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Abstract

This paper presents a method to selectively elevate the degree of an S-Patch of arbitrary dimension. We consider

not only S-Patches with 2D domains but 3D and higher-dimensional domains as well, of which volumetric cage

deformations are a subset. We show how to selectively insert control points of a higher degree patch into a lower

degree patch while maintaining the polynomial reproduction order of the original patch. This process allows the

user to elevate the degree of only one portion of the patch to add new degrees of freedom or maintain continuity

with adjacent patches without elevating the degree of the entire patch, which could create far more degrees of

freedom than necessary. Finally we show an application to cage-based deformations where we increase the number

of control points by elevating the degree of a subset of cage faces. The result is a cage deformation with higher

degree triangular Bézier functions on a subset of cage faces but no interior control points.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Line and curve generation

1. Introduction

The Bézier form of curves, surfaces, and volumes has many
applications in Computer Graphics. Curves in Bézier form
are used in applications from vector graphics to animation
curves. Surfaces in Bézier form are used to model 3D sur-
faces or even as a basis for finite element methods. Volumes
have found applications in surface deformation [SP86].

The Bézier form for curves is defined via Bernstein basis
functions and is given by

F(t) =
d

∑
m=1

(

d

m

)

(1− t)d−m
t
m

fm, (1)

where d is the degree of the curve and fk are the control
points. These 1D parametric curves are related to a binomial
expansion of univariate barycentric basis functions (1− t), t.

Extending Bézier curves from 1D to Bézier patches in
higher dimensions requires barycentric coordinates defined
over higher dimensional domains, which are not unique for
non-simplicial shapes. Given a domain polygon (or, more
generally, a higher dimensional domain polytope) P with
n vertices pk, generalized barycentric coordinates are func-
tions wk(x) associated with each vertex pk of an evaluation

point x such that

∑
n
k=1 wk(x) = 1

∑
n
k=1 wk(x)pk = x.

(2)

While triangular and tensor-product Bézier patches are
common, both are special cases of a more general con-
struction called S-Patches [LD89]. S-Patches directly gen-
eralize Equation 1 by replacing the binomial expansion of
1D barycentric coordinates with a multinomial expansion of
generalized barycentric coordinates. Given a polytope P, a
degree d S-Patch is given by

F(x) = ∑
|~i|=d

B
d
~i
(x) f~i,

where the index~i is a vector of n non-negative integers, |~i|
is the sum of the entries of~i, and f~i are the control points.

The basis functions Bd
~i
(x) are the terms in the multinomial

expansion of (∑n
k=1 wk(x))

d

B
d
~i
(x) =

(

d
~i

)

n

∏
k=1

(wk(x))
~ik (3)

where wk(x) are the generalized barycentric basis functions
with respect to the polytope P and

(d
~i

)

is the multinomial

coefficient
(d
~i

)

= d!
i1!···in! . Figure 1 shows an example of the
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Figure 1: An example of the indexing of a 5-sided quadratic

S-Patch.

indexing of a quadratic 5-sided S-Patch. We refer to con-
trol points whose basis functions have no influence on the
boundary of the domain as interior points, and the remaining
control points are referred to as boundary points. For exam-
ple, in Figure 1, f(0,0,1,1,0) is a boundary control point and
f(0,1,0,0,1) is an interior control point.

While the original definition of S-Patches was restricted
to convex, multi-sided polygon domains, this limitation
was due to the barycentric coordinates available at that
time [Wac75] rather than any limitation of the S-Patch con-
struction. Today more general forms of barycentric coor-
dinates exist for non-convex domains and in arbitrary di-
mensions [JSW05, FKR05]. For this paper, we consider the
fully general form of S-Patches for arbitrary-sided, closed
domains with or without holes in any dimension. For exam-
ple, though seldom viewed in this light, cage-based deforma-
tions [JSW05] with generalized barycentric coordinates are
really deformations using S-Patch volumes of degree one.

However, S-Patches are limited by the number of de-
grees of freedom in the representation (i.e.; control points).
In some cases the user may need more degrees of free-
dom to manipulate a surface or a deformation than the ini-
tial set of control points allows for. The solution is to ei-
ther subdivide the representation (only possible for sim-
plicial/tensor product representations), redesign the S-Patch
(requires user intervention and does not preserve the original
surface/deformation), or to perform degree elevation.

Unfortunately, degree elevation increases the number of
degrees of freedom far too rapidly, especially in higher di-
mensions. For cage-based deformation, raising the degree of
a modest control cage with 100 vertices to a quadratic gener-
ates over 5000 control points, most of which will be interior
points. This explosive growth in control points can quickly
become intractable for a user to manipulate. Moreover, one
of the strengths of cage-based deformations is that the user
only needs to manipulate the boundary of the shape to con-
trol the deformation rather than any interior points, and any
S-Patch of degree greater than one will have interior points.

We present a method to partially elevate the degree of
an S-Patch by inserting any control point from a higher de-
gree S-Patch into an S-Patch containing lower degree control
points. This process will modify the basis functions of the
existing low degree control points of the S-Patch and give
the user the ability to elevate the degree of a single bound-
ary edge (or facet in higher dimensions) without fully ele-
vating the degree of the entire patch. For applications such
as cage-based deformation, this process allows the user to
refine portions of the boundary control cage without intro-
ducing interior points caused by fully elevating the degree
of the cage. In applications such as finite element methods,
local regions can be degree elevated and adjacent elements
need to only elevate the degree of the shared facets to main-
tain continuity.

2. Related Work

As previously stated, generalized barycentric coordinates
are intimately connected to S-Patches [LD89]. Wachs-
press created an interpolant over 2D, convex polygons for
solving finite-element problems [Wac75], which Warren
et al. [WSHD07] generalized to convex shapes, smooth
or discrete, in arbitrary dimension. Mean value coordi-
nates in 2D [Flo03, HF06] and 3D [JSW05, FKR05] alle-
viate the convexity constraint of Wachspress coordinates
and are easy to compute. Harmonic coordinates [JMD∗07]
are always positive but require finite element meth-
ods to compute. While many more constructions ex-
ist [HS08, MS10, FS08, DF09, LJH13], our method is inde-
pendent of the choice of barycentric coordinates. We use
mean value coordinates in our examples because they are
easy to compute.

The most related work to our own comes from the Finite
Element literature. Finite element analysis approximates so-
lutions of PDEs projected in to a space spanned by a basis
defined by a tessellation of the domain where each portion
of the tessellation contains a function (element). These el-
ements typically have triangle or rectangle domains whose
basis functions are represented as polynomials of arbitrary
degree in the Lagrange basis that meet continuously with
adjacent elements. To increase the precision or convergence
of the solution, researchers have either refined the elements
into multiple sub-elements (h-refinement) or increased the
degree of the elements (p-refinement) [Hug12]. P-refinement
is a similar strategy to ours except that we operate on multi-
sided patches, with arbitrary domains, using barycentric co-
ordinates for which there may be no analytic representation.

Cage refinement [HF06] is also related to our work. In
this case, the boundary of the domain is linearly subdivided
and the unnormalized barycentric coordinate functions are
recomputed for the vertices that make up the refined do-
main. This method creates new control points for applica-
tions such as surface deformation. In contrast to our method,
which creates higher degree S-Patches on the boundary dur-
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Figure 2: In this figure and throughout the paper, we show

the domain in black and basis functions associated with yel-

low control points as 3D blue elevations from the domain. An

8-sided, concave linear S-patch illustrating the basis func-

tions associated with vertices on the top edge (left). We use

selective degree elevation to increase the degree of the top

edge to a quadratic by adding a single control point (right).

Full degree elevation would have inserted 28 new control

points.

ing refinement, cage refinement maintains piecewise linear
functions on the boundary. For application like deformation,
cage refinement maps a planar boundary to a piecewise lin-
ear deformed boundary, which can create significant distor-
tion at the refined vertices. In addition, cage refinement is
not applicable to all forms of barycentric coordinates, such
as Wachspress coordinates [Wac75], whereas our method is
applicable to all forms of barycentric coordinates.

Finally, the construction of Serendipity Finite Ele-
ments [AA11] is somewhat related to our technique.
Serendipity elements have rectangular domains and remove
as many internal control points as possible while maintain-
ing the same level of approximation order. For example,
quadratic serendipity elements are the most common and
sacrifice bi-quadratic precision to remove all internal con-
trol points while maintaining quadratic precision. Rand et
al. [RGB14] have generalized this construction to multi-
sided patches in 2D. However, it is not possible to remove
all internal control points for higher degree elements. Our
method is orthogonal to serendipity constructions in that we
could use serendipity elements as opposed to S-Patches as a
starting point for selective degree elevation.

3. Selective Degree Elevation

S-Patches have a simple degree elevation formula that can be
derived using blossoming [dB87], but degree elevation can
also be derived directly from the properties of barycentric
coordinates. Using Equation 3, one can see that the basis

Figure 3: (left) An 8-sided, linear S-patch with a hole in the

domain. (right) The basis functions resulting from selectively

elevating the degree of the top edge from linear to cubic.

functions of various degrees are related to each other via

B
d+1
~j

(x) = B
d
~j−In

k

(x)
d +1
~jk

wk(x) (4)

where ~jk > 0 and In
k is the kth row of the n × n identity

matrix. Let f~i be the values of the control points for an

S-Patch of degree |~i| = d and f̂~j be control points of the

same S-Patch function of degree |~j| = d +1. Then, because
degree elevation does not change the S-Patch function and
∑

n
k=1 wk(x) = 1


 ∑
|~i|=d

B
d
~i
(x) f~i





(

n

∑
k=1

wk(x)

)

= ∑
|~j|=d+1

B
d+1
~j

(x) f̂~j. (5)

Expanding the left-hand side of Equation 5 and using Equa-
tion 4 yields the formula for degree elevation.

f̂~j = ∑
~jk>0

~jk

d +1
f~j−In

k
. (6)

While Equation 6 provides a mechanism for elevating the
degree of a multi-sided S-Patch in any dimension, it can pro-
duce too many degrees of freedom for artists to manipulate.
For surface modeling applications where the domain P of the
patch is a 2D polygon, it is unlikely that the number of sides
in the patch will be high. However, many-sided domains
are common in cage-based deformations [JSW05, JMD∗07].
For these types of deformations, it is not uncommon to have
a control cage with 100 or more vertices since the cage must
conform to the shape of the high resolution object. If the
artist desires more degrees of freedom, we must either re-
design the initial control cage and discard the current de-
formation or increase the number of degrees of freedom
through degree elevation. The problem with degree eleva-
tion is that the number of control points grows rapidly with
the degree d. An S-Patch of degree d with domain consisting
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Figure 4: A quadratic 5-sided S-Patch (left) with the top

edge ∂Pℓ raised to a cubic (middle) creates a ghost point

in red. This point has no influence on the boundary but is

non-zero over the interior of the patch. The basis functions

after deleting the ghost point (right) still span all quadratics.

of n vertices will have
(

n+d−1
d

)

control points. Hence, a 100
point control cage will have 171700 control points as a cubic
where over 99% of the control points will be interior control
points.

Our solution is to allow the user to insert a control point
associated with a higher degree basis function into a lower
degree patch and appropriately modify the lower degree ba-
sis functions. We will refer to a control point f~i as a degree

d = |~i| control point. Let f̂~j be a control point of a degree

|~j| = d +m multi-sided S-Patch that we wish to insert into
a lower degree S-Patch with control points f~i where |~i| = d.
From Equation 6, we know there exist scalar coefficients α~j,~i
such that

f̂~j = ∑
|~i|=d

α~j,~i
f~i. (7)

Therefore,

F(x) = ∑|~i|=d
Bd
~i
(x) f~i

= ∑|~i|=d
Bd
~i
(x) f~i +Bd+m

~j
(x)
(

f̂~j −∑|~i|=d
α~j,~i

f~i

)

.

Grouping the common coefficients yields

F(x) = ∑
|~i|=d

(

B
d
~i
(x)−α~j,~i

B
d+m
~j

(x)
)

f~i +B
d+m
~j

(x) f̂~j, (8)

which creates new basis functions for the control points f~i.

This degree elevation formula has the property that if f̂~j
satisfies Equation 7, the function F(x) is unchanged. More-
over, the values of the old control points f~i are unchanged.
Finally, when all the control points of degree d + m have
been inserted, the basis functions associated with the degree
d control points will be zero everywhere, and the patch cor-
responds to the full degree elevation equation in Equation 6.

Figure 2 shows an example of this process for a 2D S-
Patch with a concave domain. We start with a linear patch
(left) and elevate a single edge to a quadratic function (right)

Figure 5: The top left shows an input sphere with a control

cage of black points. The bottom left image shows the inser-

tion of several quadratic control points (red). The right im-

age modifies only the quadratic points to deform the sphere.

and show the resulting basis functions. The result is a patch
with linear functions along all edges except for the top edge,
which is a quadratic function in Bézier form. This patch
can still reproduce all linear functions, but we can match a
quadratic curve exactly on the elevated edge if, for example,
the patch met another quadratic patch. However, we are not
limited to elevating the degree by one. Figure 3 shows an
example with a hole in the domain where we elevate the top
edge from a linear directly to a cubic function. In this case
we introduce two additional control points, whereas elevat-
ing the entire patch to a cubic would produce 112 additional
control points.

However, there is a problem with this selective degree el-
evation process, which we illustrate with Figure 4 showing
a quadratic 5-sided S-Patch (left). If we raise the degree of
an edge to a cubic function by inserting the two cubic con-
trol points on that edge (middle), the basis function for the
quadratic control point, shown in red, on the edge is now
zero everywhere on the boundary. However, this function is
non-zero (although only slightly) over the interior of the do-
main. The result is a non-intuitive control point for the user,
which we call a “ghost point,” that previously was a bound-
ary point but now only affects the interior of the S-Patch.
This problem only arises when we insert all of the higher
degree control points belonging to a lower dimensional facet
of the domain.

Our solution is to delete these ghost points and distribute
their basis function to the basis functions of the remaining
control points while maintaining the polynomial reproduc-
tion order of the lower degree patch. For example, in Fig-
ure 4 there exist values of the control points that can re-
produce any quadratic polynomial over the domain of the
patch. When we elevate the degree of an edge to a cubic,
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Figure 6: Degree elevation to deform a complex model. We

start with the linear control cage (left) and elevate the degree

of selected faces to quadratic or cubic (right) to add more

degrees of freedom and create various facial expressions.

there are still values of control points that will reproduce any
quadratic polynomial. Even though the ghost point has no
contribution to its own edge, the ghost point must have a spe-
cific value to reproduce a given quadratic. Since an S-Patch
reduces to a lower dimensional S-Patch on its boundary and
a degree d +m S-Patch encompasses the space spanned by
a degree d S-Patch, we can delete the ghost point by repre-
senting it in terms of the higher degree control points along
the patch’s lower dimensional boundary face.

Let ∂Pℓ be a lower dimensional face on the boundary of
P whose vertices have indices Γ where each element in Γ is
in the range 1 . . .n. We define a control point f~i to belong to

∂Pℓ if~ik 6= 0 ⇔ k ∈ Γ. Let G(x) be the function defined by
the unmodified S-Patch basis functions over ∂Pℓ of degree d

with control points f~i where |~i|= d and H(x) be the function
defined by the unmodified S-Patch basis functions over ∂Pℓ
of degree d +m with control points f~j where |~j| = d +m. If

all of the f~i necessary to define G(x) do not exist, we first
use selective degree elevation to insert those control points.
Now let β be the set of indices of control points belonging
to ∂Pℓ of degree d. To delete the control points belonging to
∂Pℓ of degree d, we minimize

min
f~i∈β

∫
x∈∂Pℓ

(G(x)−H(x))2
dx.

The solution gives f~i∈β as a weighted combination of the f~j .
For example, if f(1,1,0,0,0) is the red control point in Figure 4
(middle), then minimizing this function gives

f(1,1,0,0,0) =
(

−1
4

3
4

3
4

−1
4

)









f(3,0,0,0,0)
f(2,1,0,0,0)
f(1,2,0,0,0)
f(0,3,0,0,0)









.

Figure 7: The top row shows the original shape (left) fol-

lowed by three deformations using the cages from the bot-

tom row. The bottom row, from left to right, shows the origi-

nal cage, a deformation using only the original control cage

that does not provide sufficient degrees of freedom for the

desired deformation, the deformation using cage refinement,

and our deformation adding a few quadratic vertices to al-

low the neck to be bent in an arc.

Adding this weighted combination of f~j into the S-Patch and
grouping common terms as done in Equation 8 yields a mod-
ification of the remaining basis functions. Figure 4 (right)
shows the effect on the basis functions after we delete the
quadratic control point on the degree elevated edge. The new
function still reproduces all quadratic polynomials over P

but can also represent cubic functions on a single edge.

Note that this degree elevation procedure and ghost point
removal does not alter the continuity of the underlying S-
Patch. The S-Patch basis functions derive their continuity
directly from the barycentric coordinates used to construct
the patch, which is obvious from Equation 3 since the S-
Patch basis functions are products of the barycentric ba-
sis functions. In our examples, we use mean value coordi-
nates [Flo03], which are C∞ over the interior of the domain.
Our method only takes linear combinations of these basis
functions and, therefore, inherits the smoothness of these
functions (C∞ in our examples).

4. Deformation

The selective degree elevation method in Section 3 is gen-
eral in that it operates on S-Patches of any degree over poly-
tope domains in arbitrary dimension. However, in the case of
image or surface deformation, the problem is easier. Cage-
based deformations [JSW05] correspond to S-Patches of de-
gree one where the control points f~i ∈ R

m, where m is the
dimension of the domain P, and are initially set to the pk
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Figure 8: 8-sided, linear concave S-patch (left). The basis functions resulting from selectively raising an edge from linear to

quartic along the elevated edge (middle). An example of using this patch for image deformation (right).

for ~ik = 1. Hence F(x) is a map from R
m to R

m. In this
setting, reproducing linear polynomials is important to pro-
vide the identity transformation and translation invariance,
but higher-order polynomial reproduction is not necessary.
Therefore, the weights α~j,~i

for any degree |~j| = d in Equa-
tion 7 are particularly simple and are given by

f̂~j = ∑
k

~jk

d
pk.

Figure 5 shows an example deformation of a sphere us-
ing a cube for the control cage. We partially elevate four of
the faces to insert 8 new quadratic control points. On the
right, we move the newly inserted control points outward
to deform the sphere without modifying the original control
points of the cage, which is not possible with only the origi-
nal control points.

In Figure 6 we show an example of the head of the ar-
madillo man surrounded by a simple deformation cage with
24 vertices. To the right, we show a couple of different defor-
mations where selected faces have been elevated to quadratic
or cubic functions depending on the deformation. In all of
these cases, we did not create any interior control points and
only manipulate the deformation using control points on the
boundary of the cage. Had we raised the degree of the entire
cage to a quadratic, we would have produced a cage with 300
control points or 2600 control points if elevated to a cubic.
In contrast, the maximal number of control points we use in
any of these deformations is 68. Figures 7 and Figure 9 show
additional 3D deformations where we raise the degree of the
cage locally to obtain more degrees of freedom compared to
inserting the same control points using cage refinement.

Note that the deformation of the boundary of the domain
is no longer piecewise linear when we elevate the degree of
selected boundary faces. Instead the boundary of the domain

maps to a curved shape. In contrast, cage refinement [HF06]
produces piecewise linear deformations of the boundary and
is not smooth at the boundary. Figure 10 shows a comparison
of cage refinement versus selective degree elevation for 2D
image deformation. Figure 8 shows a more extreme example
of a non-convex shape used in image deformation where a
single edge is raised to a quartic.

5. Basis Function Evaluation

For many applications the evaluation points of an S-patch
are known in advance. In cage-based deformations the eval-
uation points are the vertices of the high resolution shape be-
ing deformed. We begin with an S-Patch of uniform degree
and calculate the values of each of the basis functions Bd

~i
(x)

at these evaluation points according to Equation 3. As the
user performs selective degree elevation, we perform linear
operations on the values of these basis functions according
to Equation 8 to modify the values of the existing basis func-
tions. The value of the basis function for the newly inserted
control point is simply given by Equation 3. Hence, selective
degree elevation requires computing only a small number of
linear operations per evaluation point.

6. Conclusions and Future Work

Selective degree elevation provides more degrees of freedom
to a multi-sided S-Patch with the granularity of inserting a
single control point. Such an operation allows a user to insert
exactly the number of degrees of freedom they desire with-
out dramatically increasing the number of control points.
While we have only shown examples of inserting boundary
control points, Section 3 is general enough that interior con-
trol points can be inserted as well. There are fewer scenarios
where doing so is advantageous, but one possible application
might be to control the derivative(s) of the function along the
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Figure 9: The top row shows the original shape (left) fol-

lowed by deformations using the cages on the bottom row.

The original cage (middle left) does not contain enough con-

trol points to bend the arms. Using cage refinement (middle

right) allows the arms to be bent but not with a smooth ap-

pearance. Our addition of a few quadratic control points al-

lows the arms to bend smoothly.

boundary to match some higher-dimensional cross-boundary
derivative.

Finally, our method can potentially be used in finite ele-
ment applications, although we have left this application for
future work. Similar to p-refinement in finite element meth-
ods, our method can control the number of degrees of free-
dom by raising the degree. However, we can easily raise the
degree locally while maintaining continuity to surrounding
elements using our method.
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