
Bijective Parameterization with Free Boundaries

Jason Smith∗

Texas A&M University

Scott Schaefer†

Texas A&M University

Figure 1: Starting from Tutte’s parameterization (left), our optimization generates a parameterization that minimizes distortion and guar-
antees a bijective map (right). We show intermediate stages of the optimization where, at every step, the parameterization is bijective. As
opposed to previous techniques, we do not constrain the shape of the boundary, which is free to change shape to minimize distortion.

Abstract

We present a fully automatic method for generating guaranteed bi-
jective surface parameterizations from triangulated 3D surfaces par-
titioned into charts. We do so by using a distortion metric that pre-
vents local folds of triangles in the parameterization and a barrier
function that prevents intersection of the chart boundaries. In ad-
dition, we show how to modify the line search of an interior point
method to directly compute the singularities of the distortion met-
ric and barrier functions to maintain a bijective map. By using an
isometric metric that is efficient to compute and a spatial hash to
accelerate the evaluation and gradient of the barrier function for
the boundary, we achieve fast optimization times. Unlike previ-
ous methods, we do not require the boundary be constrained by the
user to a non-intersecting shape to guarantee a bijection, and the
boundary of the parameterization is free to change shape during the
optimization to minimize distortion.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling
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1 Introduction

Triangulated surfaces are ubiquitous in real-time graphics. How-
ever, geometry is only one aspect of how we perceive an object.
Typically we annotate surfaces with other information such as color,
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lighting information, or even displacements to make the surface ap-
pear more realistic and provide details beyond the resolution of the
vertices of the shape. These annotations are usually performed via
texture mapping, which maps two-dimensional data onto the sur-
face of a 3D object.

Texture mapping relies on a parameterization of a surface. Given a
3D surface, we partition the shape along a connected set of edges,
which we refer to as seams, into contiguous sets of triangles called
charts. Parameterization is the flattening of a chart to the two-
dimensional domain and the seams of the charts in 3D become the
boundaries of the flattened charts in 2D. For surfaces other than de-
velopable surfaces, this flattening introduces some distortion into
the shape and most parameterization methods are concerned with
reducing this distortion be it in terms of deviation of angles, area,
or some combination thereof.

While the quality of the parameterization is certainly important,
the parameterization is of limited use for texture mapping unless
it forms a bijective map between the 3D surface and the 2D texture
covered by the charts. If the parameterization is not bijective, then
a single point in the texture could map to multiple, disconnected
regions of the surface. The result is that we cannot annotate such
regions of the surface independently from one another rendering the
parameterization useless for this application.

There are a few ways in which the parameterization could fail to
be bijective. For example, triangles could “fold” or change orienta-
tion in the parameterization. A parameterization could also fail to
be bijective if portions of the parameterization overlap. While only
a handful of methods guarantee that the parameterization will be
locally injective (no folds), almost none guarantee bijectivity with-
out constraining the boundary to a non-intersecting curve. However
constraining the boundary, either by user intervention or by choos-
ing some arbitrary non-intersecting boundary curve, will produce
more distortion in the parameterization than necessary since the op-
timization cannot modify the boundary to reduce the distortion of
the parameterization.

We propose a parameterization method that guarantees the param-
eterization forms a bijective map. Moreover, we do not constrain
the boundary to some arbitrary shape but allow the optimization
to modify the boundary to reduce distortion. We discuss the class
of admissible distortion metrics that guarantee local injectivity and
provide a form of isometric distortion that yields an expression



Figure 2: A simple example of a wavy cone with the seam shown
in blue (left) isometrically flattened without error to a parameteri-
zation without folded triangles (right) that is not a bijective map.

whose value and gradient are simple to evaluate. In addition, we
build a barrier term that prevents the parameterization from over-
lapping during optimization and discuss how to evaluate this func-
tion and its gradient efficiently. Finally, we discuss how to optimize
such functions by explicitly computing the singularities in closed-
form to guarantee we produce bijective maps.

2 Related Work

Surface parameterization is a well studied problem [Floater and
Hormann 2005; Sheffer et al. 2006; Hormann et al. 2007]. While
there are many parameterization methods, few guarantee bijectivity
or even local injectivity.

One class of methods interleaves the segmentation process of di-
viding the surface into a set of charts with parameterization [Lévy
et al. 2002; Zhou et al. 2004]. If the parameterization is not bijec-
tive, these methods split the charts to form smaller charts. Levy et
al. [2002] split charts based on boundary intersections, while Zhou
et al. [2004] split charts based on a stretch based distortion met-
ric. Such a splitting process continues until all charts form bijective
maps. This process is guaranteed to stop since individual polygons
can trivially form bijective maps, which reduces to per polygon
texture mapping [Burley and Lacewell 2008; Yuksel et al. 2010].
Sorkine et al. [2002] take a region growing approach to chart cre-
ation where they detect if adding a new triangle to a chart will cause
an intersection in the boundary and modify the seam. In contrast,
we do not modify seams but always produce a bijective map.

Springborn et al. [2008] use a discrete conformal optimization
for parameterization and require no initially defined seam. Their
method guarantees local injectivity by performing edge flips or sub-
dividing edges. Zhang et al. [2005] use “scaffold triangles” in a
nonlinear minimization to guarantee the line search never causes
the boundary to intersect. While similar in spirit to our method, the
scaffold criteria is a sufficient condition to create bijective param-
eterizations but not necessary. Hence, this criteria slows down the
optimization. Instead we compute the maximal safe step size in the
optimization.

Some parameterization methods guarantee local injectivity through
the use of distortion metrics that form barriers so that triangle flips
cannot occur in the parameterization [Hormann and Greiner 2000;
Sander et al. 2001; Degener et al. 2003; Schüller et al. 2013; Aiger-
man et al. 2014; Poranne and Lipman 2014]. Others [Lipman 2012;
Aigerman et al. 2014; Poranne and Lipman 2014; Sanan 2014]
bound the distortion of triangles to guarantee locally injective pa-
rameterizations. In addition, all of these methods can guarantee a

Figure 3: Mapping a 3D triangle to 2D using a rigid transform R,
which is then affinely mapped via φ to the parameterization.

bijective map if the user constrains the boundary of the charts to
form a non-intersecting curve.

While such locally injective methods typically involve non-linear
optimization, some methods guarantee bijective maps by solving a
linear set of equations if the boundary of the charts are constrained
to convex shapes such as circles [Tutte 1963; Floater 1997]. How-
ever, as shown in Figure 1, the distortion for these parameterizations
can be severe. Weber et al. [2014] showed how to use such methods
to create a bijective map between two non-intersecting boundaries
by mapping to a common, convex domain. However, this method
requires that the user specify a non-intersecting boundary curve and
may still need to refine some triangles to guarantee a bijective map.

Angle based flattening [Sheffer and de Sturler 2001] directly solves
for angles of the parameterized triangles and then finds an embed-
ding compatible with those angles.. The authors attempt to cre-
ate a bijective map by performing a local post-processing step to
the angles after the initial parameterization though such a proce-
dure can significantly affect the distortion in that region. Later
ABF++ [Sheffer et al. 2005] created a much faster form of an-
gle base flattening using a hierarchical optimization procedure that
guarantees local injectivity although not global bijectivity.

3 Bijective Maps

Our goal is to produce a bijective map from a 3D triangulated sur-
face to a 2D domain that minimizes a distortion metric without con-
straining the boundary of the charts to fixed shapes. We begin with
a 3D triangulated surface that is partitioned into a set of charts. For
the moment, we will restrict ourselves to a single chart consisting
of a set of triangles that are topologically equivalent to a disk. How-
ever, we will relax this assumption in Section 4.

A map for such a triangulated surface is bijective if two properties
hold. The first is that the map is locally injective; that is, no tri-
angles reverse orientation in the parameterization. This locally in-
jective property is largely a function of the distortion energy, which
we address in Section 3.1.

Unfortunately, such local injectivity does not guarantee a bijective
map. For example, Figure 2 shows an example of a cone that is flat-
tened without any isometric distortion. No triangles reverse orien-
tation in the parameterization. However, the surface folds on itself.
The second property needed to construct a bijective map is that the
boundary of the parameterized chart does not intersect itself. This



Figure 4: Our optimization of ED using different metrics to produce a locally injective parameterization. The top row shows a checkerboard
mapped to the surface via the parameterization shown below. From left to right the metric used with timings in seconds: conformal 95.97,
MIPS 3.42, maximal isometric 114.46, isometric 125.62, ours 1.29.

property is much more difficult to maintain as it is not a quantity
that can be locally computed. We discuss our strategy for enforcing
this property in a computationally efficient manner in Section 3.2.

3.1 Local Injectivity

The majority of parameterization methods minimize some form of
distortion ED between the 3D surface and its 2D parameteriza-
tion. Consider a 3D triangle shown in Figure 3 (left) with vertices
P1, P2, P3 ∈ R

3. This triangle is isometrically flattened to 2D with
zero distortion using a rigid transformation R (top), which then
maps to the parameterized shape with vertices U1, U2, U3 ∈ R

2

via the affine transformation φ (right). It is the singular values of
the linear portion of the matrix φ that defines the distortion of the
triangle in the parameterization.

Let the linear portion of φ be given by the matrix

(

a b
c d

)

.

The singular values of this matrix are

σ1 = 1
2
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√
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(b− c)2 + (a+ d)2
)

σ2 = 1
2
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√

(b− c)2 + (a+ d)2
)

where σ2 > σ1. When σ1 = σ2, the scale is uniform and corre-
sponds to a conformal flattening of the triangle. Furthermore, when
σ1 = σ2 = 1, the flattening is isometric. When σ1 = 0 the triangle
is degenerate.

Most common parameterization methods measure distortion us-
ing a function of these singular values. For example, a linear
form of conformal energy is used in least squares conformal maps
(LSCM) [Lévy et al. 2002] given by (σ1 − σ2)

2, which tends to
shrink the chart since minimizing the scale also minimizes the dis-
tortion energy. As-rigid-as-possible parameterization [Liu et al.
2008] measures isometric error by minimizing (σ1 − 1)2 + (σ2 −

1)2. However, both functions have the problem that they allow tri-
angles to reverse orientation since the energy is finite for σ1 = 0.

To create locally injective maps, we require that the triangles do
not change orientation. A simple way of preventing these folds
is to require a distortion measurement ED that approaches ∞

as σ1 approaches 0. Several functions already satisfy this prop-

erty including conformal [Degener et al. 2003]
(
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, MIPS [Hor-

mann and Greiner 2000]
(

σ2

σ1
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, maximal isometric distor-

tion [Sorkine et al. 2002]
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)
)

, and a form of isometric

energy [Aigerman et al. 2014]

√
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2 + σ−2

1 . We compute the total

distortion of these measurements by integrating the distortion over
the 3D surface. Since the singular values are constant per triangle,
the total distortion is simply the sum of the distortion evaluated at
each triangle weighted by the area of the 3D triangle.

While all of these distortion measurements can be used in our
method, their computational efficiency can vary significantly. For
example, MIPS computes a quantity similar to conformal energy
but yields a very simple expression and is much faster to optimize.
We propose a computationally efficient form of isometric distortion
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which simplifies to

(

1 + σ
−2
1 σ

−2
2

) (

σ
2
1 + σ

2
2

)

. (2)

We should note that a similar form of symmetric stretch energy
to Equation 1 was used for intersurface mapping [Schreiner et al.
2004] although the terms were weighted by different triangle areas.

The distortion metric in Equation 2 has the property that its min-
imum is achieved when σ1 = σ2 = 1. Moreover, σ2

1σ
2
2 has an

extremely simple expression given as the ratio of the squared area
of the parameterized triangle ∆2

U to the squared area of the 3D tri-
angle ∆2

P . In addition, σ2
1 + σ2

2 is the Dirichlet energy and is a
quadratic function of the texture coordinates given by

σ2
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P

.

Integrating this energy over the 3D triangle gives the distortion of
that triangle as

(
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P
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U
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(3)

Most optimization methods also require the gradient of the error
function, which is also easy to calculate for Equation 3. Without
loss of generality, we only consider the partial derivative of Equa-
tion 3 with respect to a single vertex U1. Given that Equation 3 is



Figure 5: Our optimization of ED +EB using different metrics to produce a bijective parameterization. The top row shows a checkerboard
mapped to the surface via the parameterization shown below. From left to right the metric used with timings in seconds: conformal 91.23,
MIPS 19.5, maximal isometric 230.36, isometric 136.71, ours 3.63.

the product of two terms, its derivative is given by the product rule
and we need only consider the derivatives of each of the terms in
the product. The partial derivative with respect to U1 of the first
term of Equation 3 corresponding to

(

1 + ∆2
P∆

−2
U

)

is

−
∆2

P

∆3
U

(U2 − U3)
⊥

where (U2 −U3)
⊥ indicates a rotation of (U2 −U3) by 90 degrees

in the plane. Taking the partial derivative of the second term of
Equation 3 yields the cotan weights [Pinkall and Polthier 1993] that
correspond to a discrete harmonic function where θi corresponds to
angles of the 3D triangle shown in Figure 3

− cot(θ2)U3 − cot(θ3)U2 + (cot(θ2) + cot(θ3))U1.

Moreover, quantities involving the Pi are constant in both the gra-
dient and distortion metric in Equation 3 and can be precomputed.
Figure 4 shows an example of using the optimization from Sec-
tion 3.3 on a cow model composed of a single chart with different
metrics that all produce locally injective parameterizations.

3.2 Bijective Maps with Free Boundaries

While the admissible metrics in Section 3.1 will produce locally in-
jective parameterizations, the boundaries of these parameterizations
may intersect themselves meaning that they do not form a bijection.
It is possible to create a bijection by constraining the boundaries
of the shape [Tutte 1963; Floater 1997; Lipman 2012; Schneider
et al. 2013; Schüller et al. 2013; Poranne and Lipman 2014; Weber
and Zorin 2014]. However, doing so typically requires the user to
specify the boundary of the chart independent of the distortion met-
ric, which leads to greater distortion in the parameterization. Yet
generating an intersection free boundary while minimizing ED is a
difficult computational problem because of the global nature of the
boundary; that is, unlike Section 3.1, the criteria to prevent inter-
sections is not simply a local property of a triangle.

We enforce intersection free boundaries using a barrier function for
the boundary that approaches ∞ as the boundary approaches an
intersecting configuration. For each boundary edge with vertices
U1, U2, we associate a barrier function

max(0,
ǫ

dist(U1, U2, Ui)
− 1)2

where dist(U1, U2, Ui) measures the distance from a bound-
ary point Ui6=1,2 to the edge (U1, U2). This function is 0

Figure 6: Using a spatial hash to find potential boundary vertices
(yellow) that intersect the support (blue) of our barrier function for
an edge. The brown bounding box shows the query region for the
highlighted edge.

for dist(U1, U2, Ui) > ǫ, smooth, and approaches ∞ as
dist(U1, U2, Ui) approaches 0. As ǫ shrinks, so too will the gaps
between the boundary curves. In practice we choose ǫ to be the av-
erage length of the chart’s 3D seam edges divided by 4. Our total
boundary energy EB is then given by summing, for each boundary
edge, this function evaluated over all boundary vertices not part of
this edge.

This choice of barrier function creates a number of advantages.
First, it is computationally efficient given its local support as an off-
set of size ǫ from the current boundary of the chart. Typical barrier
functions use − log(dist(U1, U2, Ui)) or 1

dist(U1,U2,Ui)
as barri-

ers, but the global support of these functions means that a large
number of vertices are affected by each boundary edge and the
gradient becomes dense. Second, the smaller support also means
that much of the optimization of ED is unaffected by the boundary
whereas edges in a globally supported function would cause some
distortion in ED for even far away vertices. Finally, though the
function is locally supported, we choose a smooth function to avoid
discontinuous changes in the gradient during optimization.

We can take advantage of the local support of our barrier function
to accelerate the computation of EB as well using a simple spatial
hash as shown in Figure 6. Before evaluating EB , we construct a



Figure 7: Parameterization of a horse model without our boundary term EB (top) and with (bottom). From left to right are zoom-ins on
various sections of the parameterization that demonstrate the lack of bijectivity (top) versus the results of our bijective parameterization
(bottom).

grid ǫ larger than the current bounding box of the chart. For each
boundary vertex, we insert that vertex into the grid. Now, given a
boundary edge, we query all grid cells within the bounding box of
the edge enlarged by ǫ discarding vertices that are part of this edge.
These vertices are the only vertices that need to be evaluated with
respect to the current edge. Such a simple change greatly enhances
the speed of evaluating EB as well as its gradient, and similarly
improves the speed of the resulting optimization.

Figure 5 shows an example of optimizing the same nonlinear met-
rics from Figure 4 with the addition of EB . The optimization times
almost uniformly increase due to the extra computations involved,
although it is possible to reduce optimization times if EB causes
the optimization to terminate early as was the case for the confor-
mal metric. However, each of these parameterizations now forms a
bijective map. In addition, the parameterizations appear similar to
their unconstrained counterparts despite requiring that the parame-
terizations form a bijective map at every stage of the optimization.

3.3 Optimization

The same distortion metrics that enforce local injectivity in Sec-
tion 3.1 also yield a difficult optimization problem. There have
been several approaches to optimizing these metrics from optimiz-
ing a single vertex at a time [Hormann and Greiner 2000] to using
random search directions [Schreiner et al. 2004]. Lipman [2012]
bounds distortion using inequality constraints and decompose the
problem into maximal convex subsets, although such an approach
requires repeated optimization for each subset.

Our approach is an interior point method [Forsgren et al. 2002] that
guarantees that, at every step, the map remains a bijection. There-
fore, we require an initial parameterization that guarantees a bijec-
tive map. Fortunately, Tutte’s method [Tutte 1963] and Floater’s
parameterization [Floater 1997] both provide valid starting points,
although the distortion is likely to be extreme since both methods
constrain the boundary to a convex shape such as a circle as shown
on the left of Figure 1.

We optimize the entire shape, as opposed to individual vertices,
from the initial starting point using L-BFGS [Nocedal 1980] for
its small memory usage, though we could use any Quasi-Newton
method. Each of these methods begins with the current location of
the parameterized vertices U and repeatedly finds a search direction

V to search in the given energy function

min
t,t>0

f(U + V t)

where f = ED + EB is the total distortion function. Such meth-
ods typically rely on a backtracking line search starting from some
maximal parameter tmax and decrease t until f is minimized or
sufficiently decreases as measured by various criteria such as the
Wolfe condition [Wolfe 1969]. However, being an interior point
method, such solutions will not work without modification since
interior point methods require direct computation of the singulari-
ties as part of the line search. Luckily all of the distortion metrics
ED we consider have the same set of singularities, namely when
each individual triangle becomes degenerate. However, we must
take care when computing the singularities as the number of singu-
larities can be quite large. As shown in Equation 4, each triangle
can contribute up to two singularities for a single search direction
yielding hundreds or even thousands of singularities along a single
search direction for even modest sized charts.

Consider a non-degenerate 2D triangle with vertices U1, U2, U3

with corresponding search direction vectors V1, V2, V3. The sin-
gularities in ED are given when the triangle becomes degenerate,
which is when its signed area becomes zero.

det

(

(U2 + V2t)− (U1 + V1t)
(U3 + V3t)− (U1 + V1t)

)

= 0 (4)

Fortunately, Equation 4 is quadratic in t and the parameters that
yield a singularity in ED are simply given by the roots of this
quadratic. Given that we are only concerned with searches in the
positive direction, the smallest positive root gives the first singu-
larity for this triangle. Computing the minimum parameter over
all triangle gives the maximum value tmax for the line search with
respect to ED.

We also must compute the singularities of EB with respect to our
line search. In this case, singularities are given by intersections of
line segments of the boundary versus other boundary vertices. Let
U1, U2 be boundary vertices that form an edge of the boundary and
Uj be any other boundary vertex with V1, V2, Vj be their respective
search direction vectors. Luckily, the exact same test in Equation 4
gives the potential parameters associated with singularities for this
combination of edge/vertex, which corresponds to when the edge
and given vertex are all colinear. The only complication is that the
roots of the quadratic may not necessarily correspond to singulari-
ties. It is possible that, while the vertex and edge are colinear, the



Figure 8: Parameterization of a chart with multiple boundaries
(top left) and the initial parameterization (top right) via Tutte’s pa-
rameterization by arbitrarily triangulating the holes in the eyes.
The bottom shows the results of our parameterization with the tem-
porary triangles in the eyes removed and a zoom-in on one of these
boundary curves.

vertex lies outside the extents of the edge. However, such a test is
trivial, and we discard roots of the quadratic that do not correspond
to singularities. For the remaining roots, if any, we use the small-
est, positive root. Computing the minimum of this quantity over all
combination of boundary edges and boundary vertices along with
the parameter tmax from ED gives the maximal possible parameter
such that f contains no singularities between t ∈ [0, tmax).

The only issue with the computation of the singularities of EB is
how many cases we must check. If there are m boundary vertices,
the complexity of simply choosing the maximal parameter for the
line search is O(m2) as there are O(m) boundary edges, each of
which must be compared against O(m) boundary vertices. Fortu-
nately, we can use the spatial hash in Section 3.2 to accelerate this
computation. We assume that we have first computed the maxi-
mal parameter tmax for ED. In the extremely unlikely case that
tmax = ∞, we set it to a large positive value. For each boundary
vertex Uj with search direction Vj , we insert the vertex into each
grid cell intersecting the line segment between Uj and Uj+Vjtmax.
Then, for each boundary edge with vertices U1, U2 and search di-
rection vectors V1, V2, we query the grid for all boundary vertices
that intersect the bounding box given by U1, U2, U1 + V1tmax,
U2+V2tmax. The union of those boundary vertices (minus those of
the edge) gives the only boundary vertices that need to be checked
versus the given edge and reduces the amount of computation sub-
stantially. Moreover, as tmax is updated during this computation,
the size of the query bounding box shrinks as well.

Method Ours ED Ours ED + EB

avg max avg max

Cow 5.466 14.763 5.843 14.751

Camel 9.203 28.082 9.351 27.216

Triceratops 4.327 17.465 4.455 12.669

Horse 7.280 26.499 7.300 39.890

Head 10.081 75.904 10.097 33.357

Table 1: The average error and maximum error using our isomet-
ric metric ED for all of the models in the paper with and without
enforcing bijectivity. The minimum possible error is 4. Note that,
though EB is used in the bijective optimizations, only the error ED

is reported in the table above.

4 Results

Figure 1 shows our optimization in progress starting from Tutte’s
embedding on the left to a gradual unfolding of a highly distorted
parameterized camel and ending in the parameterization on the right
that minimizes our isometric distortion. At every step of the opti-
mization, the parameterization remains a bijective map despite the
highly intricate boundary interactions that occur during the opti-
mization.

While we provide a particularly simple form of isometric distortion
in Section 3.1, many different forms of distortion can be used with
our optimization. Figure 4 shows an example where we used five
different metrics within our optimization without adding the bound-
ary term EB; two of which measure conformal distortion followed
by three measuring a form of isometric distortion. We also list the
time in seconds our optimization takes with each metric on an Intel
Core i7-3770k CPU running at 3.5 GHz. Both MIPS and our iso-
metric metric have a simple distortion metric that is easy to com-
pute. While the timings are implementation dependent, the simple
form of these distortions yield fast optimization times.

While there are no flipped triangles in any of the examples in Fig-
ure 4, none of these parameterizations are bijective since the bound-
ary intersects itself in each example. Figure 5 shows the same op-
timization and metrics except we add our boundary term, EB , to
each of the distortions. In this case, all of the parameterizations
are bijective. However, the optimization takes longer in all cases
except for the conformal metric where the optimization was termi-
nated earlier and did not spend as much time optimizing over the
folded configurations due to the bijective constraint.

Figure 7 shows another example with our distortion metric of a
much more complex model of a horse with 20636 vertices. The top
of the figure demonstrates the optimization without our boundary
term. While there are no folded triangles, the shape folds back-
wards on itself in several places. Adding the boundary term to the
optimization on the bottom row eliminates these intersections. In
some cases, such as the left zoom-in, the boundaries form complex,
matching curves but still remain intersection free.

Our method is also not limited to charts that are topologically equiv-
alent to a disc. We can easily incorporate charts with holes. The
only complication required by our method is a valid starting point
that contains no intersecting boundaries or folded triangles. By
triangulating the holes, arbitrarily, Tutte’s embedding or Floater’s
parameterization will produce such a valid starting configuration.
We then delete the extra polygons and run our optimization as nor-
mal. We can even make a small performance optimization in this
case as well. Each of the boundaries are independent from one an-
other since interior triangles would have to collapse for the separate
boundary curves to intersect. Therefore, during the optimization,



Method Faces Vertices Boundary Spec ABF++ ARAP Ours ED +EB

Cow 3195 5804 584 .69 .004 1.99 3.63

Camel 2032 3576 486 .409 .006 2.12 6.13

Triceratops 3163 5660 664 .98 .008 3.76 4.45

Horse 20636 39698 1572 8.34 .028 118.31 35.48

Table 2: The time taken in seconds for all of the results in Figure 11. Faces gives the number of triangles in the chart. Vertices gives the
number of vertices in the chart. Boundary gives the number of vertices on the boundary of the chart.

we use a separate spatial hash for each boundary curve and com-
pute them separately, which lowers the computational cost.

Figure 8 shows a challenging chart with three boundary curves that
creates a significant amount of distortion. The upper right portion
of the image shows Tutte’s embedding using triangulated holes for
the eyes (with the artificial triangles removed). After running our
optimization (bottom), the holes remain intersection free and the
parameterization forms a bijection.

Note that such a hole-filling strategy has been used previously in
parameterizations [Hormann and Greiner 2000; Sanan 2014]. How-
ever, in these cases the triangles were left in the optimization and
optimized with the same distortion metric as the actual surface tri-
angles. Such a strategy simplifies the optimization since the topol-
ogy of the interactions between boundaries is known and fixed, but
this choice increases the distortion of the remaining triangles of the
chart unnecessarily. In this case, the geometry of these holes and
the arbitrary triangulation chosen affect the resulting parameteriza-
tion despite having no corresponding surface triangles.

Figure 9: Triceratops optimized with ED on the left and ED +EB

color coded by our isometric error for each triangle.

Table 1 shows a table of both the average area (calculated as an
area-weighted sum and normalized by total area) as well as the
maximum error for an individual triangle using our isometric metric
for the different models in the paper. Note that the minimum value
of our error metric is 4, which corresponds to a perfect isometric
flattening. In all cases the average error increases slightly when
adding our boundary term EB to the optimization to make the pa-
rameterization bijective. Figure 9 shows a color map of the error of
a parameterization without our boundary term (left) and with our
boundary term (right). The image clearly shows that the error of
the parameterization increases when forced to be bijective, particu-
larly in the area of large overlap in this example. If the increase in
error is too significant, it may be necessary to split the chart using
an approach similar to [Lévy et al. 2002] or [Zhou et al. 2004].

Figure 11 shows a comparison of our method using our isometric
metric and boundary term versus several popular parameterization
algorithms including a spectral form of LSCM [Mullen et al. 2008],
ABF++ [Sheffer et al. 2005], and ARAP parameterization [Liu
et al. 2008]. All of these parameterizations are nonlinear in na-
ture. The first two methods (LSCM, ABF++) optimize a form of

conformal distortion, while the last two (ARAP, ours) optimize a
form of isometric distortion. The parameterizations are somewhat
similar in nature despite optimizing different distortions except for
the LSCM-based solution that causes shrinking due to the choice of
distortion metric. We also show a zoom-in of the same area below
each shape. All parameterization methods but ours fail to produce a
bijective map. The only exception was ABF++ on the dinosaur ex-
ample. Such parameterization methods can produce bijective maps
(rarely for complex examples), but are not guaranteed to. In con-
trast, all of our results are guaranteed to be bijections.

Table 2 shows the time taken in seconds for all of these methods.
While our method is almost always the slowest in these compar-
isons, our method is still fast and computes parameterizations of
charts with several thousand vertices within a few seconds. Even
for large charts of tens of thousands of vertices our optimization
still finishes within about half a minute.

5 Limitations and Future Work

Our method uses a non-convex energy function. Hence, we do
not guarantee that we find the global minimum of the given distor-
tion energy. With that said, we start with Tutte’s parameterization,
which contains significant distortion and is typically quite far from
the minimum our optimization finds. Figure 10 demonstrates a fail-
ure case. In this example, we wrap a polygonal Hilbert space filling
curve around a cylinder. Given the cylinder is a ruled surface, the
global minimum of the parameterization should be an unwrapped
space filling curve with no distortion. The starting configuration
of Tutte’s embedding is far from the global minimum and we show
several intermediate stages of the optimization before our optimiza-
tion terminates in the second to the last image, which took 49.6 sec-
onds. Obviously the parameterization is not the global minimum
although the optimization made significant progress from the start-
ing configuration. To verify we were stuck in a local minimum, we
reduced the convergence tolerance and continued the optimization.
The shape on the right is the local minimum our optimization finally
reached after 8472 seconds. At this point the optimization is truly
stuck although it stopped extremely close to the global minimum.
This example does bring up the issue of tolerances since we perform
a numerical optimization. However, in the far less challenging cases
in the rest of the paper, lowering our convergence tolerance did not
significantly affect the parameterization. In addition, despite start-
ing from the distorted initial parameterization provided by Tutte’s
embedding, all of the shapes we have tried have generated low dis-
tortion mappings comparable to other parameterizations with the
exception that we create bijective maps.

In terms of future work, our method could greatly benefit from a
better starting position. Unfortunately, few methods can currently
guarantee a bijection without user intervention. In terms of speed,
we would also like to explore multi-resolution methods [Hormann
and Greiner 2000] for accelerating the parameterizations for very
large charts consisting of hundreds of thousands of vertices. How-
ever, maintaining a bijective map as the multi-resolution structure
expands, especially with respect to the boundary, may be difficult.



Finally, adding the requirement that the parameterization be seam-
less [Purnomo et al. 2004] would be useful. Such a modification
would tie the optimization of all charts together since correspond-
ing boundary edges would be required to be the same length and
a multiple of a 90 degree rotation. Such methods can rely on inte-
ger constraints [Bommes et al. 2009] and are difficult optimizations
even without the bijective constraint.
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HORMANN, K., LÉVY, B., AND SHEFFER, A. 2007. Mesh param-
eterization: Theory and practice. In ACM SIGGRAPH Courses.
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Figure 10: A failure case for our method. From left to right: a space filling curve on the surface of a cylinder, Tutte’s embedding with a
zoom-in below to show the poor triangulation, two intermediate steps during the optimization, our result with default parameters taking 49.6
seconds with an average error 13.238 and max 17.223, and the result using a lower convergence tolerance taking 8472.14 seconds with an
average error of 4.210 and max 4.213.

Figure 11: A comparison of widely used parameterization methods applied to different models. The methods from left to right are: spectral
conformal parameterization, ABF++, ARAP, and ours.


