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Figure 1: We show a comparison of Lánczos 2 filter approximations showing (a) the 10242 input image downsampled to a resolution of 892

pixels using (b) an exact Lánczos filter, (c) an eight texel approximation using our method, and (d) trilinear interpolation applied to a Lánczos
filtered mipmap. Our approximation produces an image that is nearly the same as the exact filtered image while using the same number of
texels as trilinear interpolation.

Abstract

We present a method to create high-quality sampling filters by com-
bining a prescribed number of texels from several resolutions in a
mipmap. Our technique provides fine control over the number of
texels we read per texture sample so that we can scale quality to
match a memory bandwidth budget. Our method also has a fixed
cost regardless of the filter we approximate, which makes it feasi-
ble to approximate higher-quality filters such as a Lánczos 2 filter
in real-time rendering. To find the best set of texels to represent a
given sampling filter and what weights to assign those texels, we
perform a cardinality-constrained least-squares optimization of the
most likely candidate solutions and encode the results of the op-
timization in a small table that is easily stored on the GPU. We
present results that show we accurately reproduce filters using few
texel reads and that both quality and speed scale smoothly with
available bandwidth. When using four or more texels per sample,
our image quality exceeds that of trilinear interpolation.
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1 Introduction

Artists often apply images, called textures, to the surface of three-
dimensional models to add visual interest. However, we must take
care when displaying images on a model, because there is not a
one-to-one correspondence between the texels (texture elements)
and pixels of the display. When a model is in the distance and
several texels correspond to each pixel, poor sampling can cause
false patterns, called aliasing, to appear. If we interpret drawing
textures as sampling a two-dimensional signal, Shannon’s sampling
theorem [Shannon 1949] implies that we must use a low-pass filter
to remove high-frequency data from the image prior to sampling.

There are a variety of low-pass filters, where each filter has its own
set of tradeoffs. Some filters remove aliasing at the cost of overblur-
ring the image, while others blur less but allow more aliasing. Fil-
ters that are effective at removing aliasing without overblurring sum
over a greater number of texels, which makes them expensive to
compute. As an extreme example, the sinc filter removes all high
frequencies and no low frequencies, but sums over an infinite num-
ber of texels. Directly adding all samples that fall under the filter
support becomes impractical for distant objects, because we must
sum over a number of texels proportional to the squared distance.

Rendering algorithms typically use image pyramids called
mipmaps [Williams 1983] to accelerate image filtering. Mipmaps
consist of precalculated images downsampled at power-of-two res-
olutions and can be used to compute filters in constant time, regard-
less of the scaling factor. We present a method that combines texels
in a mipmap to reproduce the results of low-pass filters while only
reading a few texels per sample. Our insight is two-fold. Rather
than interpolating colors between single points, so that colors are
exact at those points but poor everywhere else, we find weights that
give good results over all possible sample points. Our second in-
sight is that we can combine texels from any mipmap resolution.
Given a sampling filter, the prefilter used to construct the mipmap,
and a texel budget, we can solve for which texels to use and the
weights that best reproduce the sampling filter.

http://doi.acm.org/10.1145/2461912.2461963
http://portal.acm.org/ft_gateway.cfm?id=2461963&type=pdf
http://josiahmanson.com/research/cardinality_constrained/


Memory bandwidth is often a bottleneck in graphics applications,
so we attempt to use the bandwidth as efficiently as possible. Our
method can also scale the number of texel reads per sample to match
the available bandwidth. By carefully choosing which texels to
use, we accurately reproduce image filters that are sharp and free
of aliasing for all scales, translations, and rotations of an image.
Furthermore, we can approximate high-quality filters such as the
Lánczos 2 filter in real-time, because the size and complexity of a
filter only affects preprocessing time to calculate filter coefficient
tables and generate mipmaps. We show an example in Figure 1
where we approximate a Lánczos 2 filter compared to exact evalu-
ation of the filter and trilinear interpolation of the mipmap.

When sampling a texture, we measure the distortion of each
pixel into texture space. Isotropic filtering assumes that distor-
tions scale the pixel, whereas anisotropic filtering allows pixels to
stretch. When viewing three-dimensional surfaces at oblique an-
gles, anisotropic filtering improves image quality, but reduces to
isotropic filtering for perpendicular viewing directions. We focus
our attention on improving the quality of isotropic filtering, and we
describe how our method applies to anisotropic image filtering at
the end of the paper.

2 Related Work

Most real-time rendering algorithms use mipmapping [Williams
1983; Burt and Adelson 1983] to sample textures. Mipmapping
reduces aliasing by precalculating downsampled images at several
resolutions with a low-pass filter, such as the box, tent, Gaussian,
Lánczos [Duchon 1979], or Mitchell-Netravali [Mitchell and Ne-
travali 1988] filters. Because sampling positions do not typically
coincide with texel centers, trilinear interpolation is often used to
calculate colors between texels. Mipmapping allows sampling al-
gorithms to be independent of scale while using only 33% more
memory than the input image.

There is surprisingly little literature on how to improve upon
mipmapping for isotropic filtering. The attention of researchers
has instead focused on how to improve anisotropic texture filter-
ing [Crow 1984; Glassner 1986; Greene and Heckbert 1986; Heck-
bert 1989; Schilling et al. 1996; Cant and Shrubsole 1997; Hüttner
and Straßer 1999; McCormack et al. 1999; Cant and Shrubsole
2000; Chen et al. 2004; Zhouchen Lin and Wan 2006; Mavridis
and Papaioannou 2011]. Although these methods are designed to
improve anisotropic filtering, some of the methods also improve
isotropic filtering. Summed area tables [Crow 1984] accurately cal-
culate axis-aligned box filters, but at the cost of significantly more
memory usage. For example, 28 bits instead of 8 bits are required
per color channel for a 10242 image to avoid loss of precision and
increases storage by 250% compared to 33% for a mipmap. Elliptic
weighted averaging (EWA) [Greene and Heckbert 1986] samples
with a Gaussian filter, and Heckbert uses a mipmap to accelerate
EWA [Heckbert 1989] by fetching between 9 and 36 texels from
one resolution. Another method stores tables of texel weights for
box filters when sampling from a single mipmap level [Hüttner and
Straßer 1999].

In contrast, our approach combines a fixed number of prefiltered
texels at different resolutions to generate a filter at arbitrary scales.
Researchers have explored the idea of reproducing filters by com-
bining texels from images at different resolutions [Burt 1981], but
for the purpose of feature detection rather than fast image sampling.
Wavelet theory [Mallat 1989] also combines multiresolution basis
functions into arbitrary sampling filters, but building a filter from
wavelets requires summing a number of basis functions that is log-
arithmic in the scale of the filter. In order to reproduce sampling
filters with a constant number of basis functions, we use scales and

translates of the filter functions as our basis.

NIL mapping [Fournier et al. 1988] computes filters through adap-
tive quadrature, a recursive process of refining a filter in areas of
high approximation error. Because NIL mapping stops recursion
once a sampling limit is reached, the filter is computed in constant
time. Although NIL mapping uses multiple resolutions over the
support of the filter, the color of a texture sample depends only
on texels from one resolution at any point. Also, NIL mapping
computes texel weights directly from the filter function rather than
choosing values to minimize approximation error. The resulting al-
gorithm is somewhat slow, difficult to implement on a GPU, and
has higher error than necessary.

An alternative approach for constant time filtering is to optimize
for the best set of basis functions to reconstruct a filter [Gotsman
1994] rather than optimizing for the coefficients of a fixed basis.
In this paper, the authors optimize a set of basis functions to repre-
sent rotations and non-uniform scales of a Gaussian filter around a
point. The authors do not include translations of the filter in their
optimization and do not discuss how they could use a mipmap-like
hierarchy of resolutions, which limits the scalability of the method.

3 Multi-resolution Sampling

We wish to sample an image Î defined over the [0, 1]2 domain us-
ing a low-pass filter h, such as a box, tent, Gaussian, or Lánczos
filter. To compute the color of a pixel with scale ŝ and translation
t̂ = (t̂0, t̂1) relative to Î , we transform h to match the position and
scale of the sample by hŝ,t̂(x) = 2ŝh(2ŝ(x − t̂)) so that the color
of the sample vŝ,t̂ integrated over points x = (x0, x1) is

vŝ,t̂ =

∫∫
R2

Î(x)hŝ,t̂(x) dx. (1)

Directly computing vŝ,t̂ is costly when the support of hŝ,t̂ is large,
so we need to approximate this integral for real-time rendering. In
particular, we want the property that the time taken to sample an
image is independent of the position and scale of hŝ,t̂ so that we al-
ways fetch a constant number of texels. For scale independence, we
store downsampled images in a mipmap image stack I , and com-
pute the texels IS,T = vŝ,t̂ using the same filter hŝ,t̂ that we wish
to sample with. Although we could generate the texels IS,T with
a filter other than hŝ,t̂, using hŝ,t̂ ensures that we can exactly com-
pute vŝ,t̂ at texel samples. The set of coordinates E of mipmap
samples are the standard cell-centered positions, which have inte-
ger coordinates S, T that we relate to positions in the mip-volume
by ŝ = S and t̂ = 2−S(T0 + 1

2
, T1 + 1

2
). We visualize the ŝ, t̂

coordinate system in Figure 2, with the positions of texels shown as
red dots and a hypothetical sampling query for hŝ,t̂ shown in blue.

We perform an optimization to approximate vŝ,t̂ by fetching a sub-
set of texels e ⊂ E. Our optimization for the coefficients ci of
the texels ei has the cardinality constraint is that |e| = n, where
n is a fixed sample budget. Solving a cardinality-constrained opti-
mization is proven to be NP-hard [Welch 1982], because we must
test all possible solutions to find the minimal solution. In higher-
dimensional problems, the number of basis functions, and therefore
the number of combinations of basis functions, becomes too large
to check exhaustively. However, we show how we can efficiently
approximate this solution in Section 3.2.

Another constraint is that our filter should reproduce constant func-
tions (i.e. have constant precision) to prevent distracting patterns
from appearing in constant and nearly constant regions of an image.
A filter has constant precision when

∑
ci = 1. We demonstrate the
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Figure 2: A two-dimensional depiction of the reference coordinate
system. Texels in the mipmap are shown as red dots, and the coor-
dinate of a possible filter hŝ,t̂ is shown in blue.

importance of constant precision in Figure 3. Compared to the im-
age downsampled using an exact Lánczos 2 filter, our approxima-
tion without constant precision does not reproduce the brightness
of the input image. Lack of constant precision also introduces a
pattern in the sky where the color should be nearly constant.

We can write the constrained optimization for the best set of coeffi-
cients c and texels e to approximate vŝ,t̂ as

argmin
c,e⊂E∑

ci=1,|e|=n

∫∫
R2

(
Î(x)hŝ,t̂(x)−

n∑
i=1

Î(x)hei(x)ci
)2

dx. (2)

This optimization depends on the values of Î , but we wish to pre-
calculate coefficients that are independent of the input image so that
we can quickly compute the filter later. Notice that Î weights the
importance of reproducing the shape of the filter at point x. To
give the best result when Î is unknown, we give all x equal weight,
which simplifies the minimization to

argmin
c,e⊂E∑

ci=1,|e|=n

∫∫
R2

(
hŝ,t̂(x)−

n∑
i=1

hei(x)ci
)2

dx. (3)

To understand properties of two-dimensional filters, we analyze the
optimization in Equation 3 for one-dimensional filters, which are
easier to visualize. For a two-dimensional image, trilinear interpo-
lation interpolates over t̂0, t̂1, and ŝ to approximate arbitrary filters,
while the equivalent one-dimensional process interpolates over t̂0,
and ŝ.

We illustrate how we can accurately approximate filters in Fig-
ure 4. We approximate translations of the one-dimensional tent
filter shown in red using weighted combinations of the black basis
functions. We show h halfway between mipmap levels at translates
of 0
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8
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8

, and 4
8

texels. Both our method and linear interpola-
tion over t̂0 and ŝ use four basis functions. We show the result of
our method in (a) and show the result of linear interpolation in (c),
and one can see that our method reproduces the filter well compared
to linear interpolation. We show the basis functions times the coef-
ficients used to approximate the filter beneath the approximation in
(b) and (d), which shows that our method maintains image sharp-
ness by sampling from higher-resolution basis functions to shape
the filter. The different translations in (b) also show how the op-
timal strategy for approximating a filter depends strongly on the
parameters of hŝ,t̂. On the far left, the best solution is to subtract

(a) Input (b) Exact

(c) Constant Precision (d) No Constant Precision

Figure 3: The difference between enforcing constant precision
when downsampling an image and not enforcing constant precision
with Lánczos 2 filtering.

the sides from a basis function that is wider than h 1
2
,0, whereas on

the right, the best solution is to add high-resolution basis functions
to approximate h 1

2
, 1
2

. For intermediate translations, a combination
of both approaches is best.

In Figure 5, we show the approximation error of our method in blue
when h is a one-dimensional tent filter, compared to the error of
bilinear interpolation in black. We evaluated the errors in the graph
for translations over the width of a texel [0, 1] at an integer mipmap
resolution and plot the error for unique subsets of four texels in
green. Not one of these subsets has the lowest error over the en-
tire domain, so finding the optimal solution shown in blue requires
that we minimize the error for all of the possible subsets at each
point and choose the subset with the least error. In Section 3.1 we
show that we can minimize the error over regions instead of for ev-
ery point. Although the problem is NP-hard, we can exhaustively
check all possible combinations for this low-dimensional problem,
but have to use a heuristic method described in Section 3.2 for
higher dimensions. Linear interpolation and the optimal solution
both have zero error at 1

2
, which is when hŝ,t̂ aligns with a texel

center and means that both methods interpolate the texel values. An
interesting property of our method is that because h is a tent func-
tion in this example, we also have zero error at 1

4
and 3

4
. This is

because tent functions have the recurrence relation that a tent func-
tion can be built from three tent functions of twice the resolution.
Several of the sets shown in green have zero error at 1

4
, 1

2
, and 3

4
,

because fewer than the maximum (n = 4) texels are required to
give an solution with zero error.



(a) Optimal approximation

(b) Optimal approximation functions used
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Figure 4: A one-dimensional example of how our optimization improves over bilinear and trilinear interpolation using the same number of
basis functions. The filter we approximate is shown in red and the four basis functions or their sums are shown in black. Filters are sampled
halfway between integer mipmap resolutions at translates of 0/8, 1/8, 2/8, 3/8, 4/8 of a texel.

3.1 Polynomial Fitting

For sampling to be practical in a real-time system, it is not possible
to use the optimal solution for all possible sampling filters because
the best set of texels to use depends strongly on the parameters ŝ
and t̂ of the filter hŝ,t̂. From Figure 5, one can see that there is no
single best subset to use, because the green lines cross along at the
bottom of the graph. After dividing the domain into a few pieces,
we can choose a subset to fit each piece accurately. Also, texel
coefficients have no closed-form solution, and we describe how to
fit polynomials to the coefficients of a set of texels in this section.
We show the error when fitting linear coefficients over four pieces
in Figure 5 as alternating red and orange curves.

We can parameterize cells in Figure 2 by (t0, t1, s) ∈ [0, 1]3 so
that s = ŝ−S and t = 2S t̂−T , where the integer coordinates of a
cell are given by S = bŝc and T = b2S t̂c. We cut this domain into
J ×J ×K smaller subdomains D that are parameterized by s =
Ks− bKsc and t = J t− bJ tc. We fit sets of polynomial coeffi-
cients cij for the power basis p(s, t) to the texel weights for each of
the subdomains, where j = 1 . . .m indexes the power basis func-
tion. We have tested using a linear basis p(s, t) = (1, t0, t1, s), and
a quadratic basis p(s, t) = (1, t0, t1, s, t

2
0, t

2
1, s

2, t0t1, t0s, t1s).
Holding the set of texels e ⊂ E fixed and defining ci by its poly-
nomial expansion ci(s, t) =

∑
j pj(s, t)cij gives the optimization

argmin
cij∑

ci(s,t)=1

∫∫
R2

∫∫∫
D

(
hs,t(x)−

n∑
i=1

hei
(x)ci(s, t)

)2

dt ds dx. (4)

The constant precision constraint creates a linear dependence be-

tween coefficients, which allows us to replace one of the coeffi-
cients and simplify the minimization. Written in the power basis,

c11
c12

...
c1m

 =


1
0
...
0

− m∑
i=2


ci1
ci2
...

cim

 . (5)

Equation 4 is quadratic in cij , which we solve as a linear system.
Our optimization leaves freedom to choose how many texels to use,
how to subdivide the domain, and what order polynomial to use.
Each option provides a tradeoff in terms of speed, memory usage,
and quality. We discuss the tradeoffs and our choices in Section 4.

3.2 Combinatorics and Heuristics

Solving linear systems to find texel weights is reasonably fast, but
there are many possible sets of n texels. For each subdomain, we
need to find the set of texels e ⊂ E that has the lowest error
when evaluating Equation 4. If we choose n texels out of a pool
of N = |E| possible texels, then we need to check the error of

N !
(N−n)!n!

combinations of texels. Clearly, we need to limit N as
much as possible for the problem to be tractable. Our first observa-
tion is that we can exclude texels that are not in the support of hs,t.
Although texels outside of the support of hs,t could theoretically be
beneficial, the fact that we use few texels makes it unlikely that they
would reduce the approximation error. Our second observation is
that we primarily use low-resolution texels to approximate the filter
when n is small. We have found that we only use the texels from



Figure 5: We show the error of bilinear interpolation in black, dif-
ferent subsets of texels in light green, optimal error in blue, and
error of our piecewise polynomial in alternating red and orange.
We show the graph zoomed in on the bottom.

relative mipmap levels 0, 1, and 2 for a tent filter with n = 8, so we
exclude other resolutions from our optimization.

Even after restricting E to have fewer texels, a tent filter has 189
texels to choose from. Checking all combinations is not practi-
cal, because there are 34 trillion combinations of eight texels. We
can check approximately two million combinations in a minute, so
exhaustively checking all combinations would take 33 years. We
therefore develop a heuristic for determining which sets are most
likely to have low error. We define the error of a texel to be the
minimal error of the texel by itself in Equation 4. Our heuristic is
that a texel basis function that matches hs,t with low error is likely
to be in the set of functions that approximates hs,t with minimal
error. By extension, sets of basis functions where each function is
a good approximation of hs,t are more likely to approximate hs,t

well. We therefore check combinations of low-error texels before
checking high-error texels.

The single-texel error defines a priority by which we order texels in
a list. We try to select the best n-texel subset from among the high-
est priority texels before progressively widening the search space
to include lower priority texels. We terminate our search once we
check a desired number of combinations, and, although we can only
test a small fraction of the total space for n = 8, we often find good
solutions quickly. We checked 100 million sets for each of the six
unique subdomains (using symmetry) in a 4×4×2 discretization
of an eight sample tent filter. In this test, we found the best set out
of the sets checked after 15, 513, 518, 12991, 35960, 534979 trials,
and found several other sets with low errors prior to that. All of
our best solutions were within the first 1% of the subsets that we
checked, which indicates that our heuristic works well and that we
find nearly optimal sets.

3.3 Implementation

To implement sampling, we use two tables: an index table and a
coefficient table. The index table stores the relative offsets of the
n texel indices for each subdomain and the coefficient table stores
the coefficients for the texel weights. Index offsets are vectors of
three integers indicating the texel’s coordinate (T0, T1,S) relative
to the sample. Coefficients of a linear function are four component
vectors (one constant coefficient and three linear coefficients).

Sampling vŝ,t̂ using the filter hŝ,t̂ consists of the steps:

Figure 6: We show the error of approximating a tent filter using
varying numbers of texels with different optimization choices com-
pared against trilinear interpolation. The errors are normalized so
that trilinear interpolation has an error of one.

1. Find subdomain D ∈ Z3, texel index (T0, T1,S) ∈ Z3, and
remainder (t0, t1, s) ∈ [0, 1]3.

2. Calculate the offset into the index table and the coefficient
table from the subdomain index D.

3. For all n texels:

(a) Compute the polynomial texel coefficient ci(s, t).

(b) Add ci(s, t) times the texel color Iei into vs,t.

A small complication is that higher-resolution mipmaps are not
available for all scales of hŝ,t̂, so we generate additional tables for
low mipmap levels. This is akin to the difference between minifica-
tion and magnification in GPUs. In our case, we use three mipmap
levels when 1 < ŝ, but need to optimize for two mipmap levels
when 0 < ŝ ≤ 1 and for one level when ŝ ≤ 0. In practice, we
do not benefit much from optimizing a single level and revert to the
reconstruction filter for Î when ŝ ≤ 0.

We significantly reduce the number of tables that we store by tak-
ing symmetry into account. Tensor-product filters have four-fold
rotational symmetry and are symmetric across the diagonal, which
means that texel coefficients are uniquely defined over an eighth of
the parametric space. If we subdivide the domain into J ×J ×K
pieces, symmetries reduce the number of subdomains from J 2K
to J (J + 2)K/8. This space optimization allows us to easily fit
precomputed tables into constant memory on a GPU.

Evaluating the color of a sample consists of a table lookup and n
multiply-add operations. The overhead from finding table and texel
entries based on symmetry requires 3n + 3 if statements. If our
method was implemented in hardware, we could handle the if state-
ments more efficiently than is possible in a shader by computing the
relatively simple symmetry corrections in parallel and selecting the
correct symmetry with a multiplexer. We could also compress the
index table significantly by using three bits per index. With this in
mind, we anticipate that there would be less overhead from using
our method in hardware than there is in software.

4 Results

We graph the approximation error of our method compared to a
directly convolved tent filter for integer numbers of samples from
2 to 10 in Figure 6 as measured by Equation 3 and normalized by



Figure 7: We show the times to draw Figure 10 at 5122 resolu-
tion using our method compared to trilinear interpolation as im-
plemented by the hardware (HW Trilinear) and in a GPU shader
(SW Trilinear). The number of texels that the GPU fetches per sam-
ple is shown by the horizontal axis.

the error of trilinear interpolation. The cost of our method depends
on the number of subdomains and the order of the polynomials we
fit, so we compare the error of: linear polynomials for ei over 2×
2×1, 4×4×2, and 8×8×4 subdivided domains; and quadratic
polynomials over 2×2×1 and 4×4×2 subdivided domains. The
data show that using more than 4×4×2 subdomains and fitting
quadratic polynomials does not significantly reduce error, so we
use linear polynomials and a 4×4×2 discretization of subdomains
for all of our examples. Our method can approximate a variety
of filters, and we compare the error of our method versus trilinear
interpolation of mipmaps sampled with different filters. The errors
of our method using eight texels relative to trilinear interpolation
of box, tent, Gaussian, and Lánczos 2 filtered mipmaps is 0.569,
0.209, 0.142, and 0.232.

We show the times on an NVidia GeForce GTX 580 in Figure 7. We
give two times for trilinear interpolation; one measurement is for
the native hardware trilinear interpolation exposed by the shading
language, and the second is our shader implementation of trilinear
interpolation where we explicitly perform eight texel fetches. Our
timing results do not match our prediction that our method should
be only slightly slower per texel fetched than trilinear interpola-
tion based on the number of mathematical operations performed.
Our most plausible explanation is that we have lower throughput
because trilinear interpolation has a more structured and cache-
friendly memory access pattern.

We show an example of the access pattern of our method for a tent
filter using eight texels in Figure 8. We read from three mipmap
levels whereas trilinear interpolation reads from only two levels
and it is likely that GPUs optimize for trilinear accesses by using
two caches for alternate mipmap levels [Igehy et al. 1998], and that
reading from three levels causes cache conflicts. GPUs are also
likely to optimize for the 2×2 quads of texels accessed by a trilinear
interpolant, whereas our fetches are less regular. Even our software
implementation of trilinear interpolation takes 1.5×more time and
bandwidth than the native hardware implementation despite fetch-
ing the same texels. Our method will also issue irregular reads for
adjacent pixels because neighboring pixels in a 4×4×2 discretization
will have a stride of at least one subdomain. GPU profiling tools
show that our method fetches more texels than we expect and that
time taken is almost directly proportional to the number of texels
fetched between our method, our trilinear implementation, and the
hardware trilinear interpolant. Our tests are consistent between ATI
and NVidia GPUs, and show that a native hardware implementation
significantly improves the performance of trilinear interpolation. It

Figure 8: We show the eight texel access pattern of a 4x4x2 dis-
cretization of a tent filter. The unit domain is outlined in black,
and each column of images shows the texels used in a subdomain,
where texels with nonzero coefficients are blue. There are only six
subdomains because of symmetry, and the index of the subdomain
is ordered (left to right, bottom to top, low to high resolution).

is possible that hardware designed for our sampling pattern would
achieve similar speedups.

Figure 1 demonstrates that generating mipmaps with a high-quality
filter is insufficient to produce sharp images at arbitrary scales when
sampled using trilinear interpolation. Trilinear interpolation gives
the correct filtered values when evaluated at a texel, but does a poor
job between texels, even at the same scale as one of the mipmap
images. In contrast, our method minimizes the error over all points.
We show an example of an image that we sample between mipmap
levels in Figure 1 using a direct convolution of a Lánczos 2 filter
as the ground truth, our approximation of the Lánczos 2 filter using
eight texels, and trilinear interpolation on mipmaps that are created
using a Lánczos 2 filter. The Lánczos filter and our approximation
of the Lánczos filter look nearly the same, but trilinear interpolation
produces an image that is blurry.

Our method can be tuned to use different numbers of texels for
fine-grained control over the memory bandwidth and quality of
texture sampling. We show an example where we compare tri-
linear interpolation, our method with four texels, our method with
eight texels, and exact evaluation of the Lánczos 2 filter on a two-
dimensional image in Figure 9. This image contains high-frequency
details aligned in all directions: horizontally, vertically, and diag-
onally. When using both four and eight texels, our method pro-
duces similar results to the exact filter, whereas trilinear interpo-
lation of the Lánczos 2 filtered mipmap produces a blurry image.
Figures 6, 9, and 11 provide quantitative and qualitative evidence
that our method smoothly adapts image quality to available mem-
ory bandwidth.

We compare the visual quality of trilinear interpolation to our
method for a three-dimensional scene using a Lánczos 2 filter in
Figure 10. Again, trilinear interpolation produces an image that is
blurry, whereas our approximation is sharper. In Figure 11 we show
a checkerboard pattern on an infinite plane using a tent filter when
fetching four, six, and eight texels to demonstrate aliasing. The tex-
ture has ten checkers on a side, so that there is not an even power
of two checkers to texels; hence, a poor filter cannot easily hide
aliasing patterns. When using eight texels, the same number of tex-
els fetched in trilinear interpolation, our filter looks sharp and clear.
The results when from using six texels are almost indistinguishable
from eight texels, despite using 75% of the bandwidth. When using
only four texels, the image in the distance appears slightly noisier,
and edges in the foreground appear somewhat rougher.



(a) Trilinear (b) 4 Texels

(c) 8 Texels (d) Exact

Figure 9: We show images downsampled using (a) trilinear inter-
polation, our approximation of the Lánczos 2 filter using (b) 4 and
(c) 8 texels, then (d) exact evaluation of the Lánczos 2 filter.

A possible concern is that flickering or popping artifacts will occur
in animated scenes because of the piecewise nature of our method.
In our tests, we have seen no obvious flickering. Although coef-
ficients change discontinuously across subdomain boundaries, the
filter we are approximating changes continuously, and our approxi-
mation error is typically low enough that no artifacts are detectable.
For the particularly challenging scene of rotating the checker pat-
tern in Figure 11, we could see a single transition line in the dis-
tance when the method first samples from a very coarse resolution
mipmap for a Lánczos 2 filter with n = 4. However, this artifact
was data dependent as we did not see the problem at n = 4 for
other images. When n > 5, we did not see any artifacts in any
images under animation for the Lánczos 2 filter and when we used
a tent filter, we found that we could not see the transition line with
n = 4 because a tent filter is blurrier than a Lánczos 2 filter.

Our optimized texture samples can also be used to improve the re-
sults of anisotropic texture filters that combine isotropic samples.
Hardware anisotropic filtering uses the model of Feline [McCor-
mack et al. 1999], where anisotropic filters are approximated by
summing smaller isotropic filters. Feline approximates stretched
Gaussians and uses trilinear interpolation to cheaply approximate
isotropic samples. By replacing trilinear interpolation with our ap-
proximation of the isotropic Gaussians, we generate higher-quality
anisotropic filters while using the same texture bandwidth. We
compare the results of Feline and our improved anisotropic sam-
pling in Figure 12. Using more isotropic samples in Feline can im-
prove filtering in the direction of stretch, but increasing the quality
in the perpendicular direction requires better isotropic samples.

(a) Trilinear (b) Our Method

Figure 10: We show (a) trilinear interpolation of a Lánczos 2
filtered mipmap compared against (b) our approximation of the
Lánczos 2 filter using 8 texels.

5 Conclusions and Future Work

We believe that our method is of practical value because memory
bandwidth is often a bottleneck in graphics applications. A limi-
tation of our method is that GPUs have been designed to optimize
for trilinear interpolation and do not perform well on less struc-
tured reads. This leaves several interpretations for the role of our
method. One is that our method is more suitable for offline rasteriz-
ers and ray-tracers with more flexible pipelines. Another possibility
is that hardware designs will change to better support random ac-
cess or even the access pattern of our method. Our paper can also
be viewed as a stepping stone. We have shown that better filter-
ing is possible by optimizing which texels and coefficients to use
under the simple assumption that cost is proportional to number of
texels fetched. It may be possible to incorporate the current texel
fetch behavior of GPUs in our optimization. For example, we could
optimize for reading quads of texels using bilinear interpolation.

Our paper focuses on improving the quality of isotropic texture fil-
tering. When displaying two-dimensional images such as in Fig-
ures 1, 3, and 9, or when viewing a surface straight-on, anisotropic
filtering does not apply. It is possible to improve anisotropic filter-
ing by replacing isotropic probes used in current hardware with our
method as in Figure 12, but we could also directly apply the prin-
ciple of optimizing for the best set of texels and their coefficients
to anisotropic texture filtering. This could improve sampling qual-
ity relative to the number of texels used by reducing the number
of redundant texel reads. The challenge of extending our method
to anisotropic filters is that the dimensionality of the optimization
increases from three to five dimensions because we must include
stretch and orientation of the filter, which, in turn, increases the
complexity of the optimization. The idea of simultaneously op-
timizing basis functions and their coefficients for filter reproduc-
tion [Gotsman 1994] has potential for producing even better results
when combined with our idea of optimizing for which texels to use
from different resolutions; although the simultaneous optimization
may be complex to solve.
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