
Eurographics Symposium on Rendering 2014
Wojciech Jarosz and Pieter Peers
(Guest Editors)

Volume 33 (2014), Number 4

Bilinear Accelerated Filter Approximation

Paper 1019

(a) Input (b) Exact Lánczos 2 (c) Trilinear interpolation (d) CCTF (e) Our method

Figure 1: Approximations of downsampling a high-resolution input image (a) to 1002 pixels using a Lánczos 2 filter are
compared. The result from exact evaluation is shown in (b) and the approximations by (c) trilinear interpolation, (d) Cardinality-
Constrained Texture Filtering (CCTF), and (e) our method all use the same mipmap. Trilinear interpolation appears blurry,
whereas our approximation of the Lánczos 2 downsampled image is similar to the exact evaluation of a Lánczos 2 filter and
CCTF. However, our method runs twice as fast as CCTF by constructing a filter from hardware accelerated bilinear texture
samples.

Abstract
Our method approximates exact texture filtering for arbitrary scales and translations of an image while taking into
account the performance characteristics of modern GPUs. Our algorithm is fast because it accesses textures with
a high degree of spatial locality. Using bilinear samples guarantees that the texels we read are in a regular pattern
and that we use a hardware accelerated path. We control the texel weights by manipulating the u,v parameters of
each sample and the blend factor between the samples. Our method is similar in quality to Cardinality-Constrained
Texture Filtering [MS13] but runs two times faster.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Antialiasing

1. Introduction

High-quality texture filtering is important to the appearance
of a rendered image because filtering reduces aliasing arti-
facts when textures are downsampled. Aliasing occurs when
a scene contains higher-frequency details than are repre-
sentable at the resolution of the screen. Antialiasing is of-
ten associated with smoothing jagged edges of polygons, but
texture sampling provides an even more noticeable source of
aliasing. Drawing antialiased edges only improves the pro-
file of objects, whereas improved texture filtering benefits
every textured pixel that is drawn.

Resizing an image requires only an isotropic filter. For

3D scenes, perspective projection creates a nonuniform dis-
tortion between 2D textures and the image rendered on the
screen, so anisotropic filtering is commonly used to filter
textures in 3D scenes. However, anisotropic filters are typ-
ically generated using multiple isotropic samples [MPFJ99,
MS13], so isotropic filters are important in both 2D and
3D rendering. In this paper, we only consider optimizing
isotropic filtering, but we show examples of our method ap-
plied to anisotropic filtering in Section 4.

Even isotropic filters are difficult to evaluate efficiently
at arbitrary scales s and translations t. The ideal low-pass
filter, sinc, is too expensive to evaluate because it has infi-
nite support, so smaller filters such as the tent, Gaussian, and

submitted to Eurographics Symposium on Rendering (2014)

2 Paper 1019 / Bilinear Accelerated Filter Approximation

Lánczos filters are used. Even filters with small support may
sum hundreds of texels under modest scales. For example, a
Lánczos 2 filter covers an area of 4×4 pixels, so downsam-
pling by a factor of s = 5 sums over 42×52 = 400 texels for
a single sample.

Precalculated pyramids of downsamplings at different res-
olutions, called mipmaps [Wil83], keep the cost of evaluat-
ing a texture sample constant. The position and scale of a
new sample are unlikely to be identical to a precalculated
sample in the mipmap, so the data is interpolated by trilinear
interpolation. Trilinear interpolation is simple, defines a con-
tinuous transition between colors, and never reads more than
8 texels, which results in an interpolant that is fast enough for
real-time rendering and that has been the de facto standard
in computer graphics for the past 30 years.

A natural question arises: is it possible to devise a bet-
ter approximant than trilinear interpolation? Cardinality-
Constrained Texture Filtering (CCTF) [MS13] improves
upon trilinear interpolation, but CCTF requires scattered
texture reads that are inefficient for cached texture mem-
ory. Our method addresses this shortcoming by using bilin-
ear samples to improve memory coherence while using the
same memory bandwidth as trilinear interpolation. Combin-
ing GPU accelerated bilinear samples allows us to double
the performance obtained with CCTF while accurately ap-
proximating filters. The result is high-quality renderings, as
demonstrated in Figure 1. Like trilinear interpolation, we use
two bilinear samples, but we solve for the best u,v coordi-
nates and coefficients of each of the samples for different
filter parameters s, t. By optimizing parameters and coeffi-
cients of bilinear reads, we achieve a 4×reduction in approx-
imation error compared to trilinear interpolation while read-
ing only eight texels per sample.

2. Related Work

The simplest method for sampling a mipmap is to return
the color of the nearest neighbor. This method reads one
texel and is fast, but the image is blocky because the near-
est neighbor interpolant is discontinuous. Trilinear interpo-
lation [Wil83, BA83] produces continuous changes in color,
which looks better than nearest-neighbor interpolation, but
it reads eight texels. Increasing the order of the interpolant
to tricubic interpolation provides little visual benefit when
downsampling an image because increasing smoothness
does not necessarily reduce approximation error. However,
bicubic interpolation does increase the quality of upsampled
images [SH05].

A few methods improve the quality of isotropically down-
sampled images. Summed-area tables store the integral of
pixel colors instead of a mipmap [Cro84]. These tables take
significantly more space to store than the original image be-
cause each color component needs 32 bits in order to sup-
port texture sizes up to 40962 texels while maintaining 8 bits

of precision. However, summed-area tables can evaluate the
average pixel color within any rectangular region of texels
using 4 table lookups, which, because of the quadrupled in-
teger size, is equivalent to reading 16 texels. Constant-time
evaluation with different filters can also be done by sam-
pling from a mipmap level that has a resolution only a few
factors higher than the sample being approximated [Hec89].
The sampled mipmap needs to be of sufficiently high reso-
lution to capture features of the filter, and Heckbert suggests
reading between 9 and 36 texels per sample. Another method
that samples from a single mipmap level [HS99] stores a ta-
ble of weights to approximate affine transforms of a box fil-
ter.

Methods that combine texels from multiple mipmap res-
olutions are more efficient. NIL mapping [FFB88] uses
adaptive quadrature to approximate the more-important
parts of a filter with high-resolution texels and approxi-
mates the remainder of the filter with low-resolution texels.
CCTF [MS13] performs a linear cardinality-constrained op-
timization to determine which set of texel basis functions
in a mipmap best reproduce a given filter. Any set of basis
functions can be chosen, which means that texel reads are
scattered both in position and mipmap resolution. Therefore,
CCTF violates the data locality assumptions that are criti-
cal for cache performance. Scattered reads increase mem-
ory bandwidth because memory is read at the resolution of
cache lines rather than texels. In contrast, our method uses
cache-friendly bilinear reads, at the cost of precomputing the
result of a nonlinear optimization. Although the trilinear in-
terpolant is also composed of two bilinear reads, we produce
higher quality images than trilinear interpolation because we
perform a nonlinear optimization to find the best u, v param-
eters and coefficients for the bilinear samples.

Several papers on texture filtering improve the qual-
ity of anisotropic filtering [Gla86, GH86, Hec89, SKS96,
CS97, HS99, MPFJ99, CS00, CDK04, ZLW06, MP11]. We
do not directly consider anisotropic filters because multi-
ple isotropic samples can be used to construct an anisotropic
sample [MPFJ99]. A similar method of combining isotropic
samples used in GPUs is called N× anisotropic filtering,
which means that up to N isotropic samples are taken along
a line to approximate an anisotropic filter. By improving the
quality of isotropic samples with our method, we automati-
cally improve the quality of anisotropic filtering, as demon-
strated in the results section.

3. Filter Optimization

Sampling an image function I(x) with a spacing s between
samples can be modeled by multiplying by the Dirac comb
function Xs(x) = ∑

∞
t=−∞ δ(x− st) so that the sampled

function is Xs(x)I(x). We can represent a function by its
frequency spectrum using the Fourier transform

Î(ω) = F{I(x)}=
∫ ∞
−∞

I(x)e−2πixω dx.

submitted to Eurographics Symposium on Rendering (2014)

Paper 1019 / Bilinear Accelerated Filter Approximation 3

The Fourier transform of Xs isF{Xs(x)}=X1/s(ω). Be-
cause multiplication becomes convolution under the Fourier
transform F{ f (x)g(x)}= (f̂ ∗ ĝ)(ω), the frequencies in our
sampled function are

F{Xs(x)I(x)}=
∞
∑

t=−∞
Î(ω− t

s
).

If the spectrum of the sampled function Î(ω) contains fre-
quencies outside the range ω ∈ [− 1

2s ,
1
2s], then interference

between shifted copies of Î(ω) can occur. This interfer-
ence is called aliasing and manifests itself as low-frequency
patterns. Removing the unrepresentable frequencies implies
sampling the product of Î(ω) and ĥs(ω) in the Fourier do-
main, where ĥs(ω) has a frequency cutoff of

ĥs(ω) =

{
1, if − 1

2s ≤ ω≤ 1
2s

0, otherwise.

This ideal low-pass filter has the form hs(x) = 1
s h(x

s),

where h(x) = sin(πx)
πx is called the sinc filter. The inverse

Fourier transform of multiplication is convolution, so we
need to take point samples from the convolved function
F−1{Î(ω)ĥ(ω)} = (I ∗ h)(x). To evaluate a sample at off-
set t, we take the inner product 〈(I ∗hs)(x),δ(x− st)〉 =∫∞
−∞ I(x)hst(x) dx, where we define the filter for the sample

with scale s and offset t as hst(x) = hs(x− st). A practical
problem is that sinc has infinite support, so we typically use
low-pass filters with smaller supports. These filters include
the box, tent, Gaussian, Mitchell-Netravali, and Lánczos fil-
ters, in which each filter offers trade-offs between blurriness,
ringing, and size of support.

In order to accelerate texture lookups, we precalculate a
mipmap of the texture, which consists of a series of images
downsampled at power-of-two resolutions. Colors of texels
in the mipmap are calculated as

vst =
∫ ∞
−∞

I(x)hst(x) dx,

so summing a weighted set of mipmap samples ∑i civi sam-
ples the original image by new filter that is the weighted
sum ∑i cihi(x) of the filters hi(x) that were used to create
the mipmap.

∑
i

civi = ∑
i

ci

∫ ∞
−∞

I(x)hi(x) dx =
∫ ∞
−∞

I(x)∑
i

cihi(x) dx

By controlling the coefficients ci, we can make the filter
∑i cihi(x) closely match any other filter H(x). In particu-
lar, we are interested in matching the results from filters
with scales and translations that are not precalculated in the
mipmap. We find the best coefficients ci by solving the least-
squares minimization

argmin
ci

∫ ∞
−∞

(
H(x)−∑

i
cihi(x)

)2

dx.

Thus far, our derivation has assumed a 1D image, but the

same logic applies in 2D. The difference is that, in 2D, we
sample the image I(x,y) over a 2D grid by a filter hstutv(x,y).
To provide good caching behavior, we want to approximate
the filter using a small number of coefficients, and the coef-
ficients should be clustered in space.

GPUs provide hardware acceleration for bilinear interpo-
lated texture reads, which return a weighted combination of a
quad of adjacent texels. Bilinear interpolation reads a single
mipmap level at scale s and is controlled by the u,v parame-
ters, which range from zero to the resolution of the mipmap
image. The bilinear filter bsuv(x,y) samples the input image
I(x,y) by combining texels weighted by the coefficients

bsuv(x,y) = (1−ur)(1− vr)hs,u f ,v f (x,y)
+ ur(1− vr)hs,u f +1,v f (x,y)
+ (1−ur)vrhs,u f ,v f +1(x,y)
+ urvrhs,u f +1,v f +1(x,y),

(1)

where (u f ,v f) = (bu− 1/2c,bv− 1/2c) and (ur,vr) = (u−
1/2−u f ,v− 1/2−v f). We subtract a value of 1/2 to maintain
the convention that GPUs interpolate between texel centers.
In order to use the same memory bandwidth as trilinear inter-
polation, we optimize for the two bilinear samples that best
reproduce a filter.

argmin
c,ui,vi,si

∫
R2

(
H(x,y)−

2

∑
i=1

cibsiuivi(x,y)

)2

dxdy

To ensure that the sum of texel weights is one, we define
c1 = c, c2 = 1− c. Most of the parameters can be any real
number, but the scales s1,s2 ∈ {2i|i ∈ N} discretely choose
which image to sample. Thus, there is a combinatorial choice
of the resolutions to read from for each sample. We restrict
the optimization to sample only from three different reso-
lutions, which yields six combinations, a far-lower number
than required for CCTF.

It is not sufficient to find the best fit of H(x,y) for one
scale and translation. Instead, we solve for coefficients that
simultaneously minimize the error over all translations and
scales. The minimization is simplified because the solutions
are identical for integer texel translations and dyadic scales,
so we solve only over a single texel domain that is tiled over
the mipmap volume. We further subdivide the texel domain
into subdomains, over which we fit polynomials for the best
parameters. Suppose that α, β, and σ are parameters in the
range [0,1) that determine the translations α, β and the scale
σ of the input filter Hαβσ. We then represent each of the real
parameters c,u1,u2,v1,v2 as a polynomial over the domain
of α, β, σ with the form

c(α,β,σ) = ∑
i, j,k

ci jkα
i
β

j
σ

k,

where, without loss of generality, we show the polynomial
expansion of the parameter c. For example, a linear poly-
nomial has four coefficients of the form c(α,β,σ) = c000 +
c100α + c010β + c001σ, which means that there are a total

submitted to Eurographics Symposium on Rendering (2014)

4 Paper 1019 / Bilinear Accelerated Filter Approximation

Round <x,y,z>

Bilinear Read

Get <uf,vf>,<ur,vr>

<ur,vr><uf,vf>

Decoupled

Round <x,y,z>

Round <u,v>

Bilinear Read

Get <u,v>

Coupled

Round z

Round <u,v>

Bilinear Read

Trilinear

<ur,vr><uf,vf><ur,vr><uf,vf>

Figure 2: Pipelines of trilinear filtering, our optimized com-
bination of bilinear samples in which texel indices are cou-
pled to the u,v coordinates, and in which texel indices are
decoupled from the u,v coordinates. The cylinders denote
values read from a precalculated table.

of 20 coefficients to optimize over each subdomain. Like-
wise, we can fit quadratics to give a total of 50 parameters
per subdomain. We write the minimization over all the filter
parameters within a subdomain as

∫
[0,1)3

∫
R2

(
Hαβσ(x,y)−

2

∑
i=1

cibsiuivi(x,y)

)2

dxdy dαdβdσ.

(2)
The error function is a sixth order polynomial, but there are
sufficiently few coefficients for a nonlinear minimization to
be tractable, as described in the appendix.

3.1. Decoupled Texel Indices

Bilinear reads that are currently implemented in hardware
have the u,v coordinates perform a double duty. The co-
ordinates select both the texel indices u f ,v f and specify
the texel weights, where the ur,vr parameters that deter-
mine texel weights are in the range [0,1). A small change
in the texture-sampling hardware allows a second bilinear-
sampling strategy. If we decouple the texel indices from the
u,v coordinates, there is more freedom in the choice of texel
coefficients. By allowing the ur,vr parameters to have val-
ues outside of the range [0,1), the coefficients of texels can
be evaluated through Equation 1 to have values outside of
[0,1), which can reduce approximation error for filters with
negative lobes. The texel indices u f ,v f ,s are included in a
discrete optimization and are stored in a small table on the
GPU, with each index requiring only a few bits.

Although current GPUs couple the texels that are read
to the calculation of bilinear coefficients, it would be rela-
tively simple to modify the hardware to decouple the calcula-
tions. This decoupling should not degrade performance, and
it may even result in a simpler pipeline than a standard bi-
linear texture read. A block diagram of the trilinear pipeline
compared to our optimization for standard bilinear sampling

Trilinear CCTF Coupled Decoupled
Lánczos 2 0.2558 0.0645 0.0876 0.0787
Tent 0.1510 0.0357 0.0412 0.0407
Gaussian 0.0705 0.0122 0.0145 0.0145

Table 1: Approximation errors of trilinear interpolation,
CCTF, our method with standard bilinear interpolation in
which texel indices are coupled to the u,v coordinates, and a
modified bilinear sampling in which texel indices are decou-
pled from the u,v coordinates.

and decoupled bilinear sampling is shown in Figure 2. The
cylinders in the diagram represent a lookup into a precom-
puted table of values. By removing the u,v rounding stage
of the pipeline, we can forward all relevant parameters to
the stage that evaluates bilinear combinations of texels. De-
coupled sampling can be implemented in a GLSL shader by
reading individual texels and evaluating their bilinear com-
bination, but it is not as efficient as hardware-acceleration.

More freedom in choosing texel coefficients decreases ap-
proximation error and uses the same texture memory band-
width. The methods reported in Table 1 all read eight texels
per sample, but the choices of texels and coefficients are dif-
ferent between the methods. CCTF has the lowest error be-
cause it has the fewest constraints. Likewise, the additional
freedom afforded by decoupling texel indices u f ,v f from
bilinear parameters ur,vr results in a lower error compared
to standard bilinear interpolation. This freedom is especially
important for the complicated Lánczos 2 filter, which oscil-
lates and contains negative lobes, whereas the positive tent
and Gaussian filters have little to no decrease in approxima-
tion error.

The texels that are read by our decoupled bilinear inter-
polant are now fixed, but our optimization can choose the
best sets of texels for each subdomain. This discrete choice
results in an optimization akin to the cardinality-constrained
optimization in CCTF. We found no useful heuristic for the
order in which sets of texels should be checked, but we have
far fewer combinations to check than in CCTF. There are
52+82+102 = 189 basis functions available to CCTF, from
which it chooses 8, giving 34 trillion combinations. We use
bilinear samples, so we cover the same set of 189 basis func-
tions with 42 + 72 + 92 = 146 sample indices, from which
choosing two indices results in only 10,585 combinations to
check. Although more than the 6 combinations in our cou-
pled sampling, 10,585 combinations are few enough that we
check all possible combinations of indices in our optimiza-
tion.

4. Results

Our method can be tuned by selecting the resolution at which
we discretize the domain. We use the same discretization of
the texel domain as in CCTF, so we can directly compare the

submitted to Eurographics Symposium on Rendering (2014)

Paper 1019 / Bilinear Accelerated Filter Approximation 5

Figure 3: Errors from approximating a Lánczos 2 filter when
the domain is cut into different numbers of pieces. Our cou-
pled and decoupled bilinear samplings are compared to tri-
linear interpolation and CCTF. Errors of our method are
shown for both linear and quadratic fitted coefficients. Eight
texels are read for all methods.

two methods at different levels of discretization. We show
the error of approximating a Lánczos 2 filter in Figure 3,
in which our method, trilinear interpolation, and CCTF all
read eight texels per sample. Trilinear interpolation performs
poorly compared to the other methods, and our method has
a slightly higher error than CCTF because we trade approxi-
mation error for increased cache coherence and speed. An
unexpected result is that we have lower error than CCTF
for discretization at very low resolution (2×2×2). In that
case, rounding of u,v coordinates by the bilinear sampler al-
lows us to read from different sets of texels within the same
subdomain, whereas CCTF must use the same set of texels
throughout the subdomain. Our decoupled sampler also has
higher error than CCTF, but it has lower error than the cou-
pled sampler for most discretizations.

As the resolution of the discretization or polynomial or-
der increase, the size of the coefficient table increases, which
should be kept small to fit in local memory. Figure 3 shows
that the added complexity of quadratic polynomials is not
worthwhile. Quadratics take 2.5 times more memory and,
even in the best case of 2×2×2 discretization (10 coefficients
in 2 unique subdomains), linear polynomials in a 4×4×2 dis-
cretization have a lower error and take only a little more
space (4 coefficients in 6 unique subdomains). Quadratic
polynomials for coefficients also take more arithmetic op-
erations to evaluate than linear polynomials.

Subdividing the domain into 4×4×2 pieces and fitting lin-
ear polynomials provides the best compromise between table
size and accuracy. Reflective symmetries mean that we only
need to store the coefficients of six subdomains. It is critical,
especially for hardware implementation, that the lookup ta-

5122 2562 1282 642

100× 400× 1600× 6400×
Trilinear: 1 native 277 512 594 650
Trilinear: 2 bilinear 244 320 362 414
Trilinear: 8 single 178 202 210 221
CCTF 54 54 49 45
Our method 100 103 94 87

Table 2: Frames drawn per second when rendering Figure 5
with a tent filter using GLSL pixel shaders. Times are shown
for CCTF, our method, and trilinear interpolation using na-
tive hardware, two bilinear samples, and eight single texels.
Screen resolution and redraws per frame are shown above.

ble is as a small as possible. If sampled texture colors need
only 8 bits of precision, it is sufficient to store 16 bits per co-
efficient. Three possible scales for each bilinear sample take
an additional 2 bits per sample. Lookup tables can therefore
be stored in 6×(5×4×16+2×2)/8 = 243 bytes. In contrast,
CCTF requires 4 coefficients for each texel as well as 4, 4,
and 2 bits respectively for the u,v, and s offsets, taking a to-
tal of 6×8×(4×16+ 2×4+ 2)/8 = 444 bytes. Our method
uses almost half of the memory of CCTF for the same dis-
cretization.

Our test setup to measure frame-rates in Table 2 uses an
NVIDIA GeForce GTX 680 to render a single large quad
viewed at a 45◦ angle with a 90◦ field of view. With these pa-
rameters, the top edge of the quad disappears at the horizon,
as shown in Figure 5. We tested the performance characteris-
tics of our method, CCTF, and three methods for evaluating
trilinear samples: native hardware, combining two bilinear
samples, and combining eight single-texel reads. We render
into a square window and sample a 5122 texture such that
the texture repeats twice at the bottom edge of the screen. To
ensure that only the performance of the fragment shader is
measured, we render the scene 100×5122

W 2 times, where W is
the width of the window and a constant number of samples
are calculated for all window sizes.

Performance measurements show that bilinear samples
are significantly faster than the scattered reads used in CCTF.
We found that the relative speed of the sampling methods de-
pends on the scene and how well texture reads are cached.
As the screen resolution decreases, lower mipmap resolu-
tions are sampled, thereby improving the cache performance
of trilinear filtering. At the top of the table, we compare
the speed of native trilinear interpolation with a trilinear in-
terpolant constructed from two bilinear samples and from
eight reads of single texels. This test shows that a shader has
significant overhead when texels are read individually, and
therefore bilinear primitives should be used when possible.
The bilinear construction of a trilinear sample also provides
an upper bound for the speed our method can achieve.

Our method is consistently twice as fast as CCTF, demon-

submitted to Eurographics Symposium on Rendering (2014)

6 Paper 1019 / Bilinear Accelerated Filter Approximation

Tent Lánczos 2 Gaussian

Figure 4: 2D images resampled at 1002 pixels are approxi-
mated by different filters. From left to right, images are sam-
pled using tent, Lánczos 2, and Gaussian filters. From top to
bottom, numerical approximations of the filters are calcu-
lated by trilinear interpolation, CCTF, and our method using
coupled bilinear samples.

strating that the higher cache coherence and hardware sup-
port of bilinear sampling is beneficial. Although we store
coefficients as a uniform array in GLSL, we suspect that
dependencies between the coefficients and texture reads de-
grade the performance of our method. As a simple test, we
removed this dependence by using constant parameters and
found that our method ran twice as fast, matching the speed
of Trilinear: 8 single in Table 2.

Our method also significantly reduces the error compared
to trilinear interpolation for different filters, as shown in Ta-
ble 1. Filters with simple shapes, such as tent and Gaussian
filters, tend to have the lowest error relative to trilinear inter-
polation, but our method has several times lower error even
for the complex Lánczos 2 filter. The direct test of how well
our approximation performs compared to other isotropic fil-
ter approximations is to scale an image uniformly. Figure 4
shows a matrix of results from uniform scaling of a picture
of a flower using isotropic tent, Lánczos 2, and Gaussian fil-
ters approximated by trilinear interpolation, CCTF, and our
method with coupled bilinear samples. The flower has high-
contrast details that are aligned in all radial directions. Al-
though CCTF is slightly sharper than our method, we main-
tain more textural detail than trilinear interpolation.

Texture filtering is also often used in highly anisotropic
3D scenes. Images produced by trilinear interpolation,
CCTF, and our method are compared in Figure 5. Each
column corresponds to approximations of isotropic tent,

Isotropic Isotropic Anisotropic
Tent Lánczos 2 Gaussian

Figure 5: In each row, the effects of approximating filters us-
ing trilinear interpolation, CCTF, and our method with cou-
pled bilinear samples are shown for an image displayed on
an infinite plane. The first two columns use isotropic sam-
ples, and the third column combines several isotropic sam-
ples to approximate an anisotropic filter for each sample.

isotropic Lánczos 2, and anisotropic Gaussian filters, re-
spectively. We approximate the anisotropic Gaussian from
isotropic samples using the Feline algorithm [MPFJ99]. The
quality of our method is similar to that of CCTF despite hav-
ing less freedom in choosing locations and coefficients of
texels. The results obtained with a Lánczos 2 filter appear
sharper than with a tent filter, but trilinear interpolation blurs
the image. Thus, other methods resolve more detail when ap-
proximating a tent filter than trilinear interpolation resolves
when using a Lánczos 2 filter. Anisotropic filtering shows
more detail in distant objects for all approximation methods,
but trilinear filtering renders the blurriest image at all dis-
tances. Figure 6 demonstrates that we can produce a sharper
image of a 3D scene by using our improved texture filter
rather than trilinear interpolation. Most of the detail in the
scene is contained in textures on the relatively flat geome-
try of the flags and walls, not in the overall geometry of the
scene.

We show a comparison between coupled and decoupled
sampling in Figure 7 for 2D and 3D scenes. In the 2D im-
ages, some pixels are noticeably darker with coupled sam-
pling than with decoupled sampling. These pixels are easiest
to spot in the pink part of the flower at the 6-7 o’clock posi-
tion. In the 3D images, the difference between coupled and
decoupled sampling is most easily seen between the flowers
where they begin to become blurry on the horizon.

submitted to Eurographics Symposium on Rendering (2014)

Paper 1019 / Bilinear Accelerated Filter Approximation 7

(a) Trilinear Lánczos 2

(b) Coupled Lánczos 2

Figure 6: Texture sampling in the 3D Sponza scene using
(a) trilinear interpolation and (b) our sampling method with
coupled bilinear samples. It is easiest to see the difference in
sharpness in the emblem on the blue flag at the bottom left
of the images.

5. Conclusion

It is possible to improve the quality of texture sampling over
trilinear interpolation significantly while still maintaining
the same level of cache coherence when samples are con-
structed from bilinear texture reads. Our method is slower
than trilinear filtering when run on current hardware, but our
method is twice as fast as CCTF. We designed the simple
scene in Figure 5 so that we could differentiate between the
speeds of texture filtering for various methods. In practice,
scenes will typically be much more complex, and texture fil-
tering may not be a performance bottleneck. In such cases,
there would be only a small performance penalty for the im-
proved filtering of our method.

Decoupling the texels that are used in the bilinear sample
from the bilinear weights can improve quality even further
if such changes are made in GPUs. We expect that hardware
support will increase the speed of our method to match that
of trilinear interpolation. In contrast, implementing CCTF
in hardware would not provide as much of a performance
benefit as our method does, because the speed of CCTF is
limited by poor cache coherence, whereas we have the same
coherence as trilinear interpolation.

Knowing the exact cache structure of texture memory on
a video card may allow us to improve the performance of
texture filtering even more. It makes sense to optimize fil-
ter approximation when cost is measured by the number of
cache lines that are read. Not knowing the cache structure

Coupled Lánczos 2 Decoupled Lánczos 2

Figure 7: A comparison between coupled and decoupled bi-
linear sampling used to approximate a Lánczos 2 filter. The
coupled sampling creates artifacts of isolated darker pixels.

can create high cost in reading a texel while providing little
benefit. Currently, a bilinear sample may require up to four
cache lines, and a whole cache line may be read for a sin-
gle texel with a coefficient that is nearly zero. Conversely,
texels are often unused although they are prefetched by the
caching subsystem and could decrease approximation error
at little additional cost. It may also be possible to improve
performance by factoring the cost of decompressing block-
compressed texture formats such at DXTC.

Acknowledgements

Acknowledgements will be added after the anonymous re-
view process.

References

[BA83] BURT P., ADELSON E.: The laplacian pyramid as a com-
pact image code. IEEE Transactions on Communications 31, 4
(1983), 532–540. 2

[CDK04] CHEN B., DACHILLE F., KAUFMAN A. E.: Footprint
area sampled texturing. IEEE Transactions on Visualization and
Computer Graphics 10, 2 (2004), 230–240. 2

[Cro84] CROW F. C.: Summed-area tables for texture mapping.
In Proceedings of ACM SIGGRAPH (1984), pp. 207–212. 2

[CS97] CANT R., SHRUBSOLE P.: Texture potential mapping: A
way to provide antialiased texture without blurring. In Visualiza-
tion and Modelling (1997), pp. 223–240. 2

[CS00] CANT R., SHRUBSOLE P.: Texture potential mip map-
ping, a new high-quality texture antialiasing algorithm. ACM
Transactions on Graphics 19, 3 (2000), 164–184. 2

[FFB88] FOURNIER A., FIUME E., BUILDING S. F.: Constant-
time filtering with space-variant kernels. In Proceedings of ACM
SIGGRAPH (1988), pp. 229–238. 2

submitted to Eurographics Symposium on Rendering (2014)

8 Paper 1019 / Bilinear Accelerated Filter Approximation

[GH86] GREENE N., HECKBERT P.: Creating raster omni-
max images from multiple perspective views using the elliptical
weighted average filter. IEEE Computer Graphics and Applica-
tions 6, 6 (1986), 21–27. 2

[Gla86] GLASSNER A.: Adaptive precision in texture mapping.
In Proceedings of ACM SIGGRAPH (1986), pp. 297–306. 2

[Hec89] HECKBERT P.: Fundamentals of Texture Mapping and
Image Warping. Master’s thesis, University of California, Berke-
ley, 1989. 2

[HS99] HÜTTNER T., STRASSER W.: Fast footprint mipmapping.
In Proceedings of the ACM SIGGRAPH/Eurographics Workshop
on Graphics Hardware (1999), pp. 35–44. 2

[MP11] MAVRIDIS P., PAPAIOANNOU G.: High quality elliptical
texture filtering on gpu. In Proceedings of the Symposium on
Interactive 3D Graphics and Games (2011), pp. 23–30. 2

[MPFJ99] MCCORMACK J., PERRY R. N., FARKAS K. I.,
JOUPPI N. P.: Feline: Fast elliptical lines for anisotropic texture
mapping. In Proceedings of ACM SIGGRAPH (1999), pp. 243–
250. 1, 2, 6

[MS13] MANSON J., SCHAEFER S.: Cardinality-constrained
texture filtering. In Proceedings of ACM SIGGRAPH (2013),
pp. 140:1–140:8. 1, 2

[SH05] SIGG C., HADWIGER M.: Fast third-order texture filter-
ing. In GPU Gems 2, Pharr M., (Ed.). Addison-Wesley, 2005,
pp. 313–329. 2

[SKS96] SCHILLING A., KNITTEL G., STRASSER W.: Texram:
a smart memory for texturing. Computer Graphics and Applica-
tions, IEEE 16, 3 (1996), 32–41. 2

[Wil83] WILLIAMS L.: Pyramidal parametrics. In Proceedings
of ACM SIGGRAPH (1983), pp. 1–11. 2

[ZLW06] ZHOUCHEN LIN L. W., WAN L.: First order approx-
imation for texture filtering. In Pacific Graphics Poster (2006).
2

Appendix

There are two equivalent interpretations of Equation 2. One
interpretation is that we sample the mipmap in two stages.
We first evaluate two bilinear samples, then take a linear
combination of those samples. An alternate interpretation is
that the two sets of bilinear weights from Equation 1 define
an array of eight texel coefficients. This second interpreta-
tion allows us to write the minimization in matrix form as
though it were a linear problem as

argmin
X

(AX−B)2, (3)

where the only difference from a linear problem is that the
vector X is a function of the parameters c,u1,u2,v1,v2,s1,s2.
This reformulation allows us to use the Levenberg-
Marquardt algorithm to find a minimal solution.

We have a closed-form expression for the integral over
x,y, but numerically evaluate the integral over α,β,σ by
summing the errors of discrete parameter values. In the
framework of Levenberg-Marquardt, the sum of the error
from numerical integration is calculated by concatenating
error vectors from each of the parameter values. The diffi-
culty is that although Equations 2 and 3 are both quadratic,

integrals over products of functions in Equation 2 do not di-
rectly give an error vector. Rather, they give a single value
that is the summed square of an error vector. Thus, we must
decompose the quadratic given in terms of Â, B̂,Ĉ into a sum
of squares

XT ÂX + B̂X +Ĉ = ∑
i
(AiX−Bi)

2,

where

XT ÂX =
∫
R2

(
2

∑
i=1

cibsiuivi(x,y)

)2

dx dy

B̂X =−2
∫
R2

Hαβσ(x,y)
2

∑
i=1

cibsiuivi(x,y) dx dy

Ĉ =
∫
R2

(
Hαβσ(x,y)

)2 dx dy.

The hardware bilinear sampler selects different sets of tex-
els u f ,v f depending on the u,v parameters. Therefore, X , Â
and B̂ must contain entries for each texel that can be read.
Only eight of the entries in X are non-zero for a particu-
lar u,v, and the zero entries will not contribute to the sum
of the error vector, but the Levenberg-Marquardt algorithm
requires the error vector to change continuously. Although
limiting X to use eight coefficients by changing the indexing
of X would result in a continuous change in the total error,
the error vector itself would change discontinuously. In prac-
tice, we need to bound the size of X , so we allow only u,v
coordinates in the range [−1,2] by adding a large error when
u,v approach or leave the valid range.

submitted to Eurographics Symposium on Rendering (2014)

