
Visual Computer manuscript No.
(will be inserted by the editor)

Convex Contouring of Volumetric Data

Tao Ju1, Scott Schaefer1, Joe Warren1

Department of Computer Science, Rice University

The date of receipt and acceptance will be inserted by the editor

Abstract In this paper we present a fast, table-driven
isosurface extraction technique on volumetric data. Un-
like Marching Cubes or other cell-based algorithms, the
proposed polygonization generates convex negative space
inside individual cells, enabling fast collision detection
on the triangulated isosurface. In our implementation,
we are able to perform over 2 million point classifica-
tions per second. The algorithm is driven by an auto-
matically constructed look-up table that stores compact
decision trees by sign configurations. The decision trees
determine triangulations dynamically by values at cell
corners. Using the same technique, we can perform fast,
crack-free multi-resolution contouring on nested grids of
volumetric data. The method can also be extended to ex-
tract isosurfaces on arbitrary convex, space-filling poly-
hedra.

Keyword: contour, polygonization, implicit modeling

1 Introduction

Recent advances in hardware technology of 3D scanning
and sensoring has brought about the generation of large-
scale volumetric data such as MRI scans, CT scans and
geological images. A common approach to visualize these
volume datasets is to represent the data as implicit func-
tions and construct polygonal approximations of isosur-
faces, i.e. locus of points with some given function value.
This process is often referred to as contouring . The con-
toured surface partitions the whole volume into negative
space (locus of points with lower function values) and
positive space (locus of points with higher function val-
ues). In many interactive applications, such as computer
gaming and real-world simulations, navigation is con-
fined to the negative space, therefore fast operations for
checking the side of the main subject (e.g. the navigator)
with respect to the contoured surface becomes critical.

These operations are often referred to as collision detec-
tions.

Traditionally, contouring algorithms consider the data
volume in uniform cubical cells and polygonize isosur-
faces in each non-empty cell, i.e., cells that are inter-
sected by the isosurface. By doing so, the entire nega-
tive space is decomposed into sub-spaces within individ-
ual cells. Assuming that the negative space models free
space, checking whether a point lies inside the free space
can be greatly accelerated if the negative sub-space is
convex within the enclosing cell. Note that this point-
classification is the fundamental operation for computing
collision detection with other convex objects. For exam-
ple, an edge lies in the free space if for each cell it passes
through, both endpoints of the line segment within that
cell lie in the cell’s negative space (figure 1 left). This
observation is not true if the negative space within the
cell is non-convex (figure 1 right).

Fig. 1 Edge classification in a signed square with two dif-
ferent contours. The dashed lines indicate the contours, the
gray areas represent negative space, and the dark gray line
is the edge to be checked.

The most widely used cell-based algorithm is the March-
ing Cubes (MC) algorithm introduced by Lorensen and
Cline [7]. MC generates triangles on isosurfaces within
each cell based on a pre-computed table of positive/negative
patterns (referred to as sign configurations hereafter)

2 Tao Ju et al.

Fig. 2 Triangulations from the Marching Cubes’ look-up table. Negative corners are colored black.

of cell corners. MC became popular for its fast polygo-
nization and easy implementation due to its table-driven
mechanism. However, for some sign configurations, MC
does not produce polygonizations that are consistent
in topology with neighboring cells, and thus result in
surface discontinuities [4]. This drawback has sparkled
extensive research on dis-ambiguation solutions [1], [4],
[5], [10] and strategies to generate topologically correct
polygonizations [9]. Although these solutions generate
topologically consistent isosurfaces, the resulting nega-
tive space inside each cell is sometimes disconnected, and
thus not convex.

In this paper, we propose a fast table-driven cell-based
contouring method that generate topologically consis-
tent contours, while preserving convexity of the nega-
tive space within each cell. The algorithm depends on a
composite look-up table that associates each sign con-
figuration with a compact decision tree for dynamic tri-
angulation of isosurface patches. The reason for the use
of a decision tree is that the actual triangulation de-
pends not only on the signs, but also on the magnitude
of corner values. The decision trees are pre-computed to
ensure a minimal number of tests in determining each
triangulation.

This technique can be extended without difficulty to
multi-resolution contouring . In most multi-resolution
approaches, direct application of the cell-based contour-
ing algorithm to a grid of non-uniform cells can result
in surface cracks, i.e. discontinuity between iso-surfaces
generated from neighboring cells at different resolutions.
Various multi-resolution frameworks have been proposed
for contouring on non-uniform grids [3], [8], [11], [12],
[14], yet they involve special crack-patching strategies.
Bloomenthal [2] proposes an adaptive contouring method
which requires run-time face tracing to maintain con-
sistent contours for neighboring cells. We show that by
constructing look-up tables for transition cells using the
above algorithms, the same table-driven contouring method
can be applied to non-uniform data to generate crack-
free isosurfaces.

The remainder of this paper is organized as follows. After
reviewing the table-driven Marching Cubes algrorithm,
we present the convex contouring algorithm on uniform
grids. Then we explain the automatic construction of
look-up tables in more detail. Next we extend the pro-

posed technique to non-uniform grids to produce crack-
free contour surfaces. We conclude by discussing other
possible extensions and applications.

2 Marching Cubes and Look-up Tables

Marching Cubes is a popular algorithm for extracting
a polygonal contour from volumetric data sampled on
a uniform 3D grid. For each cell on the grid, the edges
intersected with the iso-surface are detected from signs
at cell corners. The algorithm then forms triangles by
connecting intersections on those edges (referred to as
edge intersections hereafter). To speed up the process, it
uses a look-up table that establishes triangulations for
each sign configuration. Since there are 8 corners in a
cell, the look-up table contains 256 entries, four of which
are shown in figure 2 .

Using the look-up table, the Marching Cubes algorithm
contours a cell in two steps:

1. Look up the triangulation in the table by the sign
configuration,

2. For each triangle, compute the exact location of each
vertex (edge intersection) from values at the cell cor-
ners by linear interpolation.

The Marching Cubes algorithm is fast because it uses ta-
ble look-up to build polygonal contours. Unfortunately,
the contoured surface generated by the original look-up
table in [7] may contain holes, since the triangular con-
tour within each cell is not always consistent with that
of the neighboring cells (figure 3).

Although this problem was fixed in later work, it re-
veals another drawback of manually created tables. The
entries in the Marching Cubes’ look-up table are con-
structed by identifying 15 topologically distinct sign con-
figurations and triangulating each case by hand. The lack
of automation makes it susceptible to errors and diffi-
cult to adapt to other polyhedrons. As we shall see, the
look-up tables used in convex contouring are constructed
algorithmically based on the topology and geometry of
given polyhedrons, and therefore minimizes possible er-
rors.

Convex Contouring of Volumetric Data 3

Fig. 3 Two adjacent cells contoured using the Marching
Cubes algorithm that produce an inconsistent topology.

3 Convex Contouring Using Look-up Tables

The goal of convex contouring is to extract polygonal
contours that enclose convex negative spaces within each
cell. In this section, we will introduce the concept of con-
vex contours and describe the proposed polygonization
technique based on a pre-computed look-up table. Ex-
amples of convex contouring will be presented together
with performance comparison with the Marching Cubes
algorithm.

3.1 Convex contour

Assuming that the underlying implicit function is trilin-
ear inside each cell, the convex hull of the negative space
in a cell is the convex hull of all negative cell corners and
edge intersections. The convex contour is the part of this
convex hull that lies interior to the cell. In 2D, for exam-
ple, the convex contour consists of interior line segments
connecting edge intersections (i.e., dashed lines in fig-
ure 1 left). In 3D, the convex contour consists of interior
triangles whose vertices are edge intersections (figure 4
left). Together with the triangles that fill the negative
regions on cell faces (figure 4 right), they constitute the
convex hull of the negative space inside the cell.

Fig. 4 Convex contour on the convex hull of the negative
space.

Note that the convex contour in a cell is outlined by
linear convex contours on the faces of the cell (high-
lighted in figure 4). Since the linear convex contour in a

2D square is uniquely determined given the signs at the
4 corners (allowing movement of the edge intersections
along the edges), the polygonal convex contours from
neighboring 3D cells always share the same linear con-
tour on the common face. Hence convex contours always
form topologically consistent isosurfaces.

In figure 5, we show the convex contours for the same
cells from figure 2. In comparison, we observe that the
convex contour always encloses a connected, convex neg-
ative space within the cell, whereas the contour from the
Marching Cubes algorithm does not. Note that a convex
contour is sometimes composed of multiple connected
components, as shown in the rightmost cell of figure 5.
Each of these connected piece of the contour is called
a patch, which may contain multiple holes (such as the
center left cell in figure 5). Each hole on the patch is
surrounded by a ring of linear convex contours that can
be detected by the signs at the corners. Hence a look-up
table for patch boundaries can be constructed automat-
ically for each sign configuration.

3.2 Triangulation and Decision trees

Unfortunately, although the boundary of the patches on
the convex contour is unique for each sign configuration,
the actual polygonization is not. In fact, different scalar
values at cell corners, which determine the location of
edge intersections, may modify the shape of the convex
hull and result in different triangulation of the convex
contour. As illustrated in figure 6, two cells that share
the same sign configuration, but with different scalars
at cell corners, result in different triangulated convex
contours.

Fig. 6 Triangulation in cells with different scalar values at
corners. Edge intersections are indicted by gray dots.

To determine the correct triangulation based on the lo-
cation of edge intersections, one could apply a full-scale
convex-hull algorithm to compute the convex hull of the
negative space. However, such algorithms are too gen-
eral for our purposes, since we want only the part of
this convex hull that lies interior to the cell. Instead, we
can take advantage of the fact that the topology of the
boundary is known for each patch on the convex contour.
In fact, we can construct a set S of all possible triangu-
lations for each patch. For example, figure 6 shows the

4 Tao Ju et al.

Fig. 5 Convex contours in cells with different sign configuration.

only two possible triangulations for the convex contour of
that sign configuration, since the contour contains a sin-
gle 4-sided patch. According to Euler’s polygon division
problem [6], there are (2n−4)!

(n−1)!(n−2)! ways to triangulate a
n− sided patch into n− 2 triangles. In fact, this size of
S can be further reduced if we realize that the vertices
of these triangles are restricted to fixed cell edges, hence
some triangulations will never appear on the convex hull
of negative space. We will discuss this process in detail
when we describe how the look-up table is constructed.

Now we can think of the triangulation problem as the
following: given the exact locations of the edge inter-
sections, choose an appropriate triangulation from S so
that the triangles satisfy the convex hull property (i.e.,
all edge intersections and negative corners lie on one side
of the triangle). Hence we need a fast method to differ-
entiate the correct triangulation from others by looking
at the edge intersections. Assuming that triangles on the
convex contour face inside the convex hull of the nega-
tive space, we can do this by the following 4-point test :
given four distinct edge intersections V1, V2, V3, V4, if V4

lies on the front-facing side of the triangle (V1, V2, V3),
then the inverted triangle (V1, V3, V2) does not belong
to the convex contour (figure 7 left). Similarly, triangles
(V1, V2, V4), (V2, V3, V4) and (V3, V1, V4) do not satisfy
the convex hull property. Otherwise, by symmetry, we
claim that triangles (V1, V2, V3), (V1, V4, V2), (V2, V4, V3)
and (V1, V3, V4) do not lie on the convex contour (figure
7 right). Note that if all vertices lie on the same plane,
either choice can be made.

V1 V2

V3

V4

V1 V2

V3

V4

Fig. 7 Four-point test with vertices V1, V2, V3, V4.

Each 4-point test on the edge intersections rules out
those from the set S of all possible triangulations that
contain any of the four back-facing triangles. Since any
two triangulations differ at least in the triangles shared
by one of the boundary edge, the correct triangulation
can be distinguished from every other triangulation in S

through appropriate 4-point tests. For best performance,
a decision tree can be built to distinguish each triangula-
tion through a minimal set of tests. An example of such
a decision tree is shown in figure 8 for a 5-sided patch.
At each node, the remaining triangulations are shown
and the 4-point test is represented by indices of the four
vertices (the order is shown at the top left corner). If the
fourth vertex lies on the front-facing side of the triangle
formed by the first three vertices (in order), we take the
left branch. Otherwise, we follow the right branch. The
process stops at a leaf node, where a single triangulation
is left.

2,4,5,1 3,4,5,1

2,3,4,5 2,3,5,1

1,2,3,4

1
2
3 4

5

Fig. 8 A decision tree using 4-point test for 5-sided patches.

Since the construction of decision trees is based on the
original set S, they can be pre-computed and optimized
for every patch in each sign configuration. As we shall
see, the maximum depth of all these decision trees is 5
and the average tree depth is 1.88. In other words, the
correct triangulation of the convex contour in a cubic cell
can be determined by performing a maximum of 5 point-
face trials on the edge intersections, and on average no
more than 2 trials.

3.3 The look-up table

The look-up table contains 256 entries, one for each sign
configuration of a cubic cell. In each entry, the look-up
table stores the decision trees computed for each patch

Convex Contouring of Volumetric Data 5

Fig. 9 Two screen shots of a real-time navigation application using a convexly contoured terrain.

by traversing the nodes in the decision trees in pre-order.
Each non-leaf node contains a 4-point test, and each leaf
node stores a triangulation. The edge intersections in 4-
point tests and triangulations are represented by indices
of the edges on which they lie. Two example entries in
this table are shown in table 1, with their correspond-
ing sign configurations and edge indexing drawn on the
right.

3.4 Contouring by table look-ups

In comparison with the Marching Cubes algorithm, con-
vex contouring extracts the polygonal contour in a cell
in two steps:

1. Look up the decision trees (one for each patch) in the
table by the signs at the cell corners,

2. For each decision tree, perform 4-point tests on spec-
ified edge intersections until arriving at a single tri-
angulation.

Fig. 10 Convex contouring on volumetric data.

In figure 10, two sets of volumetric data generated by
scan-conversion of polygonal models are contoured us-
ing the new method. Observe that the edges on the sur-
face are manifold and the contour is crack-less. Since the

negative space inside each non-empty cell is convex, col-
lision detection can be localized into cells and therefore
become independent of the grid size. Figure 9 shows two
screen shots of a real-time navigation program in which
the movement of the viewer is confined within the nega-
tive space. The terrain is an iso-surface constructed using
convex contouring on a 256 cubic grid. On a consumer
level PC machine, we achieved over 2 million point clas-
sifications per second.

As we mentioned before, the average number of tests
used to determine triangulation for each patch is less
than 2. Hence we can perform convex contouring on vol-
umetric data with speed comparable to the Marching
Cubes algorithm. In table 2, the performance of con-
vex contouring is compared with that of the Marching
Cubes for contouring the terrain in figure 9 on differ-
ent grid sizes. We also compared the average number of
triangles generated in each cell in both methods. Notice
that convex contouring generates on average only about
2% more triangles than the Marching Cubes algorithm.
These extra triangles are needed to preserve the convex-
ity of the negative space.

Grid Size Marching Cubes Convex Contouring

1283 125 ms 141 ms
2563 781 ms 907 ms
5123 2109 ms 2437 ms

Avg. Triangles 3.181 3.257

Table 2 Comparison of total contouring time and average
number of triangles per cell in convex contouring and the
Marching Cubes.

6 Tao Ju et al.

Index Table Entry Cell Configuration

171
{1, 9, 12, 7} → 4-point test
{{1, 9, 7}, {9, 12, 7}} → Triangulation
{{1, 9, 12}, {1, 12, 7}} 1

2

3

4
5

6

7

8

9

10

11

12

125

{1, 3, 6, 12} → 4-point test in parent node
{1, 12, 10, 2} → 4-point test in left child
{{1, 3, 12}, {1, 12, 2}, {3, 6, 12}, {12, 10, 2}}
{{1, 3, 12}, {1, 12, 10}, {1, 10, 2}, {3, 6, 12}}
{1, 12, 10, 2} → 4-point test in right child
{{1, 3, 6}, {1, 6, 12}, {1, 12, 2}, {12, 10, 2}}
{{1, 3, 6}, {1, 6, 12}, {1, 12, 10}, {1, 10, 2}}

1

2

3

4
5

6

7

8

9

10

11

12

Table 1 Two example entries in the look-up table. Each entry is a list of triangulations (each stored as a list of triangles)
and 4-point tests (each stored by the indices of the vertices) traversed from the decision tree in pre-roder.

4 Automatic Construction of Look-up Tables

In this section, we will review the table construction pro-
cess in more detail. For a given sign configuration, we
first detect the patch boundaries as a group of rings of
linear contours. Then, for each patch, we construct the
set of all possible triangulations that could take place on
the convex hull of the negative space. Finally, an opti-
mal decision tree is built for every patch detected on the
contour. The look-up table can be found on the web at
http://www.cs.rice.edu/ jutao/research/contour tables/.

4.1 Detection of patch boundaries

A patch on the convex contour in a cubic cell is bounded
by linear convex contours on cell faces. These linear con-
tours form single or multiple rings that surround the
”holes” of the patch. Since the linear convex contours
are unique on each cell face for a given sign configura-
tion, a single ring can be constructed using the following
tracing strategy: starting from a cell edge that exhibits
a sign change (where an edge intersection is expected)
and facing the positive end, look for the next edge with
a sign change by turning counter-clockwise on the face
boundary. Repeat the search process until it returns to
the starting edge, when a closed ring is formed (see figure
11).

Notice that face-tracing produces oriented linear convex
contours on each cell face. Each linear contour on the
cell face is directed so that the negative region on that
face lies to its left when looking from outside. There-
fore the triangles on the convex contour of the cell that
share these linear contours will face towards the nega-
tive space. The orientation of the rings are important for

Fig. 11 Face tracing of a single ring. Solid arrows represent
linear contours already built, and dashed arrows indicate the
tracing route.

determining the set of possible triangulations that share
the same patch boundary.

Similar tracing techniques have been described by nu-
merous authors in [2], [9], [13], in which convexity of the
negative region on each cell face is preserved. These algo-
rithms construct a single ring for each patch boundary.
However, the problem remains on how to group multiple
rings to form the boundary of a multiple-genus patch
(such as the center left cell in figure 5). Although such
patches arise in only 4 cases among 256 sign configura-
tions, they may appear much more often in other non-
cubic cells (such as transition cells in multi-resolution
grids, see Section 6). We need to be able to identify
these cases automatically from the sign configuration
and group the rings appropriately.

By definition, a patch is a continuous piece on the con-
vex hull of negative space. Hence it also projects onto
a continuous piece of regions on the cell faces. These
regions are positive areas that surround positive cor-

Convex Contouring of Volumetric Data 7

ners connected by cell edges. Therefore the boundary
of each patch on the convex contour isolates a group of
positive corners that are inter-connected by cell edges.
The previous face-tracing algorithm could be modified
so that rings constructed around a same edge-connected
component of positive corners are grouped to form the
boundary of a single patch. This rule is demonstrated in
figure 12. In the top left cell, two rings of linear contours
form the boundary of two patches, due to the presence of
two isolated positive corners. In the top right cell, where
there is only one edge-connected component of positive
corners, the two rings are grouped to form the bound-
ary of a single cylinder-like patch. The connectivity of
the positive corners in these two cells are illustrated at
the bottom of figure 12. In contrast, face-tracing without
ring-grouping would give the same result in both cells,
thus violating the convex hull property in the second
cell.

Fig. 12 Top: Grouping of rings of linear contours (high-
lighted) to form boundaries of patches. Positive corners are
colored gray. Bottom: Connectivity graph of positive corners

4.2 Pre-triangulation of Convex Contour

The set of possible triangulations for a patch with an
oriented boundary topology can be enumerated by re-
cursive algorithms. However, this often results in redun-
dant triangulations that never appear on the convex con-
tour. For example, the genus-2 patch in the center left
cell in figure 5 can be triangulated in only one way on
the convex hull of the negative space, regardless of the
magnitudes of scalar values at the corners. In contrast,
brute-force enumeration would return 21 possible trian-
gulations for an arbitrary genus-2 patch with two trian-
gular holes. The key observation is that, the patches on
the convex contour are not arbitrary patches, their ver-
tices (edge intersections) are restricted to fixed edges on

the cell. These spacial restrictions limit the number of
possible triangulations that could occur on the convex
contour. For fast polygonization at run-time, we hope
to pre-triangulate each patch as much as possible during
table construction, based only on the sign configuration.

By the convex hull property, the half-space on the front-
facing side of a triangle on the convex contour must con-
tain (or partially contain) every other cell edge that ex-
hibits a sign change. Note that the three vertices of the
triangle can move only along three fixed cell edges, this
half-space is always contained in the union of the half-
spaces formed when the three vertices are at the ends of
their cell edges. Hence we have a way to identify triangles
that will not appear on the convex contour: given three
cell edges (C1, C2), (C3, C4) and (C5, C6) (Ci are cell cor-
ners), construct border triangles, i.e., triangles formed by
one end of each edge in order (such as (C1, C3, C5)). If
there is an edge on the cell exhibiting a sign change that
lies completely to the back of all non-degenerate border
triangles, any triangle whose vertices belong to these
three edges (in order) will not lie on the convex con-
tour. This idea is illustrated in figure 13. The highlighted
cell edge on the left exhibits a sign change, and lies to
the back of all the border triangles constructed from the
three dashed edges (E1, E2, E3). Hence the dashed trian-
gle formed by intersections on those edges never appears
on the convex contour. In contrast, the highlighted cell
edge on the right lies partially to the front of at least one
of the border triangles formed by the edges (E1, E2, E3),
hence the dashed triangle may exist in the triangulation
of the convex contour.

E1

E2

E3

E1

E2
E3

Fig. 13 Identifying triangles that do not lie on the convex
contour.

By eliminating triangulations that contain these ineli-
gible triangles, we can trim down the space of possible
triangulations. For example, the number of remaining
triangulations for the first three cells in figure 5 are re-
spectively 4, 1 and 4.

4.3 Construction of decision trees

Even after pre-triangulation, some patches still have many
potential triangulations on the convex hull of the nega-
tive space. To speed up the polygonization at run-time,

8 Tao Ju et al.

we can pre-compute a set of 4-point tests on the vertices
of the patch (edge intersections) to distinguish between
the remaining triangulations. These tests can be orga-
nized in a decision tree structure, introduced in the last
section. Different sets of tests result in differently shaped
decision trees. To obtain optimal performance, we imple-
ment a search algorithm that looks for the optimal set
of tests that produces a decision tree with the small-
est depth. Since each of the two outcomes of a single
test eliminates a non-intersecting subset of the remain-
ing triangulations, the minimal depth of the correspond-
ing decision tree is lower bounded by log2N , where N
is the total number of triangulations. For example, the
depth of an optimized decision tree for a patch of length
4, 5 and 6 are 1, 3 and 5 respectively. Further computa-
tion reveals that the maximum length of a patch (which
can not be pre-triangulated) in a cubic cell is 6; hence
any patch can be triangulated within 5 point-face trials
on the fly by walking down the pre-computed decision
tree. On average, however, it only takes 1.88 tests to de-
termine the triangulation of a patch, due to infrequent
occurrence of large patches and the reduced triangula-
tion space as a result of pre-triangulation.

5 Multi-resolution Convex Contouring

In volume visualization, the number of polygons gener-
ated by uniform contouring easily exceeds the capacity of
modern hardware. For real-time applications, it is often
advantageous to display the geometry at different lev-
els of detail depending on the distance from the viewer.
This technique has the advantage that it speeds up the
rendering process without sacrificing much visual accu-
racy. By using a view-dependent approach, the grid is
contoured at different resolutions depending on the dis-
tance from the navigator. In particular, we can create a
series of nested bounding boxes centered at the viewer,
with the grid resolution decreasing by a factor of 2.

A 2D example of this multi-resolution framework is shown
in figure 14 left, in which a circle is contoured using cell
grid at two different resolutions. When the coarse cells
at the top meet the fine cells at the bottom, the con-
tour in the coarse cells need to be consistent with the
contour from the neighboring fine cells on the common
edges. We call these coarse cells transition cells, which
are adjacent to cells at a finer resolution. A 2D transition
cell thus has five corners and five edges, as shown in the
middle of figure 14. By connecting edge intersections on
each cell edge, the transition cells can be contoured in a
way similar to a regular 4-corner cell, yielding consistent
contours with the adjacent fine cells. Some of the con-
toured example are shown in figure 14 right. Notice that
the convexity of the negative region is still preserved in
each transition cell.

In 3D, a transition cell between two resolutions is either
adjacent to two fine cells on an edge, or adjacent to four
fine cells on a face (see figure 15 left). These two types
of cells can be regarded as convex polyhedrons with 9
corners (figure 15 center) and 13 corners (figure 15 right)
respectively.

Since the previous discussion on regular cells applies to
any convex polyhedron, we can also build look-up ta-
bles and perform convex contouring on these transition
cells. In this way, crack-free surfaces can be contoured
on nested grids within the same framework as uniform
contouring.

5.1 Convex contours in transition cells

As in a regular cell, the convex contour inside a tran-
sition cell is outlined by the linear contours on the cell
faces. Since the linear convex contour is unique on each
face for a given sign configuration, the boundary of patches
on the convex contour can be pre-computed using the
proposed face-tracing algorithm. At the top of figure 16,
the oriented boundaries of patches in different transition
cells are detected and drawn as dashed arrows. Since con-
vex contours from neighboring cells in a multi-resolution
grid always share the same linear contour on the com-
mon face as their boundaries, topological consistency is
preserved everywhere on the contoured surface.

Fig. 16 Patch boundaries (top) and triangulation (bottom)
in three transition cells.

By pre-computing optimal decision trees for each patch,
the triangulation can be determined by applying succes-
sive 4-point tests on the edge intersections. At the bot-
tom of figure 16, patches detected from the cells on the
top are triangulated on the convex hull of the negative
space. However, due to the presence of four co-planar
faces on a 13-corner cell, this convex hull could degener-
ate onto a plane (figure 17 left). To determine the correct
triangulation of the convex contour on the degenerate
convex hull, we introduce an outward perturbation to

Convex Contouring of Volumetric Data 9

Fig. 14 A circle contoured on a 2D multi-resolution grid (left), consisting of regular cells and transition cells (middle). Example
contours in a transition cell are shown on the right. Positive corners are colored gray, and negative corners are colored black.

Fig. 15 Transition cells on nested grids: 9-corner cell (in the middle) with 6 faces and 13-corner cell (on the right) with 9
faces. Their positions in the nested grids are illustrated on the left.

Fig. 17 Perturbing cell corners on co-planar faces. The
patch boundary is outlined by highlighted lines.

the cell corners of the co-planar faces so that they no
longer lie on the same plane (figure 17 right). Since the
perturbations are small and perpendicular to the plane
that contains those faces, the triangles on the degenerate
convex hull still forms a convex hull after perturbation.
Therefore the 4-point tests on edge intersections that all
lie on that plane will instead be applied to the new edge
intersections computed from the perturbed cell corners.
Since the final triangulation determined by these tests
take place on the unperturbed geometry, the patches
are still bounded by the linear contours on cell faces
and topological consistency is preserved.

5.2 Look-up tables

The look-up tables are constructed in the same way as
for uniform cells, except for the fact that the transi-

tion cells have more complicated topology that results
in larger patches and more possible triangulations. Each
entry in the look-up table corresponds to a sign configu-
ration at the cell corners. For the 9-corner cell, the table
consists of 29 = 512 entries, and the look-up table for the
13-corner cell consists of 213 = 8192 entries. Each entry
stores compact decision trees for each patch in the same
format as described in the uniform case. The resulting
decision trees have maximum depth of 5 in a 9-corner
cell, and 14 in a 13-corner cell. On average, however, it
only takes 1.92 tests to determine the triangulation of
a patch in a 9-corner cell, and 4.76 tests in a 13-corner
cell. The look-up tables can also be found on the web at
http://www.cs.rice.edu/ jutao/research/contour tables/.

5.3 Multi-resolution contouring

Convex contouring of a cell on a nested grid proceeds in
exactly the same way as on a uniform grid. The only no-
ticeable differences are the different look-up tables to use
for different type of cells, and appropriate perturbations
to be applied when the four points in the test lie on the
co-planar faces on the 13-corner cell. Therefore contour-
ing on uniform and multi-resolution grids can be imple-
mented within the same framework. The pre-computed
look-up tables guarantee the consistency of the surface,
therefore no crack-filling is ever needed. In our imple-
mentation (see figure 18), users navigate in space and
the grid resolution changes in real time depending on
the viewer’s position. The table driven patch detection

10 Tao Ju et al.

and triangulation provides fast crack-less contouring of
both regular cells and transition cells.

Fig. 18 Multi-resolution contouring on the Happy Buddha
with different viewer positions.

6 Conclusion

In this paper, we presented a table-driven contouring
method that produces topologically consistent surfaces
with a local convexity property. The polygonal contour
inside each cell encloses a convex negative space, which
enables fast collision detection on the contoured sur-
face. The construction of contours is greatly accelerated
via table look-up of triangulation from the signs and
magnitudes of corner values. We also showed how this
method could be used to perform crack-free contouring
on multi-resolution grids. By constructing look-up tables
for transition cells, convex contouring of both uniform
and multi-resolution grids can be implemented within
a single unified framework. In fact, convex contours are
also defined for arbitrary convex polyhedrons, such as
square pyramids and tetrahedrons. Hence the same tech-
nique proposed here can be used to construct look-up ta-
bles for more complex shapes. The look-up tables for uni-
form cells and transition cells in multi-resolution grids
are also available on the web.

References

1. H.H. Baker (1989). Building Surfaces of Evolution: The
Weaving Wall. International Journal of Computer Vi-

sion, 3:51-71.
2. J. Bloomenthal (1988). Polygonization of Implicit Sur-

faces. Computer Aided Geometric Design, 5:341-355.
3. I.Boada and I.Navazo (2001). Multiresolution Isosurface

Fitting using an Octree based Surface Hierachy. Research
Report IIiA 01-02-RR, Institut Inform‘atica i Aplica-
cions, University of Girona.

4. M.J. Duurst (1988). Additional Reference to Marching
Cubes. Computer Graphics, 22(2):72-73.

5. A. Van Gelder and J. Wilhelms (1994). Topological Con-
siderations in Isosurface Generation. ACM Transactions
on Graphics, 13(4):337-375.

6. R. K. Guy (1958). Dissecting a Polygon Into Triangles.
Bulletin Malayan Math. Society, 5:57-60.

7. W. Lorensen and H. Cline (1987). Marching Cubes: A
High Resolution 3D Surface Construction Algorithm.
Computer Graphics (SIGGRAPH ’87), 21(4):163-169

8. H. Muller and M. Stark (1993). Adaptive Generation
of Surfaces in Volume Data. The Visual Computer,
9(4):182-199.

9. G.M. Nielson and B. Hamann (1991). The Asymptotic
Decider: Resolving the Ambiguity in Marching Cubes.
Proceedings of IEEE Visualization 91, 83-91.

10. P.Ning and J. Bloomenthal (1993). An Evaluation of Im-
plicit Surface Tiles. IEEE Computer Graphics & Appli-
cations, 13(6):33-41.

11. T. Poston, T.T. Wong and P.A. Heng (1998). Multires-
olution Isosurface Extraction with Adaptive Skeleton
Climbing. Computer Graphics Forum, 17(3):137-148.

12. R. Shekhar, E. Fayyad, R. Yagel, and J.F. Cornhil
(1996). Octree-based Decimation of Marching Cubes
Surfaces. IEEE Visualization ’96:335-344.

13. A. Wallin (1991). Constructing Isosurfaces from CT
Data. IEEE Computer Graphics and Applications,
11(6):28-33.

14. R. Westermann, L. Kobbelt, and T. Ertl (1999). Real–
Time Exploration of Regular Volume Data by Adap-
tive Reconstruction of Isosurfaces. The Visual Computer,
15:100-111.

