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Abstract

We present an anisotropic point cloud denoising method using L0 minimization. The L0 norm directly
measures the sparsity of a solution, and we observe that many common objects can be defined as piece-wise
smooth surfaces with a small number of features. Hence, we demonstrate how to apply an L0 optimization
directly to point clouds, which produces sparser solutions and sharper surfaces than either the L1 or L2

norms. Our method can faithfully recover sharp features while at the same time smoothing the remaining
regions even in the presence of large amounts of noise.
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1. Introduction

Surface reconstruction is a widely-used geometry processing tool for digitizing real-world objects. In
many cases, the input to a reconstruction algorithm is a point set acquired from the object in question.
However, despite new methods and acquisition hardware, errors such as noise and outliers inevitably appear
in these point sets. Moreover, the quality of the reconstructed surface strongly depends on the quality of
the input point set. Yet denoising point sets is inherently a challenging problem since, by definition, there is
no connectivity information to guide the denoising process. Denoising point sets with sharp features is even
more problematic, especially in the presence of large noise, because these features are difficult to distinguish
from noise.

Our observation is that many common surfaces are piece-wise smooth; that is, the surface is smooth
almost everywhere except at some small number of sparse features that form sharp features. Hence, we can
explicitly take advantage of that sparsity and optimize for such a surface. The idea of directly optimizing
the sparsity of a solution is a key idea in the field of compressed sensing [1, 2]. The main insight to optimize
for sparse solutions is to measure error in a norm related to the sparseness of the solution. The L0 norm
is one such metric that measures the number of non-zero entries in a vector and is directly related to
sparsity. However, this norm is difficult to optimize because of its discrete, combinatorial nature. Thus,
as a compromise, many researchers use the sparsest convex norm, the L1 norm, to generate a tractable
optimization that still produces a sparse solution.

In Computer Graphics, the L1 norm has been used in several areas including image smoothing and
deblurring [3, 4, 5], mesh denoising [6], and point set reconstruction [7]. More recently several techniques
have been developed that optimize the L0 norm directly to smooth [8] and deblur [9] images. He et al. [10]
also extended L0 smoothing for images [8] to surfaces.

Yet, to the best of our knowledge, there are no existing methods that directly denoise point clouds using
the L0 norm, which produces the sparsest solutions. Inspired by the recent work on L0 minimization for
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Figure 1: Comparison of smoothing a 1D signal, one set of point orientations, using different norms: L2, L1, reweighted L1,
and L0. We use the same input data set as appearing in [7].

images [8] and meshes [10], we present an algorithm to denoise point sets via L0 minimization. Our method
can effectively eliminate noise to maximize smooth regions as well as recover sharp features.

To summarize the contributions of our work, we first extend L0 minimization from images and meshes
to unstructured point clouds. Moreover, our method faithfully recovers point positions as well as point
orientations and enhances the performance of Edge Aware Upsampling (EAR) [11] even in the presence of
high amounts of noise. Finally, we develop a projection operator to recover sharp features.

2. Related Work

Denoising point clouds has been studied by many researchers, especially in the context of surface recon-
struction. Locally Optimal Projector (LOP) related methods [12, 11, 13, 14, 15] have recently attracted
much attention for its robustness against outliers. The core of LOP operator is to project an arbitrary
number of particles to a point set to represent the local L1 median of the original point set. Weighted
LOP (WLOP) [12] improved the original LOP [14] by producing a more evenly distributed point set; Kernel
LOP (KLOP) reduced the computation cost of the original LOP; Anisotropic LOP [11] can better preserve
sharp feature than WLOP and KLOP by anisotropically projecting points to local L1 median according
to point orientations. However, LOP methods use local operators, which can affect the quality of the out-
put especially when, locally, high noise-to-signal ratios yield redundant features or, in the other extreme,
oversmoothing [7].

The idea of directly optimizing in a space of sparse solutions is a concept from signal processing that is
beginning to have a significant influence on Computer Graphics. These optimizations are typically global
in nature, and do not suffer from the problems of locality that LOP methods can. The L0 norm directly
measures sparsity, but direct minimization of the L0 norm is a highly non-convex problem and is difficult
to optimize due to its discrete, combinatorial nature [10]. Hence, many researchers use a convex norm such
as L1 that still tends to generate sparse solutions. In the content of image processing, L1 norm has been
adopted to denoise and deblur using the sparsity of the total variation of images [3, 4, 5]. For 3D surface
reconstruction, Avron et al. [7] incorporated the notion of L1-Sparsity to denoise point sets by directly
applying a re-weighted L1 minimization procedure to restore point orientations followed by restoring point
positions in order to preserve sharp features. Our method is also a global method but can handle higher
level noise than [7], since L0 is a sparser solution than L1. Although their method can produce reasonable
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Figure 2: Comparison between our method and various state-of-the-art point set denoising methods. The first row from
left to right: (a) ground truth (7582 Points), (b) input noisy point cloud (7582 Points), (c) APSS + RIMLS (7287 Points),
(d) WLOP (7062 Points), (e) EAR (AWLOP + UPSAMPLE EAR) (18K Points), and (f) our method (L0 Minimization +
UPSAMPLE EAR) (18K Points). Points are colored by curvature. The second row shows the surface reconstructed from the
corresponding point set using the ”ball pivoting” algorithm [37].

results, points on an edge are sometimes not faithfully recovered, and the corresponding reconstructed edge
is not straight or smoothly curved. Our projection operator can better recover points along the edges.

More recently several techniques have been developed that directly attempt to optimize the L0 norm.
Such optimizations have been applied to image smoothing [8], image deblurring[9], and even anisotropic
surface denoising [10].

While not directly related to point cloud denoising, surface reconstruction methods often use point
clouds, and the quality of the reconstructed surface strongly depends on that of the input point cloud.
There are two main classes of surface reconstruction techniques: parametric and implicit. Parametric
methods explicitly build the topology of the reconstructed surface and often use Delaunay triangulations or
Voronoi diagrams [16, 17, 18]. Implicit methods construct a function whose level set is the reconstructed
surface. These implicit functions can take a variety of forms such as signed distance fields [19, 20, 21]. Radial
basis functions [22] and even solutions to the Poisson equation [23, 24] have also been used to create these
implicit functions. However, all the methods mentioned either perform poorly in the presence of noisy data
or oversmooth the output surface.

Another related method is the idea of performing surface reconstruction from point clouds using Moving
Lease Squares (MLS) [25, 26, 27, 28, 29]. These procedures perform surface reconstruction by iteratively
projecting points to a locally fit polynomial. MLS is designed by nature to reconstruct surfaces that are
smooth everywhere. In order to overcome the limitation, many approaches have been incorporated to MLS
to better preserve sharp features such as cell complexes [30], tagged point clouds [29], and robust statistics
[31, 32]. However, like LOP methods, the locality of the operations can lead to artifacts that global methods
avoid when the amount of noise is large.

Our work uses L0 optimization to directly smooth point clouds and, hence, can handle large amounts
of noise. Part of our smoothing process involves estimating normals for each point. There are variety of
approaches for reconstructing point normals, ranging from simply fitting local tangent plane [21] to more
robust methods such as outlier removal [12], L1 minimization [7], randomized Hough transform [33], and
robust statistics based methods [34, 35, 32, 36]. In this paper, we will show that our L0 minimization method
can not only robustly restore point positions, but also faithfully reconstruct point orientations.

2.1. L0 Optimization

The L0 norm directly measures sparsity but is difficult to optimize directly. Recently, Xu et al. [8] provide
an algorithm for directly optimizing the L0 norm in the context of image smoothing to create piece-wise
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Figure 3: Comparison between our method and various state-of-the-art point set denoising methods. The first row from left
to right: (a) Input noisy point cloud (27K points), (b) APSS + RIMLS (26K points), (c) WLOP (127K points), (d) EAR
(AWLOP + UPSAMPLE EAR) (182K points), and (e) our method (L0 Minimization + UPSAMPLE EAR) (182K points).
The second row shows the corresponding normal colorization.

constant images and He et al. [10] use a similar L0 minimization strategy to denoise meshes. Our work
extends the L0 minimization concept from image smoothing and mesh denoising to point set denoising. In
this section, we review L0 minimization in the context of one dimensional signal smoothing, two dimensional
image smoothing, and three dimensional mesh denoising.

The L0 norm of a vector v is defined as the number of non-zero entries. That is,

|v|0 =
∑
i

#{vi 6= 0}.

Given a 1D signal Ŝ and a differential operator D, we can denoise Ŝ by optimizing for the values S that
minimize

min
S
|S − Ŝ|2 + λ|D(S)|0 (1)

where the first term is a data fidelity term to ensure that the output values do not stray too far from the
input and λ controls how smoothed the output will be. D(S) is an operator that returns a vector of values.
For example, if the output S should be piecewise constant, D(S) should be chosen to annihilate constant
functions. For example, D(S)i = Si+1−Si. Figure 1 shows a comparison using this operator and smoothing
a 1D signal with different norms, demonstrating that L0 norm produces sparsest solution.

Xu et al. [8] use this optimization to smooth images and define S to be the pixel colors in an image
and D(S) to be a vector of color gradients. He et al. [10] also use this framework to perform anisotropic
smoothing of surfaces. The authors choose S to be the positions of vertices in a mesh and derive an
edge-based Laplacian operator D(S) that annihilates linear functions.

To minimize Equation 1, both [8] and [10] introduce an auxiliary variable σ to form

min
S,σ
|S − Ŝ|2 + β|D(S)− σ|2 + λ|σ|0 (2)

where β controls how quickly this minimization problem approaches Equation 1 and is initially set to a small
value. Then, given an initial guess for S, the authors minimize this problem by first holding S constant and
solving for σ, which gives the following minimization.

min
σ
β|D(S)− σ|2 + λ|σ|0
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Figure 4: A simple demonstration of our L0 Minimization approach. Points are colored by normal information. First row from
left to right: a noisy point cloud (727 points) and the result of our L0 approach. The second row shows the results, from a
side view, of denoising the input point cloud after each stage. From left to right: initial noisy point cloud with orientations
computed from a local PCA, the result after Normal Estimation, the result after Point Denoising, and the result after Edge
Recovery.

The solution of this optimization is given by σi = 0 if λ
β > |D(S)i|2 or σi = D(S)i otherwise. Next, the

authors hold σ constant and solve for S in Equation 2, resulting in the following minimization

min
S
|S − Ŝ|2 + β|D(S)− σ|2. (3)

This equation is quadratic and, thus, has a global minimum that is easy to find. These two optimizations
are then repeated with β = 2β to force D(S) to approach σ as β approaches infinity.

3. L0 Minimization for Point Cloud Denoising

One significant difference that distinguishes point clouds from images and meshes is that point clouds
do not have connectivity information, while images or meshes have pixels and vertices with fully defined
neighborhoods. Similar to Section 2.1, we define S as a vector of points. However, D(S) is harder to define
due to the lack of well-defined neighbors. As a consequence, it is difficult to apply the techniques from
Section 2.1 directly to point clouds.

To simplify the problem, we decouple orientations and positions. Using a similar L0 optimization, we
start by solving for normals and then, based on this normal information, restore point positions. Our
algorithm can be decomposed into 3 steps. First, we estimate normals by observing that normals between
close points should be varying smoothly except near sharp features. Then, we modify point positions based
on the estimated normal information with the observation that if a point lies on a smooth region, the point
and its k nearest neighbors should form a plane perpendicular to the point normal. Finally, we recover points
along edges to better represent the underlying geometry. The procedure is repeated until convergence. A
simple demonstration of our algorithm is shown in Figure 4 and a more complicated example appears in
Figure 12.

3.1. Normal Estimation

To estimate normals for each point in the point cloud, we first compute initial normals N̂ using a local
PCA. Then we minimize the objective function

min
N,|Ni|=1

|N − N̂ |2 + η|D(N)|0

where D(N)ik+j = Ni −NM(i,j) and M(i, j) gives the jth entry in the set of k nearest neighbors of point i.
Therefore, D(N) is a vector whose length is k times the number of input points. Similar to Section 2.1, we
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Figure 5: Comparison between our L0 method and existing methods in estimating normals. First row is the input data
corrupted with 1.5%, 2.5%, and 3.5% Gaussian noise respectively. Rows 2 - 6 are the results of: Bilateral Filtering, RIMLS,
Anisotropic WLOP, L0 with default parameters, and L0 with refined parameters.

Figure 6: Comparison of existing methods in recovering point positions based on our L0 denoised normals. First row from
left to right: input point cloud corrupted with 3.5% noise (the same model as in Figure 5), Bilateral Filtering and Anisotropic
WLOP using normal computed with a local PCA. Second row from left to right: L0, Bilateral Filtering and Anisotropic WLOP
using normal computed with L0.
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introduce auxiliary variables θ, a vector with the same length as D(N), to the optimization

min
θ,N,|Ni|=1

|N − N̂ |2 + β|D(N)− θ|2 + η|θ|0,

which can also be written as

min
θ,N,|Ni|=1

|N − N̂ |2 + β
∑
i

k∑
j

| D(N)ik+j − θik+j |2 + η|θ|0.

We solve this equation using the alternating optimization method as before except the |Ni| = 1 constraint
leads to a constrained quadratic minimization in Equation 3.

3.2. Point Denoising

Next we use the estimated normals N to reposition the points. Since normals encode higher order
geometric information of a shape [38], shifting points along normal directions can smooth the underlying
surface. Therefore, to reduce the number of degrees of freedom in our optimization without significantly
affecting the quality of the output surface, we restrict each point to only move in the direction of its normal.
Let P̂ be the initial point set. We then optimize

min
P
|P − P̂ |2 + δ|D(P )|0.

Here D(P ) will measure the deviation of each point in the k nearest neighbors from the plane defined by
each point and normal; that is, D(P )ik+j = (Pi−PM(i,j)) ·Ni. Hence, the above objective function becomes

min
P
|P − P̂ |2 + δ

∑
i

k∑
j

| D(P )ik+j |0.

Since we restrict each Pi to only move along its normal direction Ni, then P = P̃ + αN where α is a
diagonal matrix of coefficients and P̃ are the positions of the points from the previous iteration of the full
optimization procedure and, initially, P̃ = P̂ . As a result, we can optimize P with respect to the entries in
α. Therefore,

min
α

∑
i

|P̃i + αiNi − P̂i|2 + δ
∑
i

k∑
j

|((P̃i + αiNi)− (P̃M(i,j) + αM(i,j)NM(i,j))) ·Ni|0

where αi refers to the ith diagonal entry of the matrix α. Expanding this expression yields

min
α

∑
i

|P̃i + αiNi − P̂i|2 + δ
∑
i

k∑
j

|D(P̃ )ik+j + αi − (Ni ·NM(i,j))αM(i,j)|0

where D(P̃ )ik+j refers to (P̃i− P̃M(i,j)) ·Ni. Again, this problem can be solved by adding auxiliary variables
and applying the alternating optimization approach in Section 2.1.

3.3. Edge Recovery

Figures 4 and 7 show that when the point cloud contains a large amount of noise, a cross artifact will
be produced after the Point Denoising Phase in Section 3.2. To reduce this artifact and better present the
sharp features, we use a projection operator to reposition points near sharp features.

We observe that points on opposite sides of sharp features have normals with different orientation and
points on smooth regions have small variation between their normals. For each vertex Pi we classify the
vertex as being close to a sharp feature if there exists another vertex PM(i,j) that is one of the k nearest
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Figure 7: When the point set is noisy, Point Denoising Phase
may produce a ”cross” artifact. Figure 8: Illustration of Edge Recovery: projecting a point p

to the intersection of planar surfaces and curved surfaces.

neighbors of Pi and |Ni−NM(i,j)| > ε. Next, for each such vertex Pi, we reposition Pi such that it minimizes
the distance to all of the planes defined by a point PM(i,j) in Pi’s neighborhood and the point’s corresponding
normal NM(i,j). Therefore, the new position x of the point Pi is

min
x

k∑
j

|NM(i,j) · (x− PM(i,j))|2 + |Ni · (x− Pi)|2.

Note that it is possible that this minimization is under-constrained in the presence of a sharp edge. In that
case we find the point x that is closest to Pi in the solution space. The effect of this projection is that the
points Pi will be projected to the sharp feature.

Figure 8 demonstrates this projection operator with a simple example where two surfaces meet. In
Figure 8a, the surfaces are both planar and the projected point projp will lie on the edge. However, in
Figure 8b, the surfaces are curved. As a consequence, the projected point projp will not lie exactly on the
sharp feature. However, our optimization is iterative and, at each iteration, projp moves closer to the sharp
feature. Figures 4 and 12 show results of the projection operator on noisy point sets.

Our Edge Recovery method works well for both straight and curved sharp features. Figures 3, 11, 12,
and 13 all demonstrate shapes containing curved sharp edges.

4. Point Cloud Upsampling

Our L0 minimization produces piece-wise smooth point sets with points lying on edges and robust
normal estimation. Yet, the Edge Recovery Process described in Section 3.3 suffers from a side-effect that
gaps appear near edges since nearby vertices have been projected to the edge as shown in Figures 4 and 12.
To bridge the gaps near sharp features, we upsample results of L0 minimization using the second step of the
EAR algorithm [11].

The original EAR method [11] consists of two steps. The first phase (AWLOP EAR) is to resample points
away from edges based on an anisotropic WLOP operator in order to produce reliable point orientations.
Then, based on these normals, new points are inserted and projected on to the unknown underlying surfaced
defined by the point set (UPSAMPLE EAR). Since the point insertion procedure relies on high-quality
normals near edges, the authors state that poor normal estimation leads to unacceptable upsampling [11].

We post-process our L0 minimization result using UPSAMPLE EAR. Since our L0 method can generate
more reliable point orientations, upsampling our result using UPSAMPLE EAR produces more accurate
result than does the original EAR. We show comparisons between UPSAMPLE EAR on our L0 and the
original EAR in Figures 9 and 11, indicating our method can better preserve sharp features.

5. Results and Discussion

In all of the examples in the paper, if with no specification, we corrupted point sets with Gaussian noise
using a standard deviation of 2% of the length of the bounding box diagonal. The armadillo in Figure 15
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Figure 9: We show comparison of UPSAMPLE EAR on our
L0 method and the original EAR method. The figures are (a)
Input (7582 points), (b) EAR on Figure 9a (42K points), (c)
Curvature colorization of Figure 9b, (d) L0 Minimization on
Figure 9a (7582 points), (e) UPSAMPLE EAR on Figure 9d
(42K points), and (f) curvature colorization of Figure 9e.

Figure 10: Illustration of how smoothing parameters η and δ
affect our L0 Minimization. We apply L0 Minimization to a
clean input point set (543K points) with different parameter
settings.

is a real point scan. In Figure 4 we show the results of our method on a V-Shape surface. In this simple
example, our L0 minimization can reconstruct a clean point set denoting a piece-wise smooth surface with
accurate normals.

Figure 12 shows our method on a more complex shape and demonstrates how our results evolve as
we iterate. As shown in the middle row (2 iterations) our results are piecewise smooth after the Position
Denoising phase, but the points may contain some ”cross” artifacts near sharp features. After the Edge
Recovery phase, these artifacts are removed. The following row shows the same steps after 4 iterations and
the bottom shows our results after 5 iterations indicating that our results converge to a piecewise smooth
point set with points sampling the sharp features.

We also evaluate the three different stages of our method (normal estimation, point denoising, and edge
recovery) individually. For fairness, we use relatively the same neighborhood size for all methods. Figure 5
shows a comparison of estimating point orientations between our L0 method and existing methods including
Bilateral Filtering, RIMLS [32], and Anisotropic WLOP [11]. As the noise level increases, the performance
of all of the methods decreases though our L0 method is fairly resilient even to significant noise.

In Figure 6 we show the effectiveness of our point denoising step. The first row demonstrates the results
of Bilateral Filtering and Anisotropic WLOP using normals computed with a local PCA. Below, we show
the same methods using the normals from our L0 normal estimation step. In each case, the result improves.
However, Bilateral Filtering suffers from the “cross” artifact and Anisotropic WLOP produces a large gap
around the sharp feature. Neither problem appears in our L0 result.

Finally, Figures 16 and 17 show that our method preserves edges better than Anisotropic WLOP. Using
our L0 denoised clean point set as input, Anisotropic WLOP performs worse in representing the edges with
the gaps between smoothing regions getting smaller. UPSAMPLE EAR on our L0 denoised point set better
preserves the edges than on the Anisotropic WLOP result as well.

Our L0 minimization produces piece-wise smooth point sets with points lying directly on sharp edges.
However, our projection operator produces gaps near sharp features since nearby points are projected onto
the edges as shown in Figures 4 and 12. To bridge the gaps near sharp features, we upsample results of
L0 minimization using the second step (UPSAMPLE EAR) of EAR algorithm [11]. Because our method
approximates point orientations more faithfully, upsampling our L0 results better preserves sharp features
than the original EAR. In Figures 9 and 11, the Dodecahedron example and the Trim-Star example are
colored by curvature and normal orientation, respectively. We show the results before and after the upsam-
pling process. Compared with the original EAR method, upsampling using our L0 results produces higher

9



Figure 11: Comparison between EAR and L0 Minimization. The top row shows the input noisy point cloud and the result of
applying original EAR. The bottom row shows the result of L0 Minimization and UPSAMPLE EAR on L0 result.

quality surfaces. In Figure 9 we upsample the point cloud by 250%, while in Figure 11 we upsample the
point cloud by 1600%. Figures 13 and 14 show more examples to demonstrate that our method can handle
surfaces with or without sharp features.

Figures 2 and 3 show comparisons between our method (L0 Minimization + UPSAMPLE EAR) and
various state-of-the-art feature aware point cloud denoising methods including APSS [28] + RIMLS [32],
WLOP [12], and EAR (AWLOP + UPSAMPLE EAR) [11]. In each case we used the parameters suggested
in the original papers and followed the instructions provided in the authors’ code distributions. For our
method and EAR, we upsample the point cloud by 250% and 650% in the Dodecahedron example (Figure
2) and the Fandisk example (Figure 3), respectively. In these examples, the WLOP and EAR methods
require a large neighborhood size and smoothing parameters, resulting in the poor results in the figures.
If the parameters are set larger, small scale features will be smoothed out; while if the parameters are set
smaller, the point clouds will still appear noisy. In each example our method provides sharper edges as
previous methods either over-smooth sharp features or perform poorly when reconstructing sharp features.

Table 1: Parameter Settings

Parameter Range (Default)

numNN in Normal Estimation (k) 15 - 35 (20)
numNN in Position Denoising (k) 5 - 15 (10)
numNN in Edge Recovery (k) 4 - 12 (8)
Normal Estimation (η) 0.05 - 0.1 (0.075)
Position Denoising (δ) 0.002-0.008 (0.005)

Parameters. Our algorithm is not very sensitive to its parameters. We list detailed information about
the parameters we use in Table 1. In our method, we mainly have five parameters: the size of neighborhood
numNN for Normal Estimation, Position Denoising and Edge Recovery as well as the L0 minimization
smoothing parameter for Normal Estimation (η) and Position Denoising (δ). We chose these parameters
from a small range starting with the default parameters listed for all of our examples.

In general, more correction is needed to denoise point sets with the presence of large amount of noises
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Figure 12: A demonstration of our L0 Minimization Denoising procedure on a complicated Iron-Vise model (161K points). The
first row shows the corrupted input point set, and its corresponding normal colorization. The second row and the third row
show the results after 2 and 4 iterations, respectively, from left to right: result after Point Denoising Stage, its corresponding
normal colorization, result after Edge Recovery Stage, and its corresponding normal colorization. The last row shows the final
result after 5 iterations and its corresponding normal colorization.
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Figure 13: Denoise a model with sharp features. From
left to right: Input (125K points), L0 Minimization, and
UPSAMPLE EAR on L0 result (764K points).

Figure 14: Denoise a model without sharp features. From
left to right: Input (59K points), L0 Minimization, and
UPSAMPLE EAR on L0 result (143K points).

Figure 15: Applying our method to a real point scan, from left to right: Input scanned data (99K Points), L0 with smaller
smoothing parameters, and L0 with larger smoothing parameters.

and thus larger values will be chosen for η, δ, and numNN while less correction is preferred when more
sharpness is required and therefore smaller values of the parameters η, δ, and numNN will be used. As a
result, there is a tradeoff between sharpness and amount of noise. Moreover, the neighborhood size numNN
needs to be small enough to catch the small-scale features. To produce the results in the paper, we started
with the default values of all the parameters and then fine-tuned the parameters based on the presence of
noise and sharpness of features. While such tuning helps to yield high-quality results, our method tends to
perform well even with the default parameters as shown in Figure 5 where we show results with both default
and tuned parameters.

Figure 10 illustrates how the parameters affect our optimization. We applied our method to a clean
point cloud with 543k points using different settings for parameters η and δ, which shows that increasing
the values of η and δ will gradually remove details. Figure 15 shows a real scanned model processed by our
L0 method with different smoothing parameters.

Convergence and Runtime. Our L0 Optimization converges quickly. Generally, more iterations are
needed for large point clouds or when the noise level is high. For all the models tested in this paper, our
optimization converged within 10 iterations with very minor changes to either the positions or normals after
5 iterations. Our tests were run on a 3.16 GHz Intel Xeon X5460. Table 2 shows the number of iterations
and running time for all of the models in the paper.

Limitations. Our method cannot handle boundaries well in that we do not produce a clean curve at
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Figure 16: Application of anisotropic LOP (AWLOP) to a L0 denoised point set. We apply AWLOP with different neighborhood
size ∆ to a L0 denoised point set (Top view of a pyramid). First row from left to right: L0 denoised point set, AWLOP on the
L0 denoised point set with ∆ = 2, ∆ = 1.5, and ∆ = 0.5, respectively. When the gaps between smooth regions become smaller,
AWLOP performs worse in terms of representing the edges. The second row shows the corresponding zoomed-in details.

Figure 17: Comparison between UPSAMPLE EAR on L0

and on Anisotropic WLOP. First row from left to right:
UPSAMPLE EAR on L0 and corresponding zoomed-in de-
tails. Second row from left to right: UPSAMPLE EAR on
Anisotropic WLOP and corresponding zoomed-in details.

Figure 18: One limitation of our algorithm is that boundaries
are not smooth after optimization.
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Table 2: Running Times and Optimization Iterations

Model Points Iters Time (Min)

V-Shape Surface 727 1 0.20
Dodecahedron 7,582 3 1.33
Trim-Star 24,402 6 6.58
Fandisk 27,097 5 5.16
Hand 59,485 3 6.07
Armadillo 99,416 3 9.52
Carter 125,804 7 23.17
Iron Vise 161,004 5 21.49
Budda 543,652 2 18.34

boundary edges as shown in Figure 18. In addition, our method may fail when the noise level is extreme. In
this case, the initial PCA normal estimation can be so poor that the L0 norm cannot distinguish features
from noises and our results tend to be over-smoothed or over-sharpened in this situation.

6. Future Work and Conclusion

Our method can be improved in several ways. First of all the parameters, including neighborhood size, are
currently fixed. We believe that automatically adapting these parameters could improve the performance of
our method. Secondly, without the upsampling procedure, our method produces gaps near sharp features. It
may be possible to add a repulsion term in the position optimization and projection procedures to distribute
points in a more even fashion.

In conclusion, we introduce an efficient L0-Minimization approach to denoise point sets with sharp
features. This denoised point cloud can then be used to further improve the performance of surface recon-
struction techniques. In Computer Graphics, a growing body of works aims at enhancing sparsity, and we
believe that our approach can help inspire solutions to other problems.
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