
Exact Evaluation of Non-Polynomial Subdivision Schemes
at Rational Parameter Values

Scott Schaefer
Texas A&M University

3112 Texas A&M University
College Station, TX 77843

schaefer@cs.tamu.edu

Joe Warren
Rice University
6100 Main St

Houston, TX 77005
jwarren@cs.rice.edu

Abstract

In this paper, we describe a method for exact evaluation
of a limit mesh defined via subdivision on a uniform grid
of any size. Other exact evaluation technique either restrict
the grids to have subdivision sampling and are, hence, ex-
ponentially increasing in size or make assumptions about
the underlying surface being piecewise polynomial (Stam’s
method is a widely used technique that makes this assump-
tion). As opposed to Stam’s technique, our method works
for both polynomial and non-polynomial schemes. The val-
ues for this exact evaluation scheme can be computed via
a simple system of linear equation derived from the scal-
ing relations associated with the scheme or, equivalently,
as the dominant left eigenvector of an upsampled subdivi-
sion matrix associated with the scheme. To illustrate one
possible application of this method, we demonstrate how
to generate adaptive polygonalizations of a non-polynomial
quad-based subdivision surfaces using our exact evalua-
tion method. Our method guarantees a water-tight tessel-
lation no matter how the surface is sampled and is quite
fast. We achieve tessellation rates of over33.5 million tri-
angles/second using a CPU implementation.

1. Introduction

Curves and surfaces defined via subdivision have be-
come a fixture of the computer modeling and animation in-
dustry. Commercial modeling packages such as Maya as
well as leading animation studios such as Pixar use subdi-
vision surfaces as one of their basic modeling primitives.
As a result of this proliferation, methods for manipulating
and processing subdivision surfaces are a topic of practical
importance in Computer Graphics.

Perhaps the biggest impediment to developing such
methods is the nature of how shapes are defined via subdi-

vision. Given a coarsebasemeshp0, a subdivision scheme
defines an increasingly detailed sequence of meshesp1, p2,
p3, . . . via the recurrence

pj+1 = Spj (1)

Here,S is an operator thatrefinesthe meshpj to form
the new meshpj+1. For most simple subdivision schemes,
the meshespj can be modeled as a vector of control points
and the operatorS can be viewed as a linear operator (i.e; a
matrix) that acts onpj . If the operatorS is chosen appro-
priately, the sequence of meshesp0, p1, p2, . . . converges to
a limit meshp∞ that approximates the coarse meshp0 [16].

The definition of the final meshp∞ in terms of limits
appears to be awkward in comparison to other modeling
schemes such as B-splines where the associated curve or
surface has a direct definition in terms of piecewise polyno-
mials. For schemes with explicit piecewise polynomial defi-
nitions, computing the exact position of points on associated
curves or surfaces corresponds to just evaluating the appro-
priate polynomial at a particular parameter value [11]. For
subdivision surfaces, this exact evaluation process is more
difficult since there is no explicit definition of the limit sur-
faces in terms of polynomials.

Currently, the authors are only aware of two methods for
computing the exact limit positions of points on a subdi-
vision surface. One approach is to simply apply the sub-
division scheme several times and then apply a limitsten-
cil1 to reposition the vertices of the resulting mesh so that
they lie on the limit surface. This limit stencil can be com-
puted as the dominant left eigenvector of the subdivision
matrix S associated with the scheme [4]. The drawback of
this approach is that the final mesh size must be compatible
with the subdivision process. (In the case of binary sub-
division, the mesh size must be uniform and increases ex-

1A stencil is a set of weights applied to a set of locally-adjacent ver-
tices in the mesh. Stencils are also sometimes called masks or rules in
subdivision terminology.

Figure 1. Adaptive tessellation of a subdivision surface that is non-polynomial everywhere using
our algorithm. From left to right: patch structure from base surface, adaptive tessellation based on
approximate curvature, view-dependent tessellation, and the shaded surface.

ponentially by a factor of 4.) This same type of evaluation
also arises in the evaluation of wavelet basis functions in the
tensor-product setting that are defined from recursive rela-
tionships [15] again with the restriction to the exponential
sampling defined by subdivision on grids of spacing1

2n .

An alternative approach, developed by Stam [14], allows
for direct evaluation of certain subdivision schemes near ex-
traordinary vertices. Stam’s basic idea for evaluating a sub-
division surface near an extraordinary vertex is to subdivide
the mesh until the desired point lies on a locally uniform
portion of the mesh and then evaluate using the piecewise
polynomial definition associated with the uniform rules for
the scheme. For schemes like Catmull-Clark [2] or Loop [9]
whose uniform rules generate piecewise polynomial limit
surfaces, this approach works well. Unfortunately, methods
such the butterfly scheme [18] and

√
3 scheme [7] do not

generate piecewise polynomial limit surfaces in the uniform
case. For these schemes, Stam’s exact evaluation method
simply does not apply.

Contributions

We describe a method for exact evaluation of a limit
mesh defined via subdivision on a uniform grid ofany
size. As opposed to Stam’s method, our technique oper-
ates on subdivision schemes that produce polynomial or
non-polynomial curves/surfaces. The stencils for this ex-
act evaluation scheme can be computed via a simple system
of linear equation derived from the scaling relations associ-
ated with the scheme or, equivalently, as the dominant left
eigenvector of an upsampled subdivision matrix associated
with the scheme. We then show how to use this exact eval-
uation scheme to create adaptive polygonalizations of non-
polynomial quad-based subdivision surfaces.

2. Exact evaluation via scaling relations

The key to our exact evaluation method is that fact that
the limit functions associated with a subdivision scheme
satisfy a recurrence relation based on the entries of the sub-
division matrix S. To explain our method, we consider
two cases in this section: uniform curve schemes and non-
uniform curve schemes. The extension of our method to the
case of surfaces is then relatively straightforward. (Sucha
surface extension is considered in Section 4.)

In the case of uniform curve schemes, the columns of the
subdivision matrixS are two-shifts of a single fundamental
sequence of numberssi. If the subdivision is convergent,
the limit curvep∞ associated with the coarse curvep0 can
be parameterized by a single variablex yielding the associ-
ated limit functionp∞[x]. Due to the linearity of the subdi-
vision process, this limit functionp∞[x] can be written as a
linear combination of translates of a single scaling function
φ[x]. Specifically, if theith point of thejth discrete curve
pj , pi

j , is treated as lying at the parameter valuex = i
2j , the

limit function p∞[x] can be written as a linear combination
of the integer translates of the scaling function

p∞[x] =
∑

i∈Z

pi
0φ[x − i] (2)

whereZ is the set of integers.
Combining Equations 1 and 2 implies that the function

φ[x] satisfies thescaling relation

φ[x] =
∑

i∈Z

siφ[2x − i] (3)

Notice that this scaling function holds forall values ofx
and not just at the pointsx = i

2j produced by subdivision.

Our goal is then to use this scaling relation to compute the
exact values of the scaling functionφ[x] on a uniform grid;
i.e; for a given fixed positive integern, computeφ[α] where
α ∈ 1

n
Z. To this end, let us assume that the scaling function

φ[x] is supported on the interval[−m,m]. Substitutingx =
α into the scaling relation whereα lies strictly in the range
(−m,m) yields a set of2mn − 1 homogeneous equations
in 2mn − 1 variables.

φ[α] =
∑

i∈Z

siφ[2α − i].

Note that ifα /∈ (−m,m), the valueφ[α] is zero due to the
sparsity assumption.

Since these equations are homogeneous, their solution
only specifies the valuesφ[α] up to at most a fixed common
multiple. To arrive at specific values forφ[α], we observe
that, for stationary schemes, convergence implies that the
sum of the integer translates of the scaling function must be
identically1 [16, p.71].

∑

i∈Z

φ[x − i] = 1 (4)

Substitutingx = α for α = 0, 1

n
, 2

n
, . . . , n−1

n
yieldsn aux-

iliary non-homogeneous equations.
∑

i∈Z

φ[α − i] = 1

Using these two systems of equations, we then solve for
the unknownsφ[α]. If the subdivision scheme is conver-
gent, the actual values ofφ[α] are a solution to this system
of equations. Although we have no formal proof that this
system of equations always has these values as their unique
solution, every example scheme that we have tried always
yields a single solution. Developing a proof of uniqueness
is one of our topics for future research. Also notice that
this evaluation method cannot evaluate the surface at arbi-
trary parameter values (specifically irrational numbers) but
is restricted to rational parameter values.

To complete this subsection, we compute the values of
the scaling function for the four-point interpolatory scheme
of [3] for n = 3. To this end, we observe that the scaling
relation for this scheme has the form

φ[x] =
1

16
(−φ[2x + 3] + 9φ[2x + 1] + 16φ[2x] +

9φ[2x − 1] − φ[2x − 3])

Given this scaling function is support on the interval[−3, 3],
we form17 equations in17 variable by substitutingx = α
for α = −8

3
, −7

3
, −6

3
, . . . , 6

3
, 7

3
, 8

3
into the scaling relation.

Adding the three partition of unity constraints

3
∑

i=−2

φ[α − i] = 1

�
�

�
�

�
� � � �

�
�
�

�
�
�

�
�
�

�
�
�

�

Figure 2. Plot of the basis function values
returned from our method for the four-point
scheme with n = 21.

for α = 0, 1

3
, 2

3
yields a system of20 equation in17 un-

knowns. Assembling and solving these equations yields a
solution vector

{

φ[−8

3
], φ[−7

3
], . . . , φ[7

3
], φ[8

3
]
}

of the form

1

5589
{0,−1, 16, 0,−256,−410, 0, 2000, 4240,

5589, 4240, 2000, 0,−410,−256, 0, 16,−1}

Figure 2 shows a plot of the solution vector forn = 21.
Given that our ultimate goal is to perform exact evalua-

tion on subdivision surfaces with extraordinary vertices,we
must eventually move from the uniform case to the non-
uniform case. To conclude this section, we consider a sta-
tionary, but non-uniform curve example. Consider a non-
uniform cubic B-spline whose knotsti satisfyti = i if i > 0
andti = 2i if i < 0. If we subdivide this spline by insert-
ing a new knot between every pair of existing knots, the
resulting subdivision scheme is a stationary one that satis-
fies pj+1 = Spj . Restricted to the two-ring of the origin,
this matrixS has the form













1

8

25

32

3

32
0 0

0 5

8

3

8
0 0

0 5

24

29

40

1

15
0

0 0 3

5

2

5
0

0 0 3

20

29

40

1

8













The remaining rules for the scheme away from the origin
are the standard rules for cubic B-spline subdivision.

The first question that we must address in examining this
scheme is how should we parameterize the control mesh
pj . The standard technique for parameterizing both curve
(and surface meshes) is to assign a uniform parameteriza-
tion based on mesh spacing. However, the subdivision ma-
trix itself contains none of this information. Therefore, we
still assign the mesh pointpj

i the parameter valuex = i
2j

even though the associated subdivision rules are derived
from non-uniform b-splines. Given this uniform parame-
terization, we may still consider piecewise linear functions
pj [x] and their associated limit functionp∞[x]. Now, our

goal is to compute the exact values ofp∞[α] for α = i
n

and verify that these values are consistent with the values
produced by the piecewise polynomial definition of the un-
derlying B-spline.

The key to this computation is to observe that the infi-
nite subdivision matrixS has five types of columns. Three
columns lying in the one-ring of the origin are distinct due
to the effect of the non-uniform knot spacing at the ori-
gin. The remaining columns to both the left and right of
the origin are two-shifts of the columns for uniform cubic
B-splines. (We treat the left columns and right columns as
being of two different types for the sake of simpler peda-
gogy.) Each of these column types has its own associated
scaling functionφ−2[x], φ−1[x], φ0[x], φ1[x], φ2[x]. Now,
the entries of each column specify the scaling relation for
the associated scaling function, i.e.

φ−2[x] =
1

8
φ−2[2x + 2] +

1

2
φ−2[2x + 1] +

3

4
φ−2[2x] +

1

2
φ−2[2x − 1] +

1

8
φ−2[2x − 2]

φ−1[x] =
1

8
φ−2[2x + 2] +

1

2
φ−2[2x + 1] +

25

32
φ−2[2x] +

5

8
φ−1[2x − 1] +

5

24
φ0[2x − 2]

φ0[x] =
3

32
φ−2[2x + 2] +

3

8
φ−1[2x + 1] +

29

40
φ0[2x] +

3

5
φ1[2x − 1] +

3

20
φ2[2x − 2]

φ1[x] =
1

15
φ0[2x + 2] +

2

5
φ1[2x + 1] +

29

40
φ2[2x] +

1

2
φ2[2x − 1] +

1

8
φ2[2x − 2]

φ2[x] =
1

8
φ2[2x + 2] +

1

2
φ2[2x + 1] +

3

4
φ2[2x] +

1

2
φ2[2x − 1] +

1

8
φ2[2x − 2]

To solve for the exact values of these scaling functions
φn[x], we simply repeat the same construction used in the
uniform case. In particular, we substitutex = α where
α = i

n
into these scaling relations, construct an auxiliary

system of equations enforcing a partition of unity and solve
the resulting system of equations.

Clearly, the scaling functionsφ−2[x] andφ2[x] are ex-
actly the scaling functions for uniform cubic B-splines. And
indeed, the exact values produced by our method concur
with the exact values for the uniform cubic B-splines. The
three remaining scaling functionsφ−1[x + 1], φ0[x] and
φ1[x − 1] agree with the scaling functions associated with
the non-uniform cubic B-splines with one apparent excep-
tion: the scaling functions are not smooth at the origin. In
fact, this tangent discontinuity is due to the reparameteri-
zation ofx = 2t for t > 0 used in relating the B-spline

parameterization and the uniform parameterization for our
curve mesh. Accounting for this reparameterization, our
exact evaluation method produced the same values as gen-
erated by non-uniform cubic B-splines.

3 Exact evaluation via left eigenvectors of an
upsampled subdivision matrix

The previous section described a method for deriving a
set of equations whose solution was the exact values of the
scaling function on the grid1

n
Z. In this section, we sketch

the theoretical underpinnings of our method by relating the
linear system generated by these equations to a traditional
method for computing the exact values of a subdivision
scheme onZ. For those interested solely in implementing
our method for surface schemes, we suggest skipping this
section.

In the uniform curve case, computing the exact values of
the scaling functionφ[x] on the integer gridZ is well-known
and relatively straight forward [16]. Recall the fundamental
subdivision process of Equation 1. Iterating this process
yields

pj = Sjp0.

Observe that if we setpi
0 = 1 and0 otherwise, the limit

functionp∞[x] is simply the scaling functionφ[x]. In this
case, the value of the scaling functionφ[x] onZ are simply
the entries of the row ofS with index zero. For conver-
gent subdivision schemes, this row is simply the dominant
left eigenvector associated with the subdivision scheme. In
particular, the values satisfy

{., φ[−1], φ[0], φ[1], .} = {., φ[−1], φ[0], φ[1], .}S.

Notice that this matrix formulation consists of exactly the
same equations that instantiating the fundamental scaling
relation withx ∈ Z generates.

Interestingly, instantiating the fundamental scaling rela-
tion withx ∈ 1

n
Z can also be interpreted in terms of a subdi-

vision process. If we reparameterize viax = x̂
n

, the scaling
function satisfies the relation

φ[
x̂

n
] =

∑

i∈Z

siφ[2
x̂

n
− i].

Now, if we define a new scaling function̂φ[x̂] = φ[x̂
n
], this

reparameterized scaling function is a stretched copy ofφ
with its support widened by a factor ofn. Applying this
definition, we arrive at a new recurrence relation of the form

φ̂[x̂] =
∑

i∈Z

siφ̂[2x̂ − in].

Observe that due to the indexing, only everynth translate
of φ̂[x̂] is used in the recurrence.

To define the effect of this upsampling, we introduce
a generating function notation for the subdivision mask.
Given a uniform subdivision matrixS representing binary
subdivision, the columns ofS will be two-shifts of a fun-
damental set of numberssi that encode the scaling relation-
ship for the basis function. Collecting these numbers as co-
efficients of a polynomial yields thesubdivision masks[z]
associated with the scheme:

s[z] =
∑

i∈Z

siz
i.

One advantage of expressing the subdivision process in
terms of a subdivision mask is that the subdivision process
can be succinctly expressed via the recurrencepj+1[z] =
s[z]pj [z

2] wherepj [z] is the generating function with terms
of the formpi

jz
i.

If we define a new subdivision mask̂s[z] in terms of an
upsampled version of the original subdivision masks[z] via
ŝ[z] = s[zn], the subdivision process corresponding to this
mask has a scaling relation of the form

φ̂[x̂] =
∑

i∈Z

ŝiφ̂[2x̂ − i].

Now, the exact values of new scaling functionφ̂[x̂] onZ

are exactly the values of the original scaling functionφ[x]
on the grid 1

n
Z. To compute these values, we simply con-

struct the subdivision matrix̂S corresponding to the upsam-
pled mask̂s[z]. Each column of this upsampled subdivision
matrix Ŝ is a two-shift of a column ofS with n − 1 zeros
inserted between each entry.

To compute the desired exact values, we construct a lo-
cal version of the matrix̂S and compute its dominant left
eigenvectors. Ifn is a power of2, this dominant eigenvec-
tor is unique up to a scale factor. We can derive the exact
value by constraining the scaled entries to satisfy the parti-
tion of unity property. Similarly, when̂S has several dom-
inant eigenvectors (which is the usual case), we solve for
a linear combination of these eigenvectors that satisfies the
partition of unity property.

In the case of non-uniform schemes, the derivation of
this upsampled subdivision matrix whose dominant left
eigenvectors contain the exact values is subtle and would
take this paper in a theoretical direction too far from the
main focus of this conference. Instead, we leave this topic
to a future paper. However, to illustrate that such a construc-
tion is possible, we consider the case of the non-uniform
cubic B-spline curve scheme of the previous section.

In this case, the curve scheme may be expressed as a
vector-valued subdivision scheme using the ideas of [10].
The basic idea behind vector-valued subdivision is to treat
the initial control meshp0 as being a vector consisting of
separate several distinct meshes. The subdivision process

then mixes entries in the coarse vector via matrix multipli-
cation to form each entry of the refined vector. This process
can be modeled quite succinctly using generating functions.
If p0[z] is a vector consisting ofm generating functions,
the subdivision mask for a vector subdivision scheme is an
m × m matrix of generating functionss[z]. The vector-
valued subdivision process is then modeled by the standard
recurrencepj+1[z] = s[z]pj [z

2].
For our second example, we can model our non-uniform

curve scheme as a vector-valued uniform curve scheme. In
this framework,pj [z] is a vector of five generating func-
tions. The matrix masks[z] associated with our vector-
valued scheme has the form












b[z] 25

32
+ 1

2z
+ 1

8z2

3

32z2 0 0
0 5z

8

3

8z
0 0

0 5z2

24

29

40

1

15z2 0
0 0 3z

5

2

5z
0

0 0 3z2

20

z
2

+ 29

40
+ 1

8z2 b[z]













whereb[z] = z2

8
+ z

2
+ 3

4
+ 1

2z
+ 1

8z2 . Given this uniform
scheme, we can now compute the exact values of the scal-
ing functionsφ−2[x], φ−1[x], φ0[x], φ1[x], andφ2[x] onZ.
To this end, we simply construct the subdivision matrixS
associated with this scheme and compute its dominant left
eigenvector. In this case, the matrixS is a block matrix
whose entries are the subdivision matricesSij correspond-
ing to the entriessij [z] of the matrix subdivision masks[z].
If each of these block is chosen to be of size3 × 3 (due to
the support of the scaling functions), the appropriate finite
portion ofS is




















































1

2

1

2
0 1

2
0 0 0 0 0 0 0 0 0 0 0

1

8

3

4

1

8

1

8

25

32
0 3

32
0 0 0 0 0 0 0 0

0 1

2

1

2
0 1

2
0 0 0 0 0 0 0 0 0 0

0 0 0 0 5

8
0 3

8
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 5

8
0 3

8
0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 5

24
0 29

40
0 1

15
0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 3

5
0 2

5
0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 3

5
0 2

5
0 0 0 0

0 0 0 0 0 0 0 0 0 0 1

2
0 1

2

1

2
0

0 0 0 0 0 0 0 0 3

20
0 29

40

1

8

1

8

3

4

1

8

0 0 0 0 0 0 0 0 0 0 0 1

2
0 1

2

1

2





















































.

Now, the dominant left eigenvector for this matrix is a
multiple of the block vector containing the exact values of
the functionsφh[x] for h = −2, . . . , 2 andx = −1, 0, 1.
Enforcing the partition of unity constraints on this eigen-
vector yields the desired exact values.

In general, we compute the exact values for our non-
uniform curve scheme on the grid1

n
Z by simply construct-

ing the upsampled matrix subdivision maskŝ[z] = s[zn]
and computing the dominant left eigenvectors of its corre-
sponding upsampled subdivision matrixŜ (i.e; a block ma-
trix whose entries are subdivision matrices corresponding
to the masksij [z

n]). Applying the partition of unity con-
straints to these left eigenvectors yields the desired exact
values.

4 Exact evaluation stencils for non-
polynomial surface schemes

So far we have only considered exact evaluation for
curve subdivision schemes. But subdivision surfaces are far
more prevalent in graphics and we would like to extend the
evaluation techniques for curves to non-polynomial subdi-
vision surfaces as well. In theory, the upsampling method
presented in Section 3 can be extended to the bivariate case.
However, the size of the matrix becomes large quickly and,
unlike curves, there is no simple ordering of the basis func-
tions that produces the upsampled matrix structure that was
so readily visible with curves.

In this section, we explain how to modify the construc-
tion in Section 2 for surfaces. More importantly, we pay
special attention to extraordinary vertices (valence6= 4 for
quad schemes or valence6= 6 for triangle schemes). We then
show how we can use this exact evaluation method to cre-
ate a fast, adaptive tessellation of quadrilateral subdivision
surfaces.

4.1 Uniform Case

In general, surface subdivision schemes are very similar
to curve subdivision schemes except that the basis function
φ[x] is now parameterized by a bivariate parameterx that
represents a vector of two numbers. Equations 3 and 4 are
identical except that the summations are over the 2D grid
i ∈ Z× Z. Evaluating the equations on the grid[−m,m]×
[−m,m] at intervals of 1

n
yields a finite set of equations

whose solution is the value of the basis function over that
grid.

This method works well for most uniform subdivision
schemes, however, some subdivision schemes such as

√
3

introduce a rotation into the uniform grid complicating the
parameterization. As long as the change in parameteriza-
tion can be encoded in the right-hand side of Equation 3,
the method presented here will still work. An easier solu-
tion is to realize that, after two levels of subdivision,

√
3 be-

comes a ternary subdivision scheme and aligns with the pri-
mal grid again simplifying the parameterization. Figure 3
shows the exact evaluation stencil for

√
3 subdivision at the

midpoint of an edge computed using this technique. No-
tice that because two rounds of

√
3-subdivision produces a

ternary subdivision scheme, no vertex will ever lie at this

740 740

312

312

28 28

28 28

18 18

1 1

1 1

740 740

312

312

28 28

28 28

18 18

1 1

1 1

Figure 3. The exact evaluation stencil for
the midpoint of an edge for the

√
3 subdivi-

sion scheme (with an implicit normalization
of 2256).

position for any finite level of subdivision. However we can
still solve for the exact evaluation stencil despite the fact
that the surface is non-polynomial.

4.2 Extraordinary vertices

Surfaces with extraordinary vertices behave similar to
the non-uniform curve case in Section 2 in that we have
special rules in a small region around the extraordinary ver-
tex. Also, similar to non-uniform curves, we will have dif-
ferent basis functions corresponding to different vertices to
account for the modified subdivision rules in the vicinity of
the extraordinary vertex.

Like Stam’s exact evaluation method [14], we will as-
sume that we have a surface whose extraordinary vertices
are sufficiently separated (no other extraordinary vertices in
the (m − 1)-ring of an extraordinary vertex). For subdivi-
sion schemes with basis functions supported over the two-
ring, this means that each quad of the surface can contain
only one extraordinary vertex. Under this assumption, the
m-ring of an extraordinary vertex can be radially parameter-
ized by the sector numberk as well as a uniform, bivariate
parameterx. Therefore, the basis functions are of the form
φh[k, x]. Furthermore, we do not use a shifted parameteri-
zation as for curves in Equation 3 but use a global param-
eterization in the vicinity of the extraordinary vertex. This
parameterization then leads to the basis function refinement
rules

φh[k, x] =
∞
∑

j=0

∑

r

sh,j,rφj [k − r, 2x].

whereφh[k, x] is thehth basis function associated with the
hth vertex andsh,j,r encodes the coefficients in thehth col-
umn of the subdivision matrix. Notice that we can reduce
the number of basis functions in the equation by noting that

4
1

4
1

4
1

4
1

3
1

3
1

12
1

12
1

12
1

12
1

v9
4

v9
1

v9
1

v9
1

v9
1

v9
1

v9
4

v9
4

v9
4

v9
4

9
4

4
1

4
1

4
1

4
1

3
1

3
1

12
1

12
1

12
1

12
1

v9
4

v9
1

v9
1

v9
1

v9
1

v9
1

v9
4

v9
4

v9
4

v9
4

9
4

Figure 4. Subdivision rules for our non-
polynomial subdivision scheme at vertices of
valence v.

the functions are only non-zero in theirm-ring and that ba-
sis functions outside them-ring of the extraordinary vertex
are simply translates of basis functions on the edge of the
m-ring yielding a finite summation. Unfortunately, these
equations are not sufficient to uniquely determine the values
of the basis functions but, like curve subdivision, conver-
gent surface subdivisions schemes must also have the prop-
erty that the basis functions at a single point sum to1. This
property adds the additional constraint that

∞
∑

j=0

∑

r

φj [k − r, x] = 1.

To find the exact value of the basis functions, we sim-
ply evaluate these equations on the grid[0,m2]× [0,m2] at
intervals of 1

n
producing a finite set of equations in a finite

number of variables. The solution to this system of equa-
tions is the exact values of the different basis functions.

4.3 A non-polynomial quad subdivision
example

To illustrate our algorithm, we will construct a non-
polynomial, approximating subdivision scheme for quadri-
lateral surfaces whose basis functions are supported over the
two-ring. In the ordinary case (valence= 4), the subdivi-
sion scheme will be the tensor-product of a non-polynomial
curve subdivision scheme with the rules

p2i
k+1

= 1

6
pi−1

k + 2

3
pi

k + 1

6
pi+1

k

p2i+1

k+1
= 1

2
pi

k + 1

2
pi+1

k

The eigenvalues of this curve subdivision scheme are of
the form1, 1

2
, 1

6
, 1

6
, 1

6
, 0, . . . and the resulting curves areC1

with bounded curvature but have no piecewise polynomial
representation. We then generalize these rules to the ex-
traordinary case resulting in the surface subdivision rules
shown in Figure 4.

	
��
 		��

����

�

	�

���	

��

	��

�	�

	��

��

���	 ���� 	�

	����
 �	���

��

���

	��

	��

�	���

		�

���

�

	����

	
�	

�	�

	
�	

	����
		�

 �

	
��
 		��

����

�

	�

���	

��

	��

�	�

	��

��

���	 ���� 	�

	����
 �	���

��

���

	��

	��

�	���

		�

���

�

	����

	
�	

�	�

	
�	

	����
		�

 �

Figure 5. Exact evaluation stencils for our
non-polynomial subdivision scheme at x =
(

1

3
, 0

)

and x =
(

1

3
, 1

3

)

.

Like the corresponding curve subdivision scheme, this
surface subdivision scheme creates surfaces that areC1 ev-
erywhere, non-polynomial and have bounded curvature ev-
erywhere except at extraordinary vertices. We have also
verified the smoothness of the subdivision scheme at ex-
traordinary vertices by analyzing the eigenvalues and eigen-
vectors using the techniques of Reif [12] and Levin and
Levin [8] but omit the details here for the sake of brevity.
All of the surfaces in this paper were generated using this
non-polynomial subdivision scheme.

Notice that, in general, this subdivision scheme is strictly
worse than Catmull-Clark subdivision [2] (which produces
C2 surfaces almost everywhere) and would not be used
in practice. Other subdivision schemes such as Kobbelt’s
interpolatory quad scheme [6] or even butterfly subdivi-
sion [18] have no polynomial representation. However,
their basis functions are supported over the three-ring. This
does not cause problems for our method, but the increased
support means larger equations and more complexity. For
the purposes of illustration, we have opted for a simpler,
non-polynomial subdivision scheme.

If we naively attempt to solve the equations from Sec-
tion 4.2 to perform exact evaluation, the number of variables
produced is extremely large. For our example, a valence 6
vertex withn = 3 yields a system of equations in 781 vari-
ables. However, much of this work is unnecessary. Many
of these equations redundantly solve for the ordinary ba-
sis function. By taking advantage of the fact that the basis
functions in the two-ring are actually ordinary and that the
one-ring basis functions become ordinary outside the one-
ring, we can reduce the number of equations dramatically.
Since we know the value of the basis functions outside the
one-ring, we can also reduce the grid that we evaluate the
equations on to[0, 1] × [0, 1]. Finally, the basis functions
will express a reflection symmetry because the subdivision
rules are rotationally symmetric reducing the equations fur-
ther. Combining these methods produces a drastically re-

Figure 6. Left: uniform sampling grids gen-
erated by exact evaluation on rational grids
do not necessarily align along their bound-
aries. Right: our adaptive tessellation takes
the dual of the mesh and produces water-
tight tessellations.

duced system of equations and, for our valence 6 example
with n = 3, produces only 51 variables (as opposed to 781
before). Figure 5 shows two exact evaluation stencils for
our example subdivision scheme at valence 5 withn = 3.
Notice that there is an implied normalization that the entries
of stencils sum up to 1.

4.4 Adaptive Tessellation of Quad-based
subdivision surfaces

Using the exact evaluation technique from Section 4 we
can develop a very efficient adaptive polygonalization tech-
nique for arbitrary subdivision surfaces (polynomial or non-
polynomial). Previous work in adaptive tessellation of sub-
division surfaces has largely concentrated on polynomial
subdivision schemes. Both Shiue et al. [13] and Bolz et
al. [1] focus on adaptive tessellation of subdivision surfaces
using the GPU but take very different approaches. Shiue
et al. perform subdivision directly on the GPU by encod-
ing two-ring neighborhoods in a spiral fashion. Since the
authors are performing subdivision the density of the sur-
face increases exponentially with the level of subdivision.
Using this method the authors achieve a tessellation rate of
about 2 million triangles/second for a Catmull Clark sur-
face (though later results and a more recent GPU indicate
tessellation rates of about 7 million triangles/second).

Bolz et al. take a different approach to adaptive tessel-
lation of subdivision surfaces. Instead of performing subdi-
vision dynamically, the authors precompute samples of the
basis functions for each valence and then apply these basis
functions to the control points inside the GPU. These ba-
sis functions are precomputed using subdivision and, hence,
the grid sizes increase exponentially as in [13]. The authors
also allow for adaptive tessellation by using different sub-

Figure 7. Left: gaps in surface due to differ-
ent sampling rates. Right: closed, adaptive
tessellation using our algorithm.

division levels on each patch of the surface. To fill the gaps
in the surface caused by different levels of subdivision, the
authors simply fan triangles to the neighboring vertices and
achieve an impressive tessellation rate of about 24 million
vertices/second using the GPU.

Both of these methods also pay special attention to nu-
merical errors because the fact that the same vertex will
be created multiple times from different patches possibly
producing gaps in the surface. In contrast, we provide an
adaptive tessellation technique based on our exact evalua-
tion scheme that does not have to pay special attention to
creating a watertight surface due to inaccurate floating point
operations. We also do not restrict the tessellation rates of
neighboring patches (for example, enforcing that the tessel-
lation rates can only differ by one level) and always guaran-
tee that our surfaces are closed. Furthermore, we can sam-
ple the subdivision surface on any rational grid

(

1

n

)

as op-
posed to the exponential grids

(

1

2n

)

created via subdivision
leading to much finer granularity in the adaptivity and re-
sults in less polygons for the same degree of approximation
of the surface.

Our adaptive tessellation routine is inspired by another
adaptive tessellation technique for implicit surfaces called
Dual Contouring [5]. Dual Contouring generates adaptive,
watertight tessellations of implicit surfaces defined overoc-
trees by creating the topological dual of edges of the octree
crossed by the implicit surface. We take a similar approach
for surfaces and note that simply performing exact evalua-
tion for polygons using different grid sizes produces a mesh
with many gaps along the edges (see Figure 7). Instead of
using these grids as the polygons, we take the dual of this
mesh placing vertices at the centroid of each quad to cre-
ate our adaptive tessellation. The dual of a uniform quadri-
lateral grid is simply another quadrilateral grid. Along the
shared edges between patches, grid vertices that do not align
between patches create triangles while coincident vertices
create quads. Finally, at the vertices of the mesh, we create

Figure 8. View dependent tessellation using
rational sampling (top left) and exponential,
subdivision sampling (top right). An alter-
nate view of the same tessellation (bottom).

av-gon surrounding the vertex of valencev. Figures 6 and 7
show examples of tessellations produced by this technique.
Notice that, since each vertex is created exactly once, we do
not have to worry about floating point errors and we always
obtain a watertight tessellation of the surface. Zorin and
Schroder [17] also developed a related method for adap-
tively tessellating Doo-Sabin surfaces in the case of grids
restricted to subdivision sampling.

Our adaptive tessellation technique works well for
quadrilateral surfaces because the dual of a quadrilateral
grid is also quadrilateral. If triangle subdivision schemes
are desired, the same process can be used. However, the
dual of a regular triangle grid is a hexagonal tiling. There-
fore, these hexagons must be triangulated before display.
We suggest adding a new vertex at the center of the dual
polygons and creating a triangle fan to that vertex from the
edges. This technique produces a regular grid of triangles
in ordinary regions and always creates a watertight tessella-
tion.

5 Implementation and Results

In terms of implementation, we use the technique from
Section 4 to pre-compute an exact evaluation table for a re-
stricted set of valences (we use 3-8) at different sampling
rates (Figure 5 shows two example entries in the table).
These tables are quite small and take up about 2.5 MB of
space forn = 1-24 and valences 3-8. We also use a half-
edge data structure for the base mesh to efficiently collect
the vertices in the one-ring of each quad for exact evalua-
tion.

When computing the dual of the evaluation grids to cre-
ate a water-tight tessellation, we consider the faces, edges

Figure 9. Left: patch structure. Right: adap-
tive tessellation of a non-polynomial subdivi-
sion surface.

and vertices of the base mesh separately. Faces of the base
mesh contain a uniform grid whose dual is another uniform
grid and is trivial to compute. Along edges, we take the
list of dual vertex indices from the two adjacent patches and
perform a merge operation based on the two grid sizes to
create the edge polygons, which is quite fast. Finally, we
collect all of the dual vertex indices adjacent to each vertex
for the polygons dual to the control mesh vertices.

Figures 1, 7, 8 and 9 show examples of adaptive tes-
sellations produced by our method for subdivision surfaces
that are non-polynomial everywhere. At runtime we com-
pute the tessellation parameters for each patch and many
different tessellation criteria could be used such as curva-
ture. We calculate view-dependent tessellation rates by pro-
jecting each quad from the base subdivision surface onto
the screen, computing its maximal edge length and dividing
by the maximal number of pixels we would like edges on
the adaptively tessellated surface to be. Using our tessel-
lation method, we are able to achieve tessellation rates of
over 33.5 million triangles/second on an Intel Core 2 6700
PC using the Intel compiler. Notice that, unlike other tech-
niques, no GPU is being used to perform tessellation. We
expect a GPU implementation to achieve even more dra-
matic performance gains.

Figure 8 compares our tessellation algorithm using ra-
tional sampling

(

1

n

)

on the top left versus samples gener-
ated via subdivision on exponentially increasing grids

(

1

2n

)

on the top right using the same view dependent tessellation
criteria. The bottom left and right of the figure show the
same tessellations from another viewpoint. The changes in
resolution are much more subtle with our tessellations than
those produced by subdivision. Hence, our technique is able
to achieve much finer granularity when approximating the
surface and results in far fewer polygons. In this example,
the method based on exponential grids requires over40%
more polygons than our method to achieve the same level
of approximation.

6 Conclusions and Future Work

In this paper we have demonstrated that it is possible to
evaluateany stationary subdivision scheme at rational val-
ues. Our technique was based on enumerating a system of
equations relating the basis functions to one another using
the subdivision matrix. Solving this system of equations
provides the samples of the basis functions and leads to the
exact evaluation stencils. While this process is somewhat
expensive for large sampling grids, the stencils can be pre-
computed once and saved. We then showed how we could
use this exact evaluation method to create adaptive tessel-
lations of quadrilateral subdivision surfaces, which led to
impressive tessellation rates.

There are several open problems we would like to con-
sider in the future. One is to attempt to extend the upsam-
pling method in Section 3 from curves to surfaces so that
we do not have to manually enumerate the equations for the
scaling relationship. Unfortunately, the parameterization of
surfaces with extraordinary vertices is complicated and we
have not created a simple technique for doing so yet.

While all of the subdivision schemes we tried provided a
unique evaluation stencil from our equations, we currently
have no proof of uniqueness. In the future, we would like
to develop such a proof. One might expect problems to oc-
cur when evaluating more degenerate subdivision schemes
such as linearly dependent subdivision schemes, but our ex-
periments linearly dependent subdivision schemes did not
produce any difficulties and the equations still had unique
solutions.

Finally, we intend to explore the idea of using pre-
computed stencils to facilitate modeling using linear sur-
faces schemes that haveC2 smoothness. Typically, such
schemes require complicated basis functions with support
much larger than that of subdivision schemes such as
Catmull-Clark. Our idea is to isolate the complexity of the
evaluation of the basis functions in a pre-computation phase
in which stencils for various values ofn and various local
neighborhood topologies are constructed. Given these sten-
cils, our task is to then develop a mesh indexing scheme that
characterizes the topological structure of the local neighbor-
hood of a quad (or triangle) allowing for fast application of
the appropriate stencil to perform exact evaluation.

Acknowledgements
We would like to thank Bay Raitt for the models of the
“Monster Frog” and “Big Guy” as well as Ergun Akleman
for the shape in Figure 9.

References

[1] J. Bolz and P. Schröder. Evaluation of subdivision surfaces
on programmable graphics hardware.

[2] E. Catmull and J. Clark. Recursively generated b-spline sur-
faces on arbitrary topological meshes.Computer Aided De-
sign, 10(6):350–355, 1978.

[3] N. Dyn, J. Gregory, and D. Levin. A four point interpola-
tory subdivision scheme for curve design.Computer Aided
Geometric Design, 4:257–268, 1987.

[4] M. Halstead, M. Kass, and T. DeRose. Efficient, fair inter-
polation using catmull-clark surfaces.Computer Graphics,
27(Annual Conference Series):35–44, 1993.

[5] T. Ju, F. Losasso, S. Schaefer, and J. Warren. Dual contour-
ing of hermite data.ACM Trans. Graph., 21(3):339–346,
2002.

[6] L. Kobbelt. Interpolatory subdivision on open quadrilateral
nets with arbitrary topology. InComputer Graphics Forum
(Proc. EUROGRAPHICS ’96), 15(3), pages 409–420, 1996.

[7] L. Kobbelt. sqrt(3)-subdivision. InSIGGRAPH ’00: Pro-
ceedings of the 27th annual conference on Computer graph-
ics and interactive techniques, pages 103–112, 2000.

[8] A. Levin and D. Levin. Analysis of quasi uniform sub-
division. Applied and Computational Harmonic Analysis,
15(1):18–32, 2003.

[9] C. Loop. Smooth subdivision surfaces based on triangles.
Masters Thesis., University of Utah, Dept. of Mathematics,
1987.

[10] C. Micchelli and J. Sauer. On vector subdivision.Math. Z.,
229:621–674, 1998.

[11] L. Ramshaw. Blossoms are polar forms.Computer Aided
Geometric Design, 6(4):323–358, 1989.

[12] U. Reif. A unified approach to subdivision algorithms near
extraordinary vertices.Computer Aided Geometric Design,
12(2):153–174, 1995.

[13] L.-J. Shiue, I. Jones, and J. Peters. A realtime gpu subdivi-
sion kernel.ACM Trans. Graph., 24(3):1010–1015, 2005.

[14] J. Stam. Exact evaluation of catmull-clark subdivision sur-
faces at arbitrary parameter values. InSIGGRAPH ’98: Pro-
ceedings of the 25th annual conference on Computer graph-
ics and interactive techniques, pages 395–404, 1998.

[15] G. Strang. Wavelets and dilation equations: a brief introduc-
tion. SIAM Review, 31(4):614–627, 1989.

[16] J. Warren and H. Weimer.Subdivision Methods for Geomet-
ric Design: A Constructive Approach. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 2001.

[17] D. Zorin and P. Schr̈oder. Subdivision for modeling and an-
imation, 2000.

[18] D. Zorin, P. Schr̈oder, and W. Sweldens. Interpolating sub-
division for meshes with arbitrary topology. InSIGGRAPH
’96: Proceedings of the 23rd annual conference on Com-
puter graphics and interactive techniques, pages 189–192,
1996.

