform curve example. Consider a non-
uniform cubic B-spline whose knotgsatisfyt; = iif i > 0
andt; = 2: if ¢ < 0. If we subdivide this spline by insert-
ing a new knot between every pair of existing knots, the

of equations. Although we have no formal proof that this
system of equations always has these values as their uniquéesultmg subdivision scheme is a stationary one that-satis
fiesp; 11 = Sp;. Restricted to the two-ring of the origin,

solution, every example scheme that we have tried always
yields a single solution. Developing a proof of uniqueness thiS matrix.s has the form

Using these two systems of equations, we then solve for
the unknownspa]. If the subdivision scheme is conver-
gent, the actual values @f«] are a solution to this system

is one of our topics for future research. Also notice that 1 25 3 o
this evaluation method cannot evaluate the surface at arbi- 0 2B 4
trary parameter values (specifically irrational numbers) b 0 3 o1 g
is restricted to rational parameter values. o o ¥ P

To complete this subsection, we compute the values of 0 0 2% g_g 1

the scaling function for the four-point interpolatory sofe
of [3] for n = 3. To this end, we observe that the scaling The remaining rules for the scheme away from the origin

relation for this scheme has the form are the standard rules for cubic B-spline subdivision.
1 The first question that we must address in examining this
pla] = 6 02z + 3] + 992z + 1] + 16¢[2z] + scheme is how should we parameterize the control mesh
9[22 — 1] — ¢[2z — 3)) pj. The standard techr_lique for_ paramefnerizing both curve
(and surface meshes) is to assign a uniform parameteriza-
Given this scaling function is support on the interjva8, 3], tion based on mesh spacing. However, the subdivision ma-
we form 17 equations inL7 variable by substituting = « trix itself contains none of this information. Thereforee w
fora = 5, 51, 5,..., §, %, § into the scaling relation.  still assign the mesh poin{ the parameter value =
Adding the three partition of unity constraints even though the associated subdivision rules are derived
from non-uniform b-splines. Given this uniform parame-
Z pla—i] =1 terization, we may still consider piecewise linear funatio

P p;lx] and their associated limit function.[z]. Now, our



goal is to compute the exact valuesof [a] for a = % parameterization and the uniform parameterization for our
and verify that these values are consistent with the valuescurve mesh. Accounting for this reparameterization, our
produced by the piecewise polynomial definition of the un- exact evaluation method produced the same values as gen-
derlying B-spline. erated by non-uniform cubic B-splines.

The key to this computation is to observe that the infi-

nite subdivision matrixS has five types of columns. Three 3 Exact evaluation via left eigenvectors of an
columns lying in the one-ring of the origin are distinct due S ;
to the effect of the non-uniform knot spacing at the ori- upsampled subdivision matrix

gin. The remaining columns to both the left and right of
the origin are two-shifts of the columns for uniform cubic

B-splines. (We treat the left columns and right columns as
being of two different types for the sake of simpler peda-
gogy.) Each of these column types has its own associate
scaling functionp_s[z], ¢_1[x], ¢o[z], ¢1[x], 2[z]. Now,

the entries of each column specify the scaling relation for
the associated scaling function, i.e.

The previous section described a method for deriving a
set of equations whose solution was the exact values of the
scaling function on the gri%z. In this section, we sketch

he theoretical underpinnings of our method by relating the
inear system generated by these equations to a traditional
method for computing the exact values of a subdivision
scheme orZ. For those interested solely in implementing
our method for surface schemes, we suggest skipping this

section.
b_olx] = l¢_2[2m +2) + l¢_2[2x +1]+ In the uniform curve case, computing the exact values of
8 2 the scaling functio|x] on the integer grid is well-known
§¢_2[2x] + 1¢_2[2x —1)+ l(b_z[gx -2 and relatively straight forward [16]. Recall the fundanaént
‘11 2 ) 8 subdivision process of Equation 1. lterating this process
P-1lz] = §¢—2[2$ +2+ 59220 +1] + yields

25 5 5 p; = 5.
35 0-2[20] + o122 =1+ o[22 — 2] Observe that if we seti = 1 and0 otherwise, the limit

3 3 function p. [z] is simply the scaling functiog[z]. In this
Polz] = oo +2+ cdife+1]+ case, the value of the scaling functipfx] on Z are simply

29 3 3 the entries of the row of with index zero. For conver-

20%022] + 12z — 1] + opdaf2z — 2] gent subdivision schemes, this row is simply the dominant

1 2 left eigenvector associated with the subdivision scheme. |
$rlz] = pol2r + 2]+ ~o[20 + 1] + particular, the values satisfy

29 1 1

1 1 Notice that this matrix formulation consists of exactly the

] = o[22+ 2]+ so[22+ 1] +

¢alz] 8¢2[ z+2] 2¢2[ z+1) same equations that instantiating the fundamental scaling

3 1 1 relation withz € Z generates

~$o[22] + S o[22 — 1] + o[22 — 2 i € rares. ,

4¢2[ ] 2¢2[ z—1] 8¢2[ v Interestingly, instantiating the fundamental scalingsel

To solve for the exact values of these scaling functions tionwithz € ;7 can also be interpreted in terms of a subdi-
én|x], we simply repeat the same construction used in thevision process. If we reparameterize via= -, the scaling
uniform case. In particular, we substitute = « where function satisfies the relation
a = - into these scaling relations, construct an auxiliary &
system of equations enforcing a partition of unity and solve ol=] = Z Si¢[2g — .
the resulting system of equations. i€Z

Clearly, the scaling functiong_s[z] and ¢s[x] are ex- . _ _ T 61 i
actly the scaling functions for uniform cubic B-splines.dan oW if we define a new scaling functiaf(z] = ¢[;;], this
indeed, the exact values produced by our method concuf€Parameterized scaling function is a stretched copy of
with the exact values for the uniform cubic B-splines. The With its support widened by a factor of. Applying this
three remaining scaling functions_, [z + 1], ¢o[z] and definition, we arrive at a new recurrence relation of the form
1lx — 1] agree With.the scqling fupctions associated with 3] = Z 5: 9[22 — in].
the non-uniform cubic B-splines with one apparent excep-
tion: the scaling functions are not smooth at the origin. In
fact, this tangent discontinuity is due to the reparameteri Observe that due to the indexing, only every translate
zation ofz = 2¢ for t > 0 used in relating the B-spline of ¢[Z] is used in the recurrence.

SI®

i€z



To define the effect of this upsampling, we introduce then mixes entries in the coarse vector via matrix multipli-
a generating function notation for the subdivision mask. cation to form each entry of the refined vector. This process
Given a uniform subdivision matri% representing binary  can be modeled quite succinctly using generating functions
subdivision, the columns of will be two-shifts of a fun- If po[z] is a vector consisting ofn generating functions,
damental set of numbess that encode the scaling relation- the subdivision mask for a vector subdivision scheme is an
ship for the basis function. Collecting these numbers as co-m x m matrix of generating functions[z]. The vector-

efficients of a polynomial yields thsubdivision mask|z] valued subdivision process is then modeled by the standard
associated with the scheme: recurrencey; 1[z] = s(z|p;[2?].
_ For our second example, we can model our non-uniform
slz] = Z 52" curve scheme as a vector-valued uniform curve scheme. In
i€Z this framework,p;[z] is a vector of five generating func-

: - . tions. The matrix mask|z] associated with our vector-
One advantage of expressing the subdivision process in

terms of a subdivision mask is that the subdivision processVaIUEd scheme has the form

can be succinctly expressed via the recurrengg [z] = blz] % + é + é @ 0 0
s[z]p;[2%] wherep; 2] is the generating function with terms 0 % 35 0 0
of the formp’ 2" 0 % 2 T 0
If we define a new subdivision magkz] in terms of an 0 0 = 5—{ 0
upsampled version of the original subdivision mag¥ via 0 0 % 24204 L b
§[z] = s[z"], the subdivision process corresponding to this 2
mask has a scaling relation of the form whereb[z] = 2 + % + 2 + L + L5, Given this uniform
R R scheme, we can now compute the exact values of the scal-
P = %ip[28 — ). ing functionse _s[x], ¢_1[z], ¢olz], ¢1[x], andeps[z] on Z.
i€Z To this end, we simply construct the subdivision mat¥ix
. associated with this scheme and compute its dominant left
Now, the exact values of new scaling functioft] onZ eigenvector. In this case, the matiskis a block matrix
are exactly the values of the original scaling functigm]| whose entries are the subdivision matri¢gs correspond-

on the grid1Z. To compute these values, we simply con- ing to the entries;;[z] of the matrix subdivision maskz].
struct the subdivision matri& corresponding to the upsam-  If each of these block is chosen to be of size 3 (due to
pled masks|z]. Each column of this upsampled subdivision the support of the scaling functions), the appropriateinit
matrix S is a two-shift of a column of with n — 1 zeros  portion of S is

inserted between each entry.

1 1 1
To compute the desired exact values, we construct alo-| 7 3 (1) ? 2(1 0 2 0000070700
. . A . . s T sz = 0 =% 0 0 0 0O0O0O00O0
cal version of the matrix$ and compute its dominant left 8 + 8 8 32 0 ?b? 000 00000
eigenvectors. If: is a power of2, this dominant eigenvec- 2 2 2 3
- - . 0000 2 0 2 0 0 0 0O0O0O0O0
tor is unique up to a scale factor. We can derive the exact 8 8
g - . : 0o000O0OOO OO O0O O0OO0OO0DO0O0
value by constraining the scaled entries to satisfy the-part 5 3
. - -~ - 0oo000O0O 2 0 5 0 0 0O0O0O0O0
tion of unity property. Similarly, whet$ has several dom- 8 8
. . . 0000OOOOO0O O0O O0O0OO0OO0OO
inant eigenvectors (which is the usual case), we solve for 5 29 1
a linear combination of these eigenvectors that satisfes th 00000 5 04 05 00000
artition of unity propert 0000000000 00000
P Y property. o 00000002 02 00000
In the case of non-uniform schemes, the derivation of 5 5
. . . 0O000O0OO0OO0OO0OO0OO0O 0ODO0ODO0ODO0DDO0
this upsampled subdivision matrix whose dominant left 3 2
. . . 00000 0 O0O O0O 2 0 £ 0000
eigenvectors contain the exact values is subtle and would 5 ? 1 1
. . . . . 0O000O0OO0OO0OO0OO0OO0O 5 035350
take this paper in a theoretical direction too far from the 3 $H 11 3 1
main focus of this conference. Instead, we leave this topic 00000 00 035 05 § 8 43
' ! 00000 O0OOOTOO0OO0ZLo033

to a future paper. However, to illustrate that such a constru
tion is possible, we consider the case of the non-uniform  Now, the dominant left eigenvector for this matrix is a
cubic B-spline curve scheme of the previous section. multiple of the block vector containing the exact values of
In this case, the curve scheme may be expressed as the functionsg,[z] for h = —2,...,2 andz = —1,0, 1.
vector-valued subdivision scheme using the ideas of [10]. Enforcing the partition of unity constraints on this eigen-
The basic idea behind vector-valued subdivision is to treatvector yields the desired exact values.
the initial control mestp, as being a vector consisting of In general, we compute the exact values for our non-
separate several distinct meshes. The subdivision procesaniform curve scheme on the grfgz by simply construct-



ing the upsampled matrix subdivision magk] = s[z"] 1 1

and computing the dominant left eigenvectors of its corre-

sponding upsampled subdivision matéixi.e; a block ma- 28 312 28
trix whose entries are subdivision matrices corresponding
to the masks;;[2"]). Applying the partition of unity con-
straints to these left eigenvectors yields the desiredtexac
values.

18 74Q A 740 18

28 312 28

4 Exact evaluation sencils for non-
polynomial surface schemes

So far we have only considered exact evaluation for  Figure 3. The exact evaluation stencil for
curve subdivision schemes. But subdivision surfaces arefa  the midpoint of an edge for the v/3 subdivi-
more prevalent in graphics and we would like to extend the  sjon scheme (with an implicit normalization
evaluation techniques for curves to non-polynomial subdi-  of 2256).
vision surfaces as well. In theory, the upsampling method
presented in Section 3 can be extended to the bivariate case.
However, the size of the matrix becomes large quickly and,
unlike curves, there is no simple ordering of the basis func- position for any finite level of subdivision. However we can
tions that produces the upsampled matrix structure that wasStill solve for the exact evaluation stencil despite the fac
so readily visible with curves. that the surface is non-polynomial.

In this section, we explain how to modify the construc-
tion in Section 2 for surfaces. More importantly, we pay 4.2 Extraordinary vertices
special attention to extraordinary vertices (valegcd for
guad schemes or valengeb for triangle schemes). We then Surfaces with extraordinary vertices behave similar to
show how we can use this exact evaluation method to cre-the non-uniform curve case in Section 2 in that we have
ate a fast, adaptive tessellation of quadrilateral subidiri special rules in a small region around the extraordinary ver

surfaces. tex. Also, similar to non-uniform curves, we will have dif-
ferent basis functions corresponding to different vestite
4.1 Uniform Case account for the modified subdivision rules in the vicinity of

the extraordinary vertex.

In general, surface subdivision schemes are very similar Like Stam’s exact evaluation method [14], we will as-
to curve subdivision schemes except that the basis functionsume that we have a surface whose extraordinary vertices
¢[x] is now parameterized by a bivariate parametéhat are sufficiently separated (no other extraordinary vestioe
represents a vector of two numbers. Equations 3 and 4 arghe (m — 1)-ring of an extraordinary vertex). For subdivi-
identical except that the summations are over the 2D grid sion schemes with basis functions supported over the two-
i € Z x Z. Evaluating the equations on the gfidm, m] x ring, this means that each quad of the surface can contain
[—m,m] at intervals of! yields a finite set of equations only one extraordinary vertex. Under this assumption, the
whose solution is the value of the basis function over that m-ring of an extraordinary vertex can be radially parameter-
grid. ized by the sector numbéras well as a uniform, bivariate

This method works well for most uniform subdivision parameter:. Therefore, the basis functions are of the form
schemes, however, some subdivision schemes sugfBas ¢ [k, z]. Furthermore, we do not use a shifted parameteri-
introduce a rotation into the uniform grid complicating the zation as for curves in Equation 3 but use a global param-
parameterization. As long as the change in parameteriza-eterization in the vicinity of the extraordinary vertex. i¥h
tion can be encoded in the right-hand side of Equation 3, parameterization then leads to the basis function refinemen
the method presented here will still work. An easier solu- rules .
tion is to realize that, after two levels of subdivisiar3 be-
comes a ternary subdivision scheme and aligns with the pri- Onlksa] =D > snjrdslk =, 2a)
mal grid again simplifying the parameterization. Figure 3
shows the exact evaluation stencil fgB subdivision atthe  whereg, [k, x] is theh!” basis function associated with the
midpoint of an edge computed using this technique. No- h!" vertex ands;, ;- encodes the coefficients in thé" col-
tice that because two rounds ¢B-subdivision produces a umn of the subdivision matrix. Notice that we can reduce
ternary subdivision scheme, no vertex will ever lie at this the number of basis functions in the equation by noting that

j=0 r
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Figure 5. Exact evaluation stencils for our
non-polynomial subdivision scheme at x =

(5.0)and = = (3, 3)-

Figure 4. Subdivision rules for our non-
polynomial subdivision scheme at vertices of
valence v.

the functions are only non-zero in their-ring and that ba- Like the corresponding curve subdivision scheme, this
sis functions outside the-ring of the extraordinary vertex  surface subdivision scheme creates surfaces that aes-
are simply translates of basis functions on the edge of theerywhere, non-polynomial and have bounded curvature ev-
m-ring yielding a finite summation. Unfortunately, these erywhere except at extraordinary vertices. We have also
equations are not sufficient to uniquely determine the walue verified the smoothness of the subdivision scheme at ex-
of the basis functions but, like curve subdivision, conver- traordinary vertices by analyzing the eigenvalues andeige
gent surface subdivisions schemes must also have the propvectors using the techniques of Reif [12] and Levin and
erty that the basis functions at a single point sun.t@his Levin [8] but omit the details here for the sake of brevity.
property adds the additional constraint that All of the surfaces in this paper were generated using this

- non-polynomial subdivision scheme.

Z Z pjlk —r ] =1. Notice that, in general, this subdivision scheme is strictl

=0 r worse than Catmull-Clark subdivision [2] (which produces
C? surfaces almost everywhere) and would not be used

To find the exact value of the basis functions, we sim- i practice. Other subdivision schemes such as Kobbelt's

ply evaluate these equations on the déidn?] x [0,m*|at  jnterpolatory quad scheme [6] or even butterfly subdivi-
intervals of% producing a finite set of equations in a finite  gjg [18] have no polynomial representation. However,
number of variables. The solution to this system of equa- their basis functions are supported over the three-rings Th
tions is the exact values of the different basis functions. does not cause problems for our method, but the increased
support means larger equations and more complexity. For
the purposes of illustration, we have opted for a simpler,
non-polynomial subdivision scheme.

If we naively attempt to solve the equations from Sec-
tion 4.2 to perform exact evaluation, the number of variable
produced is extremely large. For our example, a valence 6
vertex withn = 3 yields a system of equations in 781 vari-
ables. However, much of this work is unnecessary. Many
of these equations redundantly solve for the ordinary ba-
sis function. By taking advantage of the fact that the basis

4.3 A non-polynomial quad subdivision
example

To illustrate our algorithm, we will construct a non-
polynomial, approximating subdivision scheme for quadri-
lateral surfaces whose basis functions are supportedlower t
two-ring. In the ordinary case (valenee 4), the subdivi-
sion scheme will be the tensor-product of a non-polynomial
curve subdivision scheme with the rules

2i Loyi=1 4 2,0 4 L+l functions in the two-ring are actually ordinary and that the
Dy 1 6Pk 3P T Pk . ) ) ) .

i+l Loy Loatl one-ring basis functions become ordinary outside the one-
Pr+1 = 2Pk T 3P

ring, we can reduce the number of equations dramatically.
The eigenvalues of this curve subdivision scheme are ofSince we know the value of the basis functions outside the
the form1, 1, ¢, %, .0, ... and the resulting curves a€¢ one-ring, we can also reduce the grid that we evaluate the
with bounded curvature but have no piecewise polynomial equations on td0, 1] x [0,1]. Finally, the basis functions
representation. We then generalize these rules to the exwill express a reflection symmetry because the subdivision
traordinary case resulting in the surface subdivisionsrule rules are rotationally symmetric reducing the equatioms fu

shown in Figure 4. ther. Combining these methods produces a drastically re-



Figure 6. Left: uniform sampling grids gen- Figure 7. Left: gaps in surface due to differ-
erated by exact evaluation on rational grids ent sampling rates. Right: closed, adaptive
do not necessarily align along their bound- tessellation using our algorithm.

aries. Right: our adaptive tessellation takes

the dual of the mesh and produces water-

tight tessellations. division levels on each patch of the surface. To fill the gaps

in the surface caused by different levels of subdivisios, th
authors simply fan triangles to the neighboring verticesd an
duced system of equations and, for our valence 6 exampleachieve an impressive tessellation rate of about 24 million
with n = 3, produces only 51 variables (as opposed to 781 vertices/second using the GPU.
before). Figure 5 shows two exact evaluation stencils for  Both of these methods also pay special attention to nu-

our example subdivision scheme at valence 5 with 3. merical errors because the fact that the same vertex will
Notice that there is an implied normalization that the estri  be created multiple times from different patches possibly
of stencils sum up to 1. producing gaps in the surface. In contrast, we provide an

adaptive tessellation technique based on our exact evalua-

4.4 Adaptive Tessellation of Quad-based tion scheme that does not have to pay special attention to
subdivision surfaces creating a watertight surface due to inaccurate floatingtpoi
operations. We also do not restrict the tessellation rdtes o
Using the exact evaluation technique from Section 4 we neighboring patches (for example, enforcing that the tesse
can develop a very efficient adaptive polygonalization tech lation rates can only differ by one level) and always guaran-
nique for arbitrary subdivision surfaces (polynomial onno  tee that our surfaces are closed. Furthermore, we can sam-
polynomial). Previous work in adaptive tessellation of-sub ple the subdivision surface on any rational gfitl) as op-
division surfaces has largely concentrated on polynomial posed to the exponential grids:- ) created via subdivision
subdivision schemes. Both Shiue et al. [13] and Bolz et leading to much finer granularity in the adaptivity and re-
al. [1] focus on adaptive tessellation of subdivision stefa  sults in less polygons for the same degree of approximation
using the GPU but take very different approaches. Shiueof the surface.
et al. perform subdivision directly on the GPU by encod-  Our adaptive tessellation routine is inspired by another
ing two-ring neighborhoods in a spiral fashion. Since the adaptive tessellation technique for implicit surfacedechl
authors are performing subdivision the density of the sur- Dual Contouring [5]. Dual Contouring generates adaptive,
face increases exponentially with the level of subdivision watertight tessellations of implicit surfaces defined awer
Using this method the authors achieve a tessellation rate oftrees by creating the topological dual of edges of the octree
about 2 million triangles/second for a Catmull Clark sur- crossed by the implicit surface. We take a similar approach
face (though later results and a more recent GPU indicatefor surfaces and note that simply performing exact evalua-
tessellation rates of about 7 million triangles/second). tion for polygons using different grid sizes produces a mesh
Bolz et al. take a different approach to adaptive tessel-with many gaps along the edges (see Figure 7). Instead of

lation of subdivision surfaces. Instead of performing subd using these grids as the polygons, we take the dual of this
vision dynamically, the authors precompute samples of themesh placing vertices at the centroid of each quad to cre-
basis functions for each valence and then apply these basiate our adaptive tessellation. The dual of a uniform quadri-
functions to the control points inside the GPU. These ba- lateral grid is simply another quadrilateral grid. Alongth
sis functions are precomputed using subdivision and, henceshared edges between patches, grid vertices that do not alig
the grid sizes increase exponentially as in [13]. The asthor between patches create triangles while coincident vertice
also allow for adaptive tessellation by using different-sub create quads. Finally, at the vertices of the mesh, we create



Figure 9. Left: patch structure. Right: adap-
tive tessellation of a non-polynomial subdivi-
sion surface.

Figure 8. View dependent tessellation using
rational sampling (top left) and exponential,
subdivision sampling (top right). An alter-
nate view of the same tessellation (bottom). and vertices of the base mesh separately. Faces of the base
mesh contain a uniform grid whose dual is another uniform
grid and is trivial to compute. Along edges, we take the
) ) list of dual vertex indices from the two adjacent patches and
av-gon surrounding the vertex of valeneeFigures 6 and 7 perform a merge operation based on the two grid sizes to
shoyv exampl_es of tessellatlon_s produced by this technique sreate the edge polygons, which is quite fast. Finally, we
Notice that, since each vertex is created exactly once, we dqygjiect all of the dual vertex indices adjacent to each werte

not have to worry about floating point errors and we always o, the polygons dual to the control mesh vertices.
obtain a watertight tessellation of the surface. Zorin and

Schroder [17] also developed a related method for adap-
tively tessellating Doo-Sabin surfaces in the case of grids
restricted to subdivision sampling.

Our adaptive tessellation technique works well for
guadrilateral surfaces because the dual of a quadrilatera
grid is also quadrilateral. If triangle subdivision schame

Figures 1, 7, 8 and 9 show examples of adaptive tes-
sellations produced by our method for subdivision surfaces
that are non-polynomial everywhere. At runtime we com-
pute the tessellation parameters for each patch and many
Fifferent tessellation criteria could be used such as eurva
ure. We calculate view-dependent tessellation ratesdy pr
are desired, the same process can be used. However, thi§Cting each quad f“’”ﬁ the b_ase subdivision surfac_e_o_nto

the screen, computing its maximal edge length and dividing

dual of a regular triangle grid is a hexagonal tiling. There- by the maximal number of pixels we would like edaes on
fore, these hexagons must be triangulated before display. Y X u PIXEIS we would 1I 9
the adaptively tessellated surface to be. Using our tessel-

We suggest adding a new vertex at the center of the dualIation method, we are able to achieve tessellation rates of
polygons and creating a triangle fan to that vertex from the over 33.5 miIIi,on triangles/second on an Intel Core 2 6700
edges. This technique produces a regular grid of trianglespc usin.g the Intel conglpiler Notice that, unlike other tech
in ordinary regions and always creates a watertight tessell . . . ) ' . i
yreg Y 9 niques, no GPU is being used to perform tessellation. We

tion. . : :
expect a GPU implementation to achieve even more dra-
matic performance gains.

5 Implementation and Results Figure 8 compares our tessellation algorithm using ra-
tional sampling() on the top left versus samples gener-

In terms of implementation, we use the technique from ated via subdivision on exponentially increasing giigs)
Section 4 to pre-compute an exact evaluation table for a re-on the top right using the same view dependent tessellation
stricted set of valences (we use 3-8) at different samplingcriteria. The bottom left and right of the figure show the
rates (Figure 5 shows two example entries in the table). same tessellations from another viewpoint. The changes in
These tables are quite small and take up about 2.5 MB ofresolution are much more subtle with our tessellations than
space fom = 1-24 and valences 3-8. We also use a half- those produced by subdivision. Hence, our technique is able
edge data structure for the base mesh to efficiently collectto achieve much finer granularity when approximating the
the vertices in the one-ring of each quad for exact evalua-surface and results in far fewer polygons. In this example,
tion. the method based on exponential grids requires d0&f

When computing the dual of the evaluation grids to cre- more polygons than our method to achieve the same level
ate a water-tight tessellation, we consider the faces,sedge of approximation.



6 Conclusionsand Future Work [2] E. Catmull and J. Clark. Recursively generated b-spline sur-
faces on arbitrary topological mesh&omputer Aided De-

. - . sign, 10(6):350—355, 1978.
In this paper we have demonstrated that it is possible to [3] N. Dyn, J. Gregory, and D. Levin. A four point interpola-

evaluateany stationary subdivision scheme at rational val- tory subdivision scheme for curve desigdomputer Aided
ues. Our technique was based on enumerating a system of  Geometric Desigri:257-268, 1987.

equations relating the basis functions to one another using [4] M. Halstead, M. Kass, and T. DeRose. Efficient, fair inter-
the subdivision matrix. Solving this system of equations polation using catmull-clark surface€omputer Graphics
provides the samples of the basis functions and leads to the ~ 27(Annual Conference Series):35-44, 1993.

exact evaluation stencils. While this process is somewhat [5] T.Ju, F. Losasso, S. Schaefer, and J. Warren. Dual contour
expensive for large sampling grids, the stencils can be pre- ~ ing of hermite data. ACM Trans. Graph.21(3):339-346,
computed once and saved. We then showed how we could 2002.

. . . [6] L. Kobbelt. Interpolatory subdivision on open quadrilateral
use this exact evaluation method to create adaptive tessel- nets with arbitrary topology. IComputer Graphics Forum

lations of quadrilateral subdivision surfaces, which led t (Proc. EUROGRAPHICS '96), 15(3)ages 409420, 1996.
impressive tessellation rates. [7] L. Kobbelt. sqrt(3)-subdivision. ISIGGRAPH '00: Pro-

There are several open problems we would like to con- ceedings of the 27th annual conference on Computer graph-
sider in the future. One is to attempt to extend the upsam- ics and interactive techniquegages 103—-112, 2000.

pling method in Section 3 from curves to surfaces so that [8] A. Levin and D. Levin. Analysis of quasi uniform sub-
we do not have to manually enumerate the equations forthe ~ division. Applied and Computational Harmonic Analysis
scaling relationship. Unfortunately, the parameteroatf 15(1):18-32,2003. _
surfaces with extraordinary vertices is complicated and we [8] C. Loop. Smooth subdivision surfaces based on triangles.
have not created a simple technique for doing so yet. ;/lga;s?ters Thesis., University of Utah, Dept. of Mathematics
While all of the subdivision schemes we tried provided a [10] . Micchelli and J. Sauer. On vector subdivisidfath. Z,
unigue evaluation stencil from our equations, we currently 229:621-674, 1998.
have no proof of uniqueness. In the future, we would like [11] L. Ramshaw. Blossoms are polar formS&omputer Aided
to develop such a proof. One might expect problems to oc- Geometric Design6(4):323-358, 1989.
cur when evaluating more degenerate subdivision Schemeﬂlz] U. Reif. A unified approach to subdivision algorithms near
such as linearly dependent subdivision schemes, but our ex- ~ €xtraordinary verticesComputer Aided Geometric Design
periments linearly dependent subdivision schemes did not 12(2):153-174, 1995.

PR . . - [13] L.-J. Shiue, I. Jones, and J. Peters. A realtime gpu subdivi-
produce any difficulties and the equations still had unique sion kernel ACM Trans. Graph.24(3):1010-1015, 2005.

solutions. [14] J. Stam. Exact evaluation of catmull-clark subdivision sur-

Finally, we intend to explore the idea of using pre- faces at arbitrary parameter valuesSIGGRAPH '98: Pro-
computed stencils to facilitate modeling using linear sur- ceedings of the 25th annual conference on Computer graph-
faces schemes that ha¢® smoothness. Typically, such ics and interactive techniquepages 395-404, 1998.

schemes require complicated basis functions with support[15] G. Strang. Wavelets and dilation equations: a brief introduc-
much larger than that of subdivision schemes such as  tion. SIAM Review31(4):614-627, 1989.
Catmull-Clark. Our idea is to isolate the complexity of the [16] J- Warren and H. WeimeBubdivision Methods for Geomet-

. . . . ) . ric Design: A Constructive ApproachMorgan Kaufmann
evaluation of the basis functions in a pre-computation ehas Publishers Inc... San Francisco. CA, USA. 2001

in \_NhiCh stencils for various values afand vr_:trious local 17] D. Zorin and P. Scfider. Subdivision for modeling and an-

neighborhood topologies are constructed. Given these sten imation, 2000.

cils, our task is to then develop a mesh indexing scheme that[18] D. Zorin, P. Schioder, and W. Sweldens. Interpolating sub-

characterizes the topological structure of the local rigagh division for meshes with arbitrary topology. 8IGGRAPH

hood of a quad (or triangle) allowing for fast application of '96: Proceedings of the 23rd annual conference on Com-

the appropriate stencil to perform exact evaluation. puter graphics and interactive technigugmges 189-192,
1996.
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