Adaptive Vertex Clustering Using Octrees

Scott Schaefer and Joe Warren

Abstract. We present an adaptive vertex clustering approach to
out-of-core simplification of polygonal meshes using a dynamic oc-
tree. Similar to uniform clustering, our technique utilizes quadratic
error functions to position the mesh vertices; however, this new
method can resolve vertices to arbitrary resolutions, which allows
reproduction of extremely small details and more accurate simpli-
fications. By sorting the vertices of the input mesh, our algorithm
dynamically discovers portions of the mesh that are locally com-
plete, which are then available for collapse when the octree grows
too large. This adaptive octree is then used to cluster the vertices
of the input to generate a simplified mesh. Finally, we show that
our method generates the same tree that would be constructed with
unbounded memory if our method is given a small amount of space
in addition to the size of the output tree.

§1. Introduction

Recent years have seen a substantial increase in extremely large polyg-
onal models. Endeavors such as the Digital Michelangelo project attempt
to produce a digital archive of great works of art down to a resolution of
a few millimeters. With this resolution, models on the order of tens to
hundreds of millions of polygons have been generated. Despite advances in
graphics hardware, these models cannot typically be rendered in real-time
on a consumer level computer and, therefore, simplification of these mod-
els is required. However, traditional simplification algorithms typically
process the entire mesh in memory and fail when presented with such a
daunting task.

Out-of-core simplification algorithms are a special class of simplifica-
tion techniques that remove the requirement that the entire model fit into
memory. These methods usually utilize disk space instead of memory
to store data and only load small portions of the model into memory at

XXX 1
xxx and xxx (eds.), pp- 1-4.

Copyright © 200x by Nashboro Press, Brentwood, TN.

ISBN 0-9728482-x-x

All rights of reproduction in any form reserved.



2 S. Schaefer and J. Warren

Fig. 1. Close-ups of David’s head using three different out-of-core sim-
plification algorithms. Each reduction has the same number of polygons
(1.5% of original model) and is flat-shaded. Uniform clustering (left), Shaf-
fer and Garland’s adaptive BSP approach (middle), our adaptive octree
method (right).

any one time keeping the memory requirements of the algorithm low. Al-
though these techniques do not depend on the size of the input model,
many require that the final output model fit into memory. This constraint
is not problematic because the goal is to reduce the model to a size that
allows more accurate in-core operations to be performed (such as display,
further simplification, etc...).

§2. Related Work

There are several different strategies for simplifying massive polygonal
models [1, 9, 14, 3, 17]. The method that we will concentrate on in this
paper is vertex clustering. Rossignac and Borrel [15] introduced one of
the first simplification algorithms that use this technique. Lindstrom [13]
later developed an improvement that employed quadratic error functions
(QEF’s), which were made popular for surface simplification by Garland
and Heckbert [7], to position the representative vertex. The algorithm
divides the space spanned by a bounding box into a uniform grid. All of
the vertices from the original model that are contained within a grid cell
are clustered together to form a single representative vertex. This method
has become popular for simplifying very large models due to the small
memory requirements and extremely fast simplification times.
Unfortunately, uniform clustering cannot reproduce features smaller
than a grid cell and may trivially tile large, flat areas with many poly-
gons. To combat these difficulties, Shaffer and Garland [16] introduced an
adaptive technique for vertex clustering based on BSP trees. By exploit-
ing an initial uniform clustering phase, their algorithm constructs a BSP
tree as the spatial partitioning data structure for clustering vertices. The
authors achieve approximately a 20% decrease in average geometric error
using an initial uniform clustering grid four times larger in each dimension
than Lindstrom’s technique. However, the authors do not analyze whether



Adaptive Vertex Clustering Using Octrees 3

using uniform clustering at the higher resolution grid and then simplifying
using an in-core technique would generate the same reductions in error.
Also, the authors note that their BSP tree lacks the spatial coherence
that uniform clustering provides and, consequently, outliers can connect
vertices that are geometrically far apart resulting in poor simplifications.

Garland and Shaffer [8] recently published a multiphase approach to
out-of-core surface simplification where uniform clustering is performed
on the mesh first and then a mesh is built with the QEF’s from uni-
form simplification attached to the vertices. QSLIM [7], a popular in-core
surface simplification tool, is then run on this representation to reduce
the number of polygons even further. By combining these two methods,
the authors improved running times and generated results comparable to
running QSLIM on the original data.

Contributions

The method that we propose is a vertex clustering algorithm related to
uniform clustering except we have replaced the uniform grid with an adap-
tive octree containing a pre-specified number of nodes. This octree is built
using in-core memory proportional to the size of the simplified mesh. We
also show that our method generates an octree with minimal error re-
sulting in better simplifications than other vertex clustering techniques.
Furthermore, the QEF’s generated by our method can be used in QSLIM
to perform additional simplifications in-core as done in [8].

First we provide an explanation of the vertex sorting phase of our
algorithm and the properties that the sorting function must satisfy so
that we can safely construct an adaptive octree. Next, we describe our
process for constructing the adaptive octree including how we choose the
sub-portions of the tree to collapse when the octree grows too large. This
construction leads to an analysis of our octree compared to an ideal, in-
core vertex clustering technique. Finally, we end with comparisons of our
results against other popular vertex clustering techniques.

83. Vertex Sorting

The first phase in our simplification algorithm is a vertex sorting pass.
Without loss of generality, we assume that the mesh is contained in the
domain [0, 1]®. We also assume (as does uniform clustering) that the mesh
is in a triangle soup format where triangles consist of a list of three points
in space.

For each polygon {v1, v2,v3} in the input format, the method calculates
anormal n = (v; —vs2) X (v3—v2) and writes the vertices with the associated
normal {{v1,n}, {ve,n}, {vs,n}} to disk to be sorted. This sorting process
induces a linear ordering of three-dimensional space. We require that the
ordering of the vertices is such that if any cube in the octree over the unit
domain is split into eight sub-cubes and some enumeration is chosen, then



4 S. Schaefer and J. Warren

177
3|5
13
1
214 2 4
Y Y
13| — 810 4,
LE
]
0 X 1 6 |11
O,,
| |
0 X 1

Fig. 2. Enumeration of sub-cubes chosen for sorting (left) and sorted
order applied to a quadtree (right).

all of the vertices within sub-cube; precede all vertices in sub-cube;;1.
For example, in 2D the key 0.z1y1Z2y2... formed by alternating the binary
digits of the point {0.z1%2...,0.y1y2...} satisfies our sorting requirements
(and is the ordering used in our implementation). Figure 2 illustrates an
example of this sorted order on the nodes of a quadtree.

Any out-of-core sorting algorithm will suffice to sort the vertices; how-
ever, a poor choice will affect performance. Our implementation uses
a three-dimensional out-of-core merge sort to order the vertices and re-
quires approximately % times the disk space needed to store the file with
the separated vertices and normals. Lindstrom [12] suggests rsort [11] as
an excellent sorting algorithm for these purposes. In terms of disk I/0,
this phase of the algorithm is O(nlog(n)) so this portion dominates the
running time of the simplification algorithm.

§4. Adaptive Vertex Clustering

Once the vertices are sorted, the algorithm constructs an octree to cluster
the sorted vertices. We maintain several invariants of the octree. First,
the octree may be incomplete in that all eight children are not required
to exist. The final property that we maintain is that uncollapsed leaves
in the tree store only a single vertex from the original model.(Given the
inaccuracy of floating point equality, we require only that the vertices for
a node lie within a user specified tolerance from each other.)

Similar to uniform clustering, our technique utilizes quadratic error
functions (QEF’s) to position the vertices. In our octree, each node con-
tains a QEF to represent the aggregate surface inside of that cell. We



Adaptive Vertex Clustering Using Octrees 5

define this QEF to be a function of the form of equation 1.

Elz] =) (ni- (z —p:)° (1)

i

In this equation n; represents a normal and p; is a point in space. Uniform
clustering never evaluates E[z] and only uses the QEF to position the
vertices. However, our adaptive clustering technique will need to calculate
the error associated with the QEF. Therefore, we do not use the normal
equation format for the QEF, but instead use the () R factorization method
presented by Ju et al. [10], which yields a more numerically stable form of

4.1. Vertex Insertion

Our algorithm takes as a parameter the maximum number of octree nodes
available to construct the tree. At the beginning of the octree construction
step, the algorithm pushes all available nodes onto a stack from which
nodes will be allocated later. Vertices are processed in the order generated
by the sorting phase. For each vertex/normal pair, {v;, n;}, the algorithm
finds the deepest node in the octree that contains the vertex. If that node
is an internal node, then the child containing the vertex does not exist so
the child is allocated and the vertex is inserted into that child. Otherwise,
the deepest node containing the vertex must be a leaf node.

If the vertex to be inserted is the same as the vertex stored in the leaf,
then the algorithm merges the plane equation described by {v;,n;} into the
QEF for that node; otherwise, a split occurs in the tree. The current leaf
node becomes an internal node and the vertex previously stored in that
node is inserted into the internal node (causing a child to be allocated
since none exist) and the QEF is copied into that child. Next, the current
vertex is inserted into the new internal node. If the vertex is located in
a child that is not present, then the insertion terminates. However, if
the vertex is inserted into the same child as the previous vertex, then
this process continues until the algorithm separates the vertices into two
different nodes. Figure 3 (middle) shows an example of two splits caused
by a vertex insertion into a binary tree.

4.2. Node Collapse

During processing, vertex insertion may exhaust the available space in the
stack. To free new space for further vertex insertions, the method collapses
certain subtrees of the octree to form new leaves. To guide this collapse,
we label the current nodes in the octree as either pending or complete.
A pending node is one that lies on the path from the root to the last
vertex inserted into the tree. Subtrees whose roots are pending may not
be collapsed, since new vertices may later be inserted into these subtrees
(leading to poor simplifications). All remaining nodes are complete. Due



6 S. Schaefer and J. Warren

Fig. 3. Construction of a dynamic tree inserting the binary data
{.0,.01,.1,.101,.11,...}. Squares are pending nodes and circles are com-
plete nodes. Initial tree after adding first three pieces of data(left), ver-
tex insertion causing two splits (middle), vertex insertion causing collapse
(right).

to the sorted vertex order, no vertices will subsequently be inserted into
subtrees composed of complete nodes. In figure 3, the left subtree of the
root contains all coordinates with key less than .1. Since all subsequently
inserted keys are greater than or equal to .1, this subtree is complete and
suitable for collapse.

In determining which subtree to collapse, our method chooses the com-
plete subtree whose aggregate QEF has the smallest error. To determine
the complete node with minimum error efficiently, the method stores point-
ers to complete nodes and their error in a heap. All that remains is to
determine which nodes are completed during insertion of a particular ver-
tex and insert them into the heap. To that end, we construct a list of
internal nodes visited during the insertion of the current vertex (starting
with the root node). When inserting this vertex into the octree, we also
traverse the list of internal nodes built during insertion of the previous
vertex. If at any point the two lists diverge, all nodes in the previous
list from that node onward are newly discovered complete nodes and are
inserted into the heap.

4.3. Mesh Generation

After the algorithm constructs the dynamic octree, we generate vertices
corresponding to the leaves of the octree. The output of our algorithm
is a mesh in a topology/geometry format containing a list of vertices and
polygons whose elements index into the vertex array. The algorithm gen-
erates this vertex array by performing a tree traversal where, at the leaves,
vertices are generated at the position that minimizes the error of the QEF
and given a unique index in the vertex array. To generate polygons, our
method processes the original triangle soup data file again to generate the
final polygons for the simplified model. For each vertex in a polygon we
find the leaf in the octree containing that vertex and return the index



Adaptive Vertex Clustering Using Octrees 7

Fig. 4. Simplification of a tire using three different methods to the same
number of polygons. Uniform clustering(left), BSP(middle) and our adap-
tive octree method(right).

stored in that node. If one or more indices of the vertices are equal, the
polygon collapsed to either a line or a point during simplification and is
discarded; otherwise, the polygon is written to disk.

§5. Analysis

Given an infinite amount of memory, we could construct an octree that has
one leaf for each vertex in the original mesh and an associated QEF for that
vertex. To generate a simplified mesh with approximately d vertices, we
simply collapse nodes with minimal QEF error until the resulting octree T'
has d nodes. Since the maximal QEF error for the entire octree increases
monotonically during collapse, this tree T is optimal in that no other
collapsed octree of size d has smaller error. In particular, any octree of
size d corresponding to the uniform grid used by Lindstrom’s method
generates simplified meshes with error greater than or equal to that of T'.

We claim that adaptive vertex clustering will reconstruct an optimal
tree of size d while generating intermediate octrees of at most size d + k
where k is a constant that bounds the maximal number of pending nodes
and their immediate children at any point during the simplification. This
constant, k, accounts for the maximum number of nodes that cannot be
removed due to the existence of pending nodes in the octree. Since pending
nodes always lie along a single path from the root of the octree to one of
its leaves, the number of pending nodes and their immediate children is
bounded by 8 times the depth of octree (at most the number of binary
digits in a floating point number). Thus, k is very small in comparison to
typical values for d (on the order of 10? nodes) and as a result, the space
required during adaptive vertex clustering is roughly proportional to the
space required to represent the output mesh 7'.

To prove this claim we note that at any stage in the octree construction
phase, nodes are either complete or pending (see figure 3). When a vertex
is inserted into the octree there will be at most k& nodes pending that
cannot be removed. If any of the complete nodes in the tree, of which



8 S. Schaefer and J. Warren

Model | Polys | Reduced | Uniform BSP Octree

Dragon | 871414 | 74131 | 3.305/4.0 | 3.089/10.0 | 2.586/33.0

Shower | 2619676 98167 16.74/13.0 | 13.82/30.0 | 10.64/119.0

David* | 8254150 | 126813 98.80/35.0 | 55.55/75.0 | 39.97/322.0

Tire* |23980320| 808030 |29.97/127.0 | 59.56/201.0 | 24.65/1172.0

Tab. 1. Simplification results for different models and methods. Results
are in the format Average Error x 1073 /Time(seconds)

there are at least d, are not part of the tree T, then those nodes can be
collapsed to make room for the new vertex without removing any nodes in
T (due to the monotonicity of the error function). However, if d complete
nodes are all part of T' and k nodes are pending, then at some point in
the vertex insertion step, the previous list of internal nodes will diverge
from the current path. When the paths diverge, all nodes in the tree with
depth greater than or equal to the current depth are complete and can
be collapsed to reclaim space. Since insertion can only take k nodes, no
nodes in T will be removed during the collapse. Therefore, the final tree
will contain all of the nodes in the tree T" and have maximum error less
than or equal to that of T'.

§6. Results

To assess the performance of our method, we compared the simplifications
produced by our implementations of uniform clustering, Shaffer and Gar-
land’s adaptive BSP approach, and our adaptive octree method for several
large data sets. Table 1 summarizes the results for several different sim-
plifications of large models. All results are gathered on a Pentium IIT 3
GHz machine with 2GB of RAM and an ATA/100 IDE hard drive. We
use the Metro tool [4] to determine the error of the simplifications. Models
with asterisks were too large to analyze with Metro (the program crashes).
Instead we extracted the sub-portions depicted in the figures from the orig-
inal and evaluated the truncated models with Metro. Though the error
for the truncated model does not indicate the global simplification error,
we include the results to give some indication (other than visual) of how
our method performs on these large models. In general we achieved about
a 20-50% reduction in error over uniform clustering and approximately a
20% reduction on average over the BSP technique.

In terms of speed, our method is approximately ten times slower than
uniform clustering and two to three times slower than Shaffer and Gar-
land’s BSP technique mostly due to the sorting phase (see table 2). This
slowdown is to be expected though because our algorithm is O(nlog(n))
instead of O(n) like the other two methods. We feel this speed is accept-



Adaptive Vertex Clustering Using Octrees 9

Writin, . Octree Mesh
Model Vertsg Sorting Construction Generation
Dragon 2.2s 17.5s 12.8s 0.1s
Shower 6.6s 76.6s 35.7s 0.1s
David 21.7s 213.3s 86.1s 0.2s
Tire 83.9s 780.0s 306.9s 0.8s

Tab. 2. Running times for the different phases of the algorithm on several
different models.

able though because out-of-core simplification should be done only once
to reduce the model to a manageable size so that in-core simplification
algorithms can finish the reduction. Also, the QEF’s generated by our re-
duction algorithm could then be used in QSLIM to perform more accurate
in-core reductions as done in [8§].

Figures 1, 4 and 5 show three different models (all containing approxi-
mately the same number of polygons) reduced using the three algorithms
compared here. In each case, uniform clustering does not have a suffi-
cient sampling density to reproduce many of the small features (David’s
eyes, the tire lug nuts and the center rod of the shower head). Shaf-
fer and Garland’s adaptive BSP approach does a better job at reproduc-
ing these features, but is still subject to the deficiencies of their original
uniform sampling phase. Also, the BSP method generates many small
non-manifold vertices produced by poor choices of splitting planes. Since
the BSP tree partitions space into arbitrary convex regions, there are no
bounds on the length of these convex regions and vertices from distant
regions of the mesh can potentially be joined together. In contrast, the
cells produced by octree clustering are bounded an can reproduce these
fine scale features with a high degree of accuracy.

§7. Conclusions

We have presented a method for adaptive out-of-core simplification using
adaptive octrees. By sorting the vertices of the input mesh, our algorithm
is able to discover portions of the mesh that are locally complete and
construct a dynamic octree using only a constant amount of memory.
This adaptive octree is then used to cluster the vertices of the original
mesh in order to generate a simplified mesh. We concluded by arguing
that if our method were given a small amount of extra space, the octree
generated would be the same as if we were allowed infinite memory.

§8. References



10 S. Schaefer and J. Warren

i

1l

UL

i

{
\

L

Fig. 5. Simplification of a shower head using three different methods to
the same number of polygons. Uniform clustering(left), BSP(middle) and
our adaptive octree method(right).

. Bernardini F., J. Mittleman and H. Rushmeier Case study: scanning
michelangelo’s florentine pieta. ACM SIGGRAPH 99 Course Notes,
Course 8, 1999.

. Chiang Y., C. Silva and W. Schroeder Interactive out-of-core isosurface
extraction. Proceedings of IEEE Visualization, 1998, 167-174.

. Cignoni P., C. Rocchini, C. Montani and R. Scopigno External mem-
ory management and simplification of huge meshes. Transactions on
Visualization and Computer Graphics, 2003, 525-537.

. Cignoni P., C. Rocchini and R. Scopigno Metro: measuring error on
simplified surfaces. Computer Graphics Forum 17, 1998, 167-174.

. Corréa W., J. Klosowski and C. Silva iWalk: interactive out-of-core
rendering of large models. Technical Report TR-653-02, Princeton Uni-
versity, 2002.

. Fei G., K. Cai, B. Guo and E. Wu An adaptive sampling scheme for
out-of-core simplification. Computer Graphics Forum 21, 2002, 111-119.

. Garland M. and P. Heckbert Surface simplification using quadric error
metrics. ACM Siggraph Conference, 1997, 209-216.

. Garland M. and E. Shaffer A multiphase approach to efficient surface
simplification. Proceedings of IEEE Visualization, 2002, 117-124.



Adaptive Vertex Clustering Using Octrees 11

9. Hoppe H. Smooth view-dependent level-of-detail control and its appli-
cation to terrain rendering. Proceedings of IEEE Visualization, 1998,
35-42.

10. JuT., F. Losasso, S. Schaefer and J. Warren Dual contouring of hermite
data. ACM Siggraph Conference, 2002, 339-346.

11. Linderman J. rsort and fixcut man pages, 1996.

12. Lindstrom P. and C. Sliva A memory insensitive technique for large
model simplification. Proceedings of IEEE Visualization, 2001, 121-126.

13. Lindstrom P. Out-of-core simplification of large polygonal models.
ACM Siggraph Conference, 2000, 259-262.

14. Prince C. Progressive meshes for large models of arbitrary topology.
Master’s Thesis, 2000.

15. Rossignac J. and P. Borrell Multi-resolution 3D approximation for
rendering complex scenes. Modeling in Computer Graphics, 1993, 455—
465.

16. Shaffer E. and M. Garland Efficient adaptive simplification of massive
meshes. Proceedings of IEEE Visualization, 2001, 127-134.

17. Wu J. and L. Kobbelt A stream algorithm for the decimation of massive
meshes. Proceedings of Graphics Interface, 2003, 185-192.

Scott Schaefer

Rice University

Houston, TX

sschaefe@rice.edu
http://www.cs.rice.edu/ sschaefe

Joe Warren

Rice University

Houston, TX

jwarren@rice.edu
http://www.cs.rice.edu/"” jwarren



