
1

Manifold Dual Contouring
Scott Schaefer, Tao Ju, Joe Warren

Abstract— Dual Contouring is a feature-preserving iso-surfacing
method that extracts crack-free surfaces from both uniform and
adaptive octree grids. We present an extension of Dual Contour-
ing that further guarantees that the mesh generated is a manifold
even under adaptive simplification. Our main contribution is
an octree-based, topology-preserving vertex clustering algorithm
for adaptive contouring. The contoured surface generated by
our method contains only manifold vertices and edges, preserves
sharp features, and possesses much better adaptivity than those
generated by other iso-surfacing methods under topologically safe
simplification.

Index Terms— iso-surfacing, contour simplification, vertex clus-
tering, manifold

I. INTRODUCTION

Contouring is the process of generating a piece-wise linear
approximation to the zero-surface of an implicit function.
Originally motivated by the need for visualizing 3D medical
images, the study of contouring methods has developed into
a major area in the field of graphics and visualization. A
large number of these methods are designed for volumes with
a uniform grid structure. For example, the Marching Cubes
(MC) method [1] generates a closed, manifold triangular mesh
for any signed volume. To improve the quality of the contour
geometry, methods like the Extended Marching Cubes [2]
have been proposed to reproduce sharp edges and corners by
utilizing additional information in the volume, such as surface
normals.

When the volume size is large, however, contouring on a
uniform grid may generate too many polygons for visual-
ization or further processing. To address this deficiency, Ju
et al. [3] introduced the Dual contouring (DC) method for
generating adaptive contours. The DC method simplifies a
uniform grid into an octree structure by merging grid cells
in which the underlying contour geometry is flat. DC always
produces crack-free contours on any octree grid and is also
capable of reproducing sharp geometry features when hermite
data is available. In contrast, extending MC and its variants
onto octree grids often results in cracks between the surface
extracted from adjacent octree cells at different octree depths,
which need to be resolved using special crack-patching strate-
gies such as in [4], [5].

Despite being adaptive and feature-preserving, a major draw-
back of the DC method is that, unlike MC and many other
uniform contouring methods, DC may generate non-manifold
surfaces. That is, an edge on the contour may be shared by
more than two polygons, and the neighborhood of a vertex

Texas A&M University, College Station, TX
Washington University, St. Louis, MO
Rice University, Houston, TX

may not be topologically equivalent to a disk. Non-manifold
surfaces are not only less visually appealing than 2-manifolds,
but also problematic for mesh processing tasks such as fairing
and parameterization.

Contributions

In this paper, we propose an extension of the Dual Contouring
method that also guarantees production of manifold contours.
Although there have been several variants of DC [6], [7] that
introduce better topology control or even claim to produce
manifold contours, non-manifold edges and vertices can still
appear in the adaptive setting (see Section II). In contrast, we
present theoretical proofs that our method always generates
closed, 2-manifold surfaces even under adaptive simplification.
Our method presents two novel additions to the original DC
method:

1) A vertex clustering algorithm for contour simplification
that allows multiple contour components in one octree
cell. Compared to previous adaptive variants of DC [7]–
[9], our method is simpler to implement and places no
limit on the number of intersections between the con-
tour and each cell edge, hence allowing less restrictive
simplification.

2) A simple topology constraint in vertex clustering, which
guarantees that the simplified contours are always 2-
manifold. To the best of our knowledge, this is the first
manifold-preserving criterion developed for octree-based
vertex clustering methods.

II. RELATED WORK

In this section we briefly review the Dual Contouring method,
recent extensions and variants of DC, related mesh simplifi-
cation methods using vertex clustering and other approaches
for topology-preserving contour simplification.

A. Dual Contouring

The Dual Contouring method, proposed by Ju et. al. [3],
provides a uniform approach for extracting water-tight iso-
surfaces on both uniform grids and adaptive octree grids. The
algorithm creates one vertex for each grid cell that contains a
sign change, and creates the surface by generating one polygon
for every edge in the grid containing a sign change. Along each
sign-change edge, the polygon connects the four vertices of
the cells sharing that edge. DC guarantees to generate a close
surface on any octree grid and can be implemented efficiently
using recursive tree traversals [3].

Another advantage of DC over MC is its ability of reproducing
sharp features, such as edges and corners, when Hermite data

2

(a) (b)

Fig. 1. Vertex clustering in two neighboring cells (a) results in a non-manifold
edge on the surface (b).

is available. In Hermite representation, each grid edge that
contains a sign change is associated with an intersection point
between the contour and the edge as well as a normal vector
of the contour at the point. Such Hermite representation can be
either obtained from a closed triangular mesh [10] or directly
from a implicit function. In DC, the vertex within a cell is
placed so as to minimize a Quadratic Error Function [11]
constructed from the Hermite data associated with the cell
edges.

B. Extensions and variants of Dual Contouring

A problem of DC that has been of common interest in almost
all subsequent work is the restriction of DC in maintaining no
more than one contour vertex within each grid cell. To relax
this restriction on a uniform grid, multiple contour components
in a cell can be detected either by identifying edge-connected
components of positive (or negative) cell corners [9], [12] or
by utilizing the cycles in the Marching Cubes look-up table
[7], [13]. In this paper, we follow the Dual Marching Cubes
approach of Nielson [13] to obtain one vertex for each contour
component on the uniform grid (see details in Section III).

To handle multiple vertices per cell in adaptive contouring,
Zhang et al. [7] propose a vertex clustering approach for
simplifying contours. Their method maintains the disconnected
contour components during simplification using an enhanced
cell representation and results in much better adaptivity than
DC. However, preserving components alone is not sufficient
to avoid non-manifold vertices or edges. Figure 1 shows an
example in which the method of [7] would generate a non-
manifold edge when vertex clustering is performed in two
neighboring octree cells containing a cylinder-shaped surface.
Moreover, contour simplification in [7] requires non-trivial
coding-vector operations and is restricted to a maximum of
2 intersections between the contour and each cell edge. Such
restriction places a bound on the maximum number of contour
patches that an octree cell may contain, resulting in limited
simplification of complex contours (see an example in Section
VI). A similar restriction is also found in the method of
Varadhan et al. [9], which creates an adaptive grid using octree
refinement guided by feature detection.

Instead of contour simplification, the method of Ashida and
Badla [6] extracts contours directly from octrees with adaptive
resolution. Their method identifies cycles of contour faces

intersecting each octree cell and creates one vertex for each
cycle. Despite their claim of a manifold contour, non-manifold
contour edges may still appear between two neighboring cells,
such as in the cylinder example of Figure 1 (b). Moreover,
cycle-identification is a time-consuming process. In a com-
pletely different approach, Schaefer et al. [8] extract contours
by performing MC on a hexahedral grid dual to the octree grid,
which is generated by extending DC to volumetric functions.
The resulting surface is guaranteed to be a 2-manifold, but is
very expensive to compute.

C. Vertex clustering

Contour simplification in DC and its variants is closely re-
lated to vertex clustering methods for simplifying polygonal
meshes. These methods group vertices based on spatial or
geometric proximity and compute one representative vertex
for all vertices in a same group. Vertex grouping often utilizes
some type of spatial partitioning structure, such as uniform
cubic grids [14], floating cells [15], octree grids [16] and BSP
trees [17]. As in DC, Quadratic Error Functions can be used
for accurate placement of representative vertices [18], [19].
However, little work has been done in controlling topology
during vertex clustering. Brodsky and Watson [20] perform
a topology check that partitions a group of vertices if the
group contains disjoint components. Similarly, Kanaya et al.
[21] compute one representative vertex for each connected
component in each vertex group to preserve disjoint portions
of a mesh. To date, there has been no report of any octree-
based vertex clustering method that preserves the manifoldness
or genus of the surface.

D. Topology-preserving contour simplification

Besides the octree-based vertex-clustering approach in DC
and its variants, there are several other contour simplification
methods, some of which preserve surface topology during
simplification. Lewiner et al. [22] presented a iso-surface
compression method on a simplicial (e.g., triangular or tetra-
hedral) grid via simplification operators, known as “welds”,
that are applied to the grid. The compression preserves iso-
surface topology and manifoldness by checking the Euler
characteristic of the surface portion affected by each weld.
However, such test is computationally expensive as the fine
iso-surface has to be computed locally prior to each weld.

Another approach for contour simplification is to contour a
uniform grid first and then simplify the resulting iso-surface
using a main-stream mesh simplification technique such as
[23] or [11]. In contrast to DC and its variants, which apply
grid simplification first and then contour, this second approach
can be much more time and space consuming due to the need
to generate and store a fine polygonal iso-surface prior to mesh
simplification.

To reduce the high cost of the contour-and-simplify approach,
Attali et al. [24] proposed a hybrid approach where a fine
iso-surface is formed and immediately simplified as each slice

3

of the grid is processed. The iso-surface is contoured using
MC and simplification is based on edge contractions on the
polygonal surface. By enforcing the “link conditions” pro-
posed by Dey et al. [25] during simplification, the simplified
surface is always manifold and preserves the topology of
the original iso-surface. While Attali’s method avoids storing
the entire, fine-level iso-surface, the speed of the method
remains slow since this fine surface stills needs to be generated
and then simplified. As we will see, our topology-preserving
modification to DC simplifies an iso-surface in much less time
since no polygon is generated until after the grid is simplified.

III. CONTOURING ON A UNIFORM GRID

We start by describing a simple modification, first proposed
by Nielson [13], to the original DC algorithm [3]. One of the
limitations of DC is that it allows no more than one vertex
within each grid cell. On a uniform grid, DC leads to non-
manifold vertices and edges for all of the ambiguous sign
configurations in the original Marching Cubes algorithm [1].

To combat this effect, Nielson’s modification allows multiple
vertices to be placed in a single cell. In particular, Nielson
associates one vertex with each cycle of a modified Marching
Cubes table [26]. Since each cycle consists of a list of edges
on the cubic cell, each vertex is associated with a set of edges
and each edge is associated with exactly one vertex. To create
polygons, the algorithm constructs one polygon connecting the
vertices associated with that edge in the four adjacent cells.
This algorithm creates a quadrilateral surface that is the dual of
the surface created using Marching Cubes (and was therefore
given the name “Dual Marching Cubes”). Furthermore, this
surface is always a manifold because the original Marching
Cubes algorithm always constructs a manifold and the dual
preserves the topology of the surface.

One of the advantages of DC over a traditional contouring
method, such as Marching Cubes, is its capability of repro-
ducing sharp features in the presence of Hermite data. To
incorporate Hermite data into Nielson’s Dual Marching Cubes
algorithm, we simply construct a Quadratic Error Function
(QEF) [11] for each vertex using the Hermite data on the
edges associated with that vertex. We place this vertex at the
location that minimizes that error function.

Figure 2 shows a comparison in 2D of the different methods.
Marching Cubes always produces a manifold but does not
reproduce sharp features. Dual Contouring reproduces sharp
features but the topology may be non-manifold in some con-
figurations. The Hermite extension to Dual Marching Cubes
always produces a topological manifold and can reproduce
sharp features as well.

IV. ADAPTIVE CONTOURING

In the previous section, we considered constructing manifold
iso-surfaces from uniform grids that preserves sharp features.
However, for models with relatively flat regions, the uniform
contouring algorithm produces a large number of polygons

(a) (b)

(c) (d)

Fig. 2. Comparison of contouring with hermite data. Cell with hermite data
on edges (a), Marching Cubes (b), Dual Contouring (c) and Hermite Dual
Marching Cubes (d).

covering these flat regions. Ideally the contouring algorithm
would extract a surface where the number of polygons adapts
to the local properties of the surface (i.e; fewer polygons in
flat regions).

DC provides such an algorithm to construct multi-resolution
iso-surfaces. The method essentially performs vertex clustering
where the vertices of the child cells in the octree collapse to
a single vertex in a topologically safe manner. However, since
only one vertex was allowed per-cell in DC, the collapse was
very restrictive. Here we develop a new contour simplification
method via octree-based vertex clustering, which allows for an
arbitrary number of vertices per cell. Furthermore, we describe
a polygon generation algorithm for constructing surfaces from
these adaptively clustered vertices.

A. Vertex clustering

Given an error threshold, the vertex clustering phase creates a
vertex tree starting with the vertices at the finest level of the
octree. Each vertex contains a parent pointer as well as the
QEF associated with this vertex and the value of the QEF
evaluated at this vertex (i.e; the error associated with this
vertex). Furthermore, a vertex is marked as being collapsible
if the error associated with the vertex is less than our given
threshold. Initially, we flag all vertices as collapsible and set
their parent indices to NULL.

When simplifying the octree, we only cluster vertices together
that are topologically connected on the surface. Note that
this approach is similar to Zhang et al. [7], but it is not
sufficient to guarantee that we maintain the manifold properties
of the surface under simplification (which will be addressed
in Section V).

4

6

2 3
1

4

5

9

8

7

1

4

5

2

3

6

7

8

9

(a) (b) (c)

Fig. 3. Surface and vertices before clustering (a) and after clustering (b),
and the vertex tree generated by this collapse (c).

Our method traverses the octree cells from the bottom up.
For each octree cell that is not a leaf, we consider its eight
children. These children have twelve faces that are internal
to their parent cell (4 for each of the Euclidean axes). We
cluster together vertices at the root of the vertex tree that are
topologically connected by edges dual to the twelve internal
faces. The recursive octree traversal algorithm in Ju et al. [3]
provides an efficient technique for finding all of these edges.
For each group, we cluster the vertices together by combining
their QEF’s and minimizing the error function to find the new
vertex location as well as the error associated with this new
vertex. If the error for this vertex is less than the threshold,
we mark the new vertex as collapsible.

Figure 3 shows a 2D illustration of this algorithm. Here a quad-
tree has four children and we cluster vertices together that are
connected by edges through the four internal grid edges. The
vertex trees (see Figure 3 (c)) are maintained independent of
the actual octree. If we compare our approach with Zhang et
al. [7], which builds a vertex tree by merging “coding vectors”
associated with vertices, we can maintain similar topological
connectivity without resorting to complex coding for each
vertex inside of the cell. Also, we can handle an arbitrary
number of intersections per edge whereas other methods [7]–
[9] restrict the number of intersections to two.

Note that so far we permit a surface of arbitrarily complex
topology to be clustered into a single vertex, which may yield
non-manifold topology after clustering. We will resolve this
deficiency in Section V by introducing an additional topology
criterion for collapsible vertices, which will restrict clustering
to surfaces with simple topology (e.g., a sheet) within each
cell.

B. Polygonalization

After the vertex clustering stage, we construct polygons that
connect these vertices together. The vertices included in the
output mesh will be those vertices marked as being collapsible
that do not have any collapsible ancestors in the tree.

To construct polygons, we follow the uniform contouring algo-
rithm and create a polygon connecting the vertices associated
with each edge that exhibits a sign change. For each of those
vertices, we follow the parent pointers up the vertex tree to
find the last vertex marked as being collapsible. If the resulting

(a) (b) (c)

Fig. 4. A spider web contoured at a uniform resolution (a), simplified
using adaptive contouring without (b) and with (c) topology constraint. The
magnified region highlights some of the non-manifold regions.

polygon collapses to an edge or a vertex, then we discard that
polygon and continue.

To enumerate these edges, we use the recursive algorithm
detailed by Ju et al. [3], which traverses the octree and collects
the octree cells adjacent to each of the edges. Their algorithm
involves three types of functions cellProc, faceProc and
edgeProc that enumerate the cells, faces and edges of the
octree along with their adjacent octree cells. For further details,
we refer the reader to their paper.

One disadvantage of the above algorithm is that it requires a
traversal of the entire octree even after vertex clustering has
collapsed vertices. To optimize this algorithm, we mark a cell
during the clustering algorithm as “collapsed” if all clustered
vertices created in that cell satisfy the collapsible criterion and
all of the children of that cell are either leaf cells or marked as
collapsed. If a cell is collapsed, then none of the children cell
in this octree cell create any polygons and we can truncate the
octree traversal (cellProc) when it encounters a collapsed
cell. Furthermore, we can truncate the faceProc traversal
on a face if both cells sharing the face are collapsed cells,
because no polygons corresponding to the shared face will be
generated.

Figure 4 demonstrates the result of adaptive simplification.
The left-hand side shows a spider web created without sim-
plification. Performing vertex clustering to a predefined error
tolerance yields the next image. Notice that, just because we
only cluster vertices together that are topologically connected,
we do not necessarily maintain the manifold properties of
the surface. In particular, many of the threads in the web
have collapsed to single polygons or non-manifold edges. The
manifold criterion in the next section provides a method for
detecting these unsafe collapses and marking those vertices
appropriately.

V. MANIFOLD VERTEX CLUSTERING

In the previous section, a vertex is marked collapsible during
clustering if its associated QEF error is less than a given
threshold. In this section we require a collapsible vertex to
satisfy an additional topology criterion, so that the simplified
contour is a 2-manifold, that is, every contour edge is shared
by two polygons and every vertex is surrounded by a disk-
like neighborhood. We will first present the criterion, and then

5

(a) (b) (c)

Fig. 5. Examples of surface portions that do not satisfy the manifold
clustering criterion. (a) A sphere has Euler characteristic 2. (b) A cylinder
has Euler characteristic 0. (c) A half-cylinder has 4 edge intersections on a
face of the cell.

we explain how the quantities used in the criterion can be
efficiently obtained during clustering.

A. Manifold criterion

Given a vertex v on a simplified contour, we define Cv as the
octree cell in which v was created by clustering, and Sv as the
set of all polygons on the un-simplified surface (extracted at the
finest level of the octree) incident on vertices that are clustered
to v. Intuitively, Sv is collapsed to the 1-ring neighborhood of v
on the simplified contour. Since we want the neighborhood of
v to be equivalent to a disk, we would like Sv to have a single,
connected boundary. An important quantity that will help us
establish this property is the Euler characteristic χ(Sv), which
is defined by counting the numbers of edges E, faces F and
vertices V of Sv:

χ(Sv) = V (Sv)−E(Sv)+F(Sv) (1)

Now we present our main result (see proof in Appendix I):

Proposition 1: The adaptive contouring algorithm in Section
IV generates a closed 2-manifold if, for every vertex v on the
contour,

1) χ(Sv) = 1; and
2) The number of intersections of Sv with the four edges

of each face of Cv is either 0 or 2.

Intuitively, condition (1) allows only portions of the surface
equivalent to an open disk to be collapsed to a vertex, and
condition (2) further ensures that such collapsing only creates
edges contained by exactly 2 polygons. As counter-examples,
Figure 5 illustrates several cases of Sv that do not satisfy
the manifold criterion. The first two surfaces do not have
an Euler characteristic of 1 and clustering will remove a
surface component or result in a non-manifold vertex. In the
third example, which violates condition (2), clustering may
introduce a non-manifold edge shared by four polygons, as
shown in Figure 1, if the other half of the cylinder is clustered
to a vertex in the neighboring cell.

Note that the two conditions in Proposition 1 are sufficient, but
not necessary. The reason that we consider this particular set
of conditions is that they can be efficiently verified during the
bottom-up octree collapse (see next sub-section). In addition,
the two conditions apply to each clustered vertex indepen-
dently. Since a cell may contain multiple clustered vertices

Fig. 6. Computing Euler characteristic of Sv (bottom) that is the union of
several components Svk (top). Edge intersections are drawn as dots, X denotes
the Euler characteristic of each Svk , and e denotes the number of intersections
between Svk and the thickened edges.

corresponding to multiple disjoint components, condition (2)
places no limits on the number of intersections between the
contour and each cell edge. Furthermore, since condition (1)
implies that the genus of surface Sv is zero (see Appendix I),
vertex clustering not only preserves the manifold properties of
the surface, but also the genus of the un-simplified surface.

B. Computing edge intersections and Euler characteristic

The manifold criterion presented in Proposition 1 requires us
to compute the Euler characteristic χ(Sv) and the number of
intersection of Sv on the 12 edges of Cv. However, directly
computing χ(Sv) using the definition in equation (1) requires
the knowledge of points, edges and polygons in each Sv.
As clustering proceeds, the size of Sv becomes larger for
v at higher level of the vertex tree, and such computation
becomes more time-consuming. Delfinado and Edelsbrunner
[27] first introduced an incremental algorithm that can be
used to compute Euler characteristic of a growing triangular
surface that expands by adding one triangle at a time. Based
on the recursive nature of our vertex clustering, we present
a simple, recursive algorithm for computing both χ(Sv) and
edge intersection numbers from previously clustered vertices.

During vertex clustering, we compute 13 numbers for each
vertex v. These numbers include χ(Sv) and ei(Sv) for i =
1, . . . ,12, which is the number of intersections of Sv on the
ith edge of Cv. Starting with the base case of a leaf cell,
these quantities are easy to compute. In this configuration, Sv

consists of a single vertex v connected to polygons dual to the
edges associated with v. Therefore, ei(Sv) is 1 for each edge
associated with v and 0 otherwise. Furthermore, χ(Sv) = 1,
which can be trivially verified using equation 1.

To create a recursive algorithm for computing ei(Sv) and χ(Sv)

6

(a) (b) (c)

Fig. 7. (a): A spring model contoured on a uniform grid. (b): A model sim-
plified using our method allows each surface to be simplified independently.
(c): Dual Contouring restricts simplification even for separate surfaces.

for a clustered vertex v, we observe that the surface Sv is
the union of surfaces Svk where vk are the vertices clustered
together to form v from the child cells of Cv. To compute
ei(Sv), we simply sum the number of intersections of each Svk

along edges of Cv, shown as thin lines in Figure 6 (bottom).
We can compute χ(Sv) in an equally efficient manner using
an inductive formula that relates χ(Sv) to χ(Svk) (see proof in
Appendix II):

χ(Sv) = ∑
k

χ(Svk)−
∑k e(Svk)

4
(2)

where e(Svk) denotes the sum of the number of intersections
of Svk along the internal edges of Cv, shown as thickened lines
in Figure 6 (bottom).

Figure 6 shows an example where Sv (bottom) is built from ten
surfaces Svk (top). For each child cell we display the quantities
χ(Svk) and e(Svk) for each Svk in Figure 6 (top). Observe that
∑k χ(Svk) = 10 and ∑k e(Svk) = 36, and hence χ(Sv) = 1 by
equation 2, which is the correct Euler characteristic of the
disk-like surface Sv.

To integrate the topology constraint into the adaptive contour-
ing algorithm in the previous section, we require that a vertex
v is collapsible if the associated QEF error is below the given
threshold and if ei(Sv) and χ(Sv) satisfy the two conditions
in Proposition 1. Figure 4 (c) shows the result of adaptive
contouring with topology constraint, which preserves all the
threads of the spider-web with manifold vertices and edges.

VI. RESULTS

Compared with other contour simplification algorithms such
as the original Dual Contouring method or the extended Dual
Contouring method by Zhang et al. [7], our algorithm is
much less restrictive in the types of simplifications allowed.
First, multiple contour components within a same octree
cell simplify in an independent manner, hence allowing flat
regions to maximally collapse even if in the vicinity of other
geometry (see Figure 7). Second, unlike [7], our method puts
no restriction on the number of contour intersections on each
octree cell edge, as our vertex tree is separate from the octree.
This allows us to simplify multiple layers of thin geometry. A
2D example is shown in Figure 8, where our proposed method
is capable of simplifying nearby layers of contours much better
than both DC and Extended Dual Contouring [7].

(a) (b)

(c) (d)

Fig. 8. Comparison between Dual Contouring (b), Extended Dual Contouring
[7] (c), and the proposed Manifold Dual Contouring (d) in simplifying a 2D
contour (a). Vertices and edges on the contour are drawn as round dots and
lines, and octree cells in which the clustered vertices are formed are shown.

Furthermore, most contour simplification algorithms [3], [7]
stop simplifying surface components as soon as an unsafe
simplification is encountered, which limits the amount of
simplification possible. In contrast, our manifold criterion may
be able to determine that a safe simplification occurs later in
vertex clustering even if unsafe collapses occurred previously.
This method allows for extreme simplifications where even
very dense models such as Figure 9 collapse to extremely
simple shapes.

Figures 10 and 11 show two other complex scanned models
that have been simplified using our method by varying the
error threshold (the hermite volume representations of each
model were obtained using the PolyMender tool [10]). Each
model is topologically equivalent to (i.e, having the same
genus as) the original and does not contain any non-manifold
edges or vertices.

One attractive feature of our vertex clustering algorithm is that,
once the vertex tree is constructed, simplified polygons can be
generated efficiently off the vertex tree given different user-
specified QEF error thresholds. This is done simply by revising
the “collapsible” tag of each clustered vertex according to
the new error threshold, and there is no need to rebuild the
vertex tree. In contrast, methods that first build the fine-level
contour followed by mesh simplification (such as [24]) would
need to re-run the entire simplification process when the error
threshold is changed. Such feature of our algorithm could
be useful, for example, in realtime navigation of a complex
volume. In these applications, the QEF error thresholds are
higher in octree cells that are further away from the viewer’s
location, resulting in more detailed geometry in the viewer’s
vicinity and coarser polygons at distances. Figure 12 shows

7

(a) (b) (c) (d) (e) (f)
Fig. 9. Adaptive generation of iso-surfaces. Each model is guaranteed to be topologically a manifold: the iso-surface extracted on a uniform grid (a) contains
476184 polygons, and adaptive simplification generates models (b-f) with 142570, 62134, 14335, 2738 and 78 polygons.

(a) (b) (c) (d)
Fig. 10. Adaptive contouring of a dragon. The original contour on the uniform grid (a) contains 611476 polygons, and the following adaptive contours (b-d)
contain 74770, 39800 and 20580 polygons while maintaining the manifoldness and genus of the original surface.

(a) (b) (c) (d) (e) (f)
Fig. 11. Adaptive contouring of a statue with fairly complex geometry. Each adaptive contour in (b-f) is a manifold and topologically equivalent to the
original contour on the uniform grid (a). The surfaces have 878368, 550984, 283948, 138516, 74964 and 30002 polygons respectively.

third-person views of the Queen model visualized with respect
to different viewer’s locations (marked as blue dots). After
initial vertex clustering, computing each view involves only
polygon generation, and each simplified surface is guaranteed
to be a manifold that preserves the topology of the original
iso-surface.

Finally, Table I contains timing results for our algorithm on a
3 GHz Pentium computer with 2 GB main memory. The time
taken to simplify a shape is dominated by the vertex clustering
phase. In particular, we compare in Table I the performance

between clustering without the manifold criterion (i.e, involv-
ing only summing and minimizing QEFs) and clustering while
checking the manifold criterion for each clustered vertex.
Observe that, using the fast recursive algorithm presented
in Section V(B), the extra computation time for enforcing
manifold criterion is negligible comparing to that for QEF
operations. If we compare Table I with the performance of
Attali’s method reported in [24], our method runs approxi-
mately an order of magnitude faster on iso-surfaces with a
similar complexity at a same grid resolution.

8

Octree Base Clustering Time (sec) Clustering Time (sec) Polygon Simplified
Depth Polygons Without With Generation Polygons

Manifold Criterion Manifold Criterion Time (sec)
Fig 7 6 28740 0.254 0.259 0.060 1042
Fig 4 7 44784 0.459 0.465 0.097 3672
Fig 9 9 476184 5.58 5.76 1.12 78
Fig 10 9 611476 6.65 6.71 1.42 9944
Fig 11 9 878368 10.89 10.99 2.01 30002

TABLE I

SIMPLIFICATION TIME IN SECONDS FOR THE VARIOUS STAGES (CLUSTERING AND POLYGON GENERATION), COMPARING CLUSTERING WITH AND

WITHOUT THE MANIFOLD CRITERION.

(a) (b) (c) (d)

Fig. 12. Simplifying the contour based on two different viewer’s locations
(marked as blue dots), near the head (a,b) and near the base (c,d), shown with
polygon edges (a,c) and without edges (b,d). Note that the surface further away
from the viewpoint is simplified more.

VII. CONCLUSIONS AND FUTURE WORK

We have presented an extension to Dual Contouring that
preserves sharp features and always constructs a manifold
surface. Furthermore, we developed a simple criterion for
vertex clustering in an octree that is guaranteed to preserve the
genus of the original surface and always produce a 2-manifold
without any non-manifold vertices or edges.

Though the surfaces we produce are topologically manifold,
they may still contain intersecting polygons. For example,
in our Hermite extension to Nielson’s Dual Marching Cubes
algorithm, we may place multiple vertices inside of a cell. It is
possible that the Hermite data along the cell edges causes the
vertices to be positioned such that the surfaces intersect within
the cell. Note that intersecting polygons may arise even when
a single vertex is placed inside a cell, as observed in [28]. As
a result, the original DC algorithm as well as its variants are
all subject to such geometric errors.

A naive approach for detecting intersecting polygons gener-
ated by DC-like methods involves time-consuming neighbor-
finding on the octree as each polygon spans multiple octree

cells. Instead, [28] presented an efficient, intersection-free
modification to the original DC method by devising a set of
simple geometric tests to identify potentially intersecting poly-
gons, which are then tessellated into smaller, non-intersecting
triangles. While the method of [28] is restricted to single
vertex per octree cell, in the future we would like to extend
such method and explore criteria for placing multiple vertices
within a cell that both reproduces sharp-features and avoids
intersections even under adaptive simplification.

Given that the simplified iso-surface using our approach
preserves the topology of the original model, an interesting
direction that worth investigating is how our method can be
combined with topology-repair algorithms for large meshes,
and in particular, the grid-based methods such as [29], [30].
We anticipate that a geometrically simplified yet topologically
equivalent surface would greatly accelerate the process of
locating topological errors in these methods.

Acknowledgements

We would like to thank the Stanford 3D Scanning Repository
for the Dragon and Thai Statue models, Cindy Grimm for the
Spider-web model, and VanDuzan for the Queen model. We
would also like to thank the anonymous reviewers for their
comments and suggestions.

REFERENCES

[1] W. E. Lorensen and H. E. Cline, “Marching cubes: A high resolution
3d surface construction algorithm,” in Computer Graphics (Proceedings
of SIGGRAPH 87), vol. 21, no. 4, Anaheim, California, July 1987, pp.
163–169.

[2] L. P. Kobbelt, M. Botsch, U. Schwanecke, and H.-P. Seidel, “Feature-
sensitive surface extraction from volume data,” in Proceedings of SIG-
GRAPH 2001, ser. Computer Graphics Proceedings, Annual Conference
Series. ACM Press / ACM SIGGRAPH, August 2001, pp. 57–66.

[3] T. Ju, F. Losasso, S. Schaefer, and J. Warren, “Dual contouring of
hermite data,” ACM Transactions on Graphics, vol. 21, no. 3, pp. 339–
346, July 2002, iSSN 0730-0301 (Proceedings of ACM SIGGRAPH
2002).

[4] R. Shekhar, E. Fayyad, R. Yagel, and J. F. Cornhill, “Octree-based
decimation of marching cubes surfaces,” in VIS ’96: Proceedings of the
7th conference on Visualization ’96. Los Alamitos, CA, USA: IEEE
Computer Society Press, 1996, pp. 335–ff.

9

[5] R. Westermann, L. Kobbelt, and T. Ertl, “Real-time exploration of
regular volume data by adaptive reconstruction of isosurfaces,” The
Visual Computer, vol. 15, no. 2, pp. 100–111, 1999. [Online]. Available:
citeseer.ist.psu.edu/westermann99realtime.html

[6] K. Ashida and N. I. Badler, “Feature preserving manifold mesh from an
octree.” in Symposium on Solid Modeling and Applications, 2003, pp.
292–297.

[7] N. Zhang, W. Hong, and A. Kaufman, “Dual contouring with topology-
preserving simplification using enhanced cell representation,” in VIS ’04:
Proceedings of the conference on Visualization ’04. Washington, DC,
USA: IEEE Computer Society, 2004, pp. 505–512.

[8] S. Schaefer and J. Warren, “Dual marching cubes: Primal contouring
of dual grids,” in PG ’04: Proceedings of the Computer Graphics and
Applications, 12th Pacific Conference on (PG’04). Washington, DC,
USA: IEEE Computer Society, 2004, pp. 70–76.

[9] G. Varadhan, S. Krishnan, Y. Kim, and D. Manocha, “Feature-sensitive
subdivision and iso-surface reconstruction,” in IEEE Visualization 2003.
IEEE, 2003, pp. 99–106.

[10] T. Ju, “Robust repair of polygonal models,” ACM Trans. Graph., vol. 23,
no. 3, pp. 888–895, 2004.

[11] M. Garland and P. S. Heckbert, “Surface simplification using quadric
error metrics,” in Proceedings of SIGGRAPH 97, ser. Computer Graphics
Proceedings, Annual Conference Series. Los Angeles, California: ACM
SIGGRAPH / Addison Wesley, August 1997, pp. 209–216.

[12] A. Greß and R. Klein, “Efficient representation and extraction of 2-
manifold isosurfaces using kd-trees.” Graphical Models, vol. 66, no. 6,
pp. 370–397, 2004.

[13] G. M. Nielson, “Dual marching cubes,” in VIS ’04: Proceedings of
the conference on Visualization ’04. Washington, DC, USA: IEEE
Computer Society, 2004, pp. 489–496.

[14] J. Rossignac and P. Borrell, “Multi-resolution 3d approximation for
rendering complex scenes,” in Modeling in Computer Graphics, 1993,
pp. 455–465.

[15] K.-L. Low and T. S. Tan, “Model simplification using vertex-clustering.”
in SI3D, 1997, pp. 75–82, 188.

[16] D. P. Luebke and C. Erikson, “View-dependent simplification of arbitrary
polygonal environments.” in SIGGRAPH, 1997, pp. 199–208.

[17] E. Shaffer and M. Garland, “Efficient adaptive simplification of massive
meshes.” in IEEE Visualization, 2001.

[18] P. Lindstrom, “Out-of-core simplification of large polygonal models,” in
Proceedings of SIGGRAPH 2000, ser. Computer Graphics Proceedings,
Annual Conference Series. ACM Press / ACM SIGGRAPH / Addison
Wesley Longman, July 2000, pp. 259–262.

[19] M. Garland and E. Shaffer, “A multiphase approach to efficient surface
simplification.” in IEEE Visualization, 2002.

[20] D. Brodsky and B. Watson, “Model simplification through refinement.”
in Graphics Interface, 2000, pp. 221–228.

[21] T. Kanaya, Y. Teshima, K. ichi Kobori, and K. Nishio, “A
topology-preserving polygonal simplification using vertex clustering.”
in GRAPHITE, 2005, pp. 117–120.

[22] T. Lewiner, L. Velho, H. Lopes, and V. Mello, “Simplicial isosurface
compression.” in Vision, Modeling, and Visualization Conference, 2004,
pp. 299–306.

[23] J. Cohen, A. Varshney, D. Manocha, G. Turk, H. Weber, P. Agarwal,
F. Brooks, and W. Wright, “Simplification envelopes,” in SIGGRAPH
’96: Proceedings of the 23rd annual conference on Computer graphics
and interactive techniques. New York, NY, USA: ACM Press, 1996,
pp. 119–128.

[24] D. Attali, D. Cohen-Steiner, and H. Edelsbrunner, “Extraction and
simplification of iso-surfaces in tandem.” in Symposium on Geometry
Processing, 2005, pp. 139–148.

[25] T. Dey, H. Edelsbrunner, S. Guha, and D. Nekhayev, “Topology pre-
serving edge contraction,” Publ. Inst. Math. (Beograd) (N.S.), vol. 6,
pp. 23–45, 1999.

[26] G. M. Nielson and B. Hamann, “The asymptotic decider: resolving the
ambiguity in marching cubes,” in VIS ’91: Proceedings of the 2nd
conference on Visualization ’91. Los Alamitos, CA, USA: IEEE
Computer Society Press, 1991, pp. 83–91.

[27] C. J. A. Delfinado and H. Edelsbrunner, “An incremental algorithm for
betti numbers of simplicial complexes on the 3-sphere.” Computer Aided
Geometric Design, vol. 12, no. 7, pp. 771–784, 1995.

[28] T. Ju and T. Udeshi, “Intersection-free contouring on an octree grid,” in
Pacific Graphics ’06, 2006.

[29] A. Szymczak and J. Vanderhyde, “Extraction of topologically simple
isosurfaces from volume datasets,” in IEEE Visualization, 2003, pp. 67–
74.

[30] Z. J. Wood, H. Hoppe, M. Desbrun, and P. Schröder, “Removing excess
topology from isosurfaces.” ACM Trans. Graph., vol. 23, no. 2, pp. 190–
208, 2004.

APPENDIX I
PROOF OF PROPOSITION 1

Proof: We first show that the simplified contour contains only
manifold edges. Let {v,w} be an edge on the contour, and
without loss of generality, let Cv be at an equal or finer level
than Cw on the octree. The key is to observe that each polygon
in the simplified contour containing {v,w} corresponds to
some polygon in the uniform contour Sv that intersects an edge
of Cv. Due to condition (2), {v,w} is contained in exactly two
polygons.

We next show that each contour vertex is contained in a man-
ifold neighborhood. The Euler characteristic of a connected,
orientable 2-manifold Sv is related to the number of surface
boundaries, h(Sv), and number of surface handles (i.e., genus),
g(Sv), as:

χ(Sv) = 2−2g(Sv)−h(Sv)

Since both g,h are non-negative integers, the only possible
situation under which χ(Sv) = 1 is when g(Sv) = 0 and
h(Sv) = 1. In other words, Sv is topologically equivalent to
an open disk with a single boundary cycle. The vertices and
edges in this boundary cycle remains as a single connected
component after vertex clustering, which forms the boundary
of the 1-ring neighborhood of v. Since v is contained in
only manifold edges, the 1-ring neighborhood of v is also
topologically equivalent to a disk. �

APPENDIX II
PROOF OF EQUATION 2

Proof: Consider Sv as the portion of Sv that lies within the
faces of Cv, which consists of those polygons in Sv interior
to Cv and all other polygons in Sv truncated by the six faces
of Cv. We first show that χ(Sv) = χ(Sv). Let ∂ (Sv) be the
the set of vertices and edges the lie on the boundary of
Sv. Since Sv is a 2-manifold, ∂ (Sv) forms closed cycles and
therefore V (∂ (Sv))= E(∂ (Sv)). Similarly, we have V (∂ (Sv))=
E(∂ (Sv)). Since Sv and Sv share the same non-boundary
vertices, edges and polygons, formula 1 yields χ(Sv) = χ(Sv).

10

(a) (b) (c)

Fig. 13. Center planes of a cell (a), center lines of a cell (b), center lines
of each cell face (c).

Next, as Sv is the union of all Svk , we consider Mv as the set
of vertices and edges that are contained in more than one Svk .
The key observation is that Mv lies on the 12 internal faces
of the octree cell Cv (see Figure 13 (a)). Furthermore, we use
Mc

v and M f
v to denote respectively the set of vertices in Mv

lying on the center lines of Cv (see Figure 13 (b)) and on the
center lines of faces of Cv (see Figure 13 (c)). Observe that
each vertex in Mc

v is contained in exactly 4 Svk , whereas each
other element of Mv is contained in exactly 2 Svk . According
to formula 1,

χ(Sv) = ∑
k

χ(Svk)− (V (Mv)+2V (Mc
v))+E(Mv) (3)

On the other hand, since each Svk is a 2-manifold, a vertex
in Mv is contained in exactly 2 edges of Mv except for those
vertices in Mc

v , each contained in 4 edges, and those in M f
v ,

each contained in 1 edge. Hence we have,

2E(Mv) = 2(V (Mv)−V (Mc
v)−V (M f

v))+4V (Mc
v)+V (M f

v)
= 2V (Mv)+2V (Mc

v)−V (M f
v)

(4)
Substituting equation 4 into equation 3 yields

χ(Sv) = ∑
k

χ(Svk)−
2V (M f

v)+4V (Mc
v)

4
(5)

Equation 5 yields equation 2, because χ(Sv) = χ(Sv), χ(Svk) =
χ(Svk), and each vertex in M f

v and Mc
v contributes to one edge

intersection in d(Svk) for 2 and 4 Svk . �

Scott Schaefer is an Assistant Professor in the Com-
puter Science department at Texas A&M University.
He graduated from Trinity University in 2000 with a
B.S. degree in Computer Science and Mathematics,
received an M.S. degree from Rice University in
2003 and a Ph.D. from Rice University in 2006.
His research interests include Computer Graphics,
Geometric Modeling and Scientific Visualization.

Tao Ju graduated from Tsinghua University in 2000
with a BA degree in English and a BS degree in
Computer Science. He received his Ph.D degree in
Computer Science from Rice University in 2005. Tao
is currently an assistant professor in the Department
of Computer Science and Engineering at Washing-
ton University in St. Louis. His research interests
are in the areas of mesh processing, visualization,
geometric modeling, and biomedical applications.

Joe Warren, a Professor of Computer Science at
Rice University, is one of the world’s leading ex-
perts on subdivision. He has published numerous
papers of this topic and its applications to computer
graphics. These publications have appeared in such
forums as SIGGRAPH, Transactions on Graphics,
Computer-Aided Geometric Design and The Visual
Computer. He has also organized and participated in
a number of international workshops, short courses
and minisymposia on the theory and practice of
subdivision. Professor Warren’s related areas of ex-

pertise include computer graphics, geometric modeling and visualization.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

