
Robust Mesh Denoising via Vertex Pre-filtering and L1-Median Normal Filtering

Xuequan Lua, Wenzhi Chena, Scott Schaeferb

aX. Lu and W. Chen∗ are with the College of Computer Science and Technology, Zhejiang University, Hangzhou, Zhejiang Province, P. R. China.
E-mails: xuequanlu@zju.edu.cn, chenwz@zju.edu.cn

bS. Schaefer is with the Department of Computer Science, Texas A&M University, Texas, USA.
E-mail: schaefer@cs.tamu.edu

Abstract

We propose a robust and effective mesh denoising approach consisting of three steps: vertex pre-filtering, L1-median
normal filtering, and vertex updating. Given an input noisy mesh model, our method generates a high quality model
that preserves geometric features. Our approach is more robust than state of the art approaches when denoising models
with different levels of noise and can handle models with irregular surface sampling.
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1. Introduction

Mesh denoising has been widely used for geometry modeling and processing. Some model acquisition methods
such as laser range scanners or vision-based reconstruction algorithms inherently produce noisy models due to noise
in the input data. Before these raw noisy 3D models can be used for many applications, we need to produce cleaned
versions via mesh denoising.

The problem of anisotropic mesh denoising has attracted lots of attention in recent years. However, the main prob-
lem faced by these methods is distinguishing sharp features from noise. This issue becomes even more challenging as
the noise level increases or if the surface contains an irregular triangulation. In addition, features with small dihedral
angles (i.e., shallow features) such as the zoomed in region of Figure 10 can be difficult to reconstruct.

Recent mesh denoising methods (Zheng et al., 2011; He and Schaefer, 2013; Wei et al., 2015), designed to preserve
sharp features of noisy input models, have achieved noticeable successes. However, these methods can have difficulty
denoising surfaces that contain different levels of noise or irregular surface sampling. Some methods are less robust to
noise such as Zheng et al. (2011) and Wei et al. (2015) (see Section 7), while other methods (He and Schaefer, 2013)
may be robust but can over-sharpen the result.

In this paper, we propose a robust and effective mesh denoising approach. Our method consists of three steps:
vertex pre-filtering, L1-median normal filtering, and vertex updating. The use of a vertex pre-filtering step significantly
reduces the noise of the input model and handles irregular triangulations through a region-based pre-filter. The second
step is to filter face normals using our L1-median filter, which preserves both strong and shallow features. Finally,
the vertex update step updates vertex positions to be compatible with the filtered normals. As shown in Figure 1, our
approach can generate a higher quality result than current state-of-the-art approaches (He and Schaefer, 2013; Wang
et al., 2014; Wei et al., 2015) particularly in the neck region.

2. Related Work

Mesh denoising is a vast field. We review only the most related works here but refer readers to Botsch et al. (2010)
for a comprehensive review of mesh denoising and smoothing techniques.
Isotropic mesh denoising. Isotropic methods attempt to create smooth surfaces everywhere and, consequently, do
not preserve sharp features in the input. Laplacian smoothing (Vollmer et al., 1999) is a simple and fast smoothing
algorithm but suffers from surface shrinkage and feature blurring. Desbrun et al. (1999) proposed an implicit fairing
method for irregular meshes using diffusion and curvature flow. Later, researchers have proposed a volume-preserving
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(a) Raw noisy model (b) Our method (c) [Zheng et al. 2011] (d) [He and Schaefer 2013] (e) [Wei et al. 2015]

----------- --
--
--
--

Figure 1: The denoised results of a raw Armadillo model, which is reconstructed from scanned point data. Note that the state of the art methods
generate visually hackly results in the neck region.

smoothing method (Liu et al., 2002) and a mesh filtering framework including low-pass, high-pass, bandpass, and
notch filters with various exaggeration and attenuation options (Kim and Rossignac, 2005). Recently, researchers
proposed several isotropic methods based on global differential information (Nealen et al., 2006; Su et al., 2009).
Anisotropic mesh denoising. Given that isotropic methods cannot preserve sharp features, many researchers have
turned their attention to anisotropic approaches. These anisotropic approaches can be divided into two categories.
The first category consists of methods that only filter the vertices of the model. Many of these anisotropic denoising
algorithms are based on differential information (Desbrun et al., 2000; Clarenz et al., 2000; Tasdizen et al., 2002; Bajaj
and Xu, 2003; Hildebrandt and Polthier, 2004; He and Schaefer, 2013). Fleishman et al. (2003) presented a bilateral
mesh denoising method to filter the vertices of input meshes in the normal direction using local neighborhoods.
El Ouafdi et al. (2008) proposed a probabilistic approach for one-stage mesh smoothing by formulating the problem as
tracking the transition probability density functions of an underlying random process. Solomon et al. (2014) described
a generalization of the bilateral filter that can be applied to feature-preserving smoothing of signals on images, meshes,
and other domains within a unified framework. Recently, Wang et al. (2014) proposed a denoising technique via
weighted L1-analysis based on compressed sensing. Lu et al. (2016) perform mesh denoising by explicitly identifying
features to preserve.

The second category of methods (Taubin, 2001; Yagou et al., 2002; Jones et al., 2003; Shen and Barner, 2004; Sun
et al., 2007, 2008; Zheng et al., 2011; Zhang et al., 2015a,b) first filter normals and then update vertex positions using
those filtered normals. Taubin (2001) introduced an early two-stage method. Later, researchers used the mean-median
(Yagou et al., 2002) and fuzzy median (Shen and Barner, 2004) filters to estimate face normals. Researchers have also
proposed averaging neighboring face normals in a weighted manner with data dependent weights (Sun et al., 2007;
Zheng et al., 2011) or probabilities derived from random walks (Sun et al., 2008). Recently two different normal filters
were proposed using total variation (Zhang et al., 2015a) and the joint bilateral filter (Zhang et al., 2015b).
Vertex/Face classification. To better preserve geometric features, several approaches have been proposed to classify
either the vertices or the faces of an input noisy model into different types before the mesh denoising process (Fan
et al., 2010; Bian and Tong, 2011; Wang et al., 2012; Wei et al., 2015). However, the classification results are typically
sensitive to the noise level, and thus potentially lead to fragility. Lipman et al. (2007) introduced a locally optimal
projection operator used to denoise point sets.

3. Approach Overview

Figure 2 provides an overview of our method’s pipeline. Our first step is pre-filtering (Section 4), which provides
a good initialization for our L1-median filter of the surface normals (Section 5). Given those filtered normals, our
method then updates the vertex positions to create a smoothed version of the input surface (Section 6). Note that the
proposed vertex pre-filtering technique distinguishes between noisy meshes and meshes with both irregular surface
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Figure 2: The pipeline of our mesh denoising approach.

sampling and large noise (see details in Section 4.2). The latter case involves an extra region-based pre-filtering step
(the “Yes” branch in Figure 2).

In following sections, we assume the input data is a noisy mesh model obtained from scanning devices or by adding
synthetic noise (Gaussian noise with zero mean and standard deviation σ measured as a multiple of the average edge
length `) to a model. We normalize the input model to a unit box. We denote by pi the position of the i-th vertex and
by n j, c j the normal and the centroid of the j-th face respectively.

4. Vertex Pre-filtering

Our first step is to pre-filter the noisy input mesh to substantially decrease the noise, thus ensuring a good initializa-
tion for the subsequent steps leading to more accurate face normals. Our pre-filtering method differentiates between
noisy surfaces and surfaces with both irregular sampling and high noise. For the latter case, we use an additional
region-based pre-filtering step.

4.1. Initial Pre-Filtering

We begin our pre-filtering stage by attempting to remove folded faces through an isotropic smoothing step. These
folded faces appear in nearly flat areas of the surface and have large dihedral angles, which are typically undesirable.
We formulate this step as a least squares minimization

arg min
{p̃i}

∑
i

‖p̃i − pi‖
2
2 + α

∑
e

‖S (e)‖22, (1)

where p̃i is the unknown position of the i-th vertex, pi is the position of the i-th vertex in the input, α is a user-
specified weight that is empirically set in the range of 0.05 to 0.2 in our experiments, and S (e) is a shaping term
applied to an edge e. The goal of S (e) is to help unfold very noisy faces and reshape them to be more regular.
Assume the edge e is shared by two triangles: one with vertices pe1, pe2, and pe3, and the other with vertices pe1,
pe3, and pe4. We use the triangle regularization term from He and Schaefer (2013) as our shaping metric, which is
defined as S (e) = pe1 − pe2 + pe3 − pe4. He and Schaefer (2013) use this regularization term in the context of an
L0 minimization whereas our optimization is only a prefilter and we preserve geometric features through our normal
filter (see Section 5).

4.2. Region-Based Pre-Filtering

For very noisy meshes with irregular sampling, the simple isotropic smoothing step (Section 4.1) is not sufficient
to remove enough noise from the input. Such irregular sampling can occur in real-world meshes when multiple
scans of an object overlap, which can increase sampling density in those overlapping locations. To determine if a
surface requires our additional, region-based pre-filtering, we examine the connectivity to determine if the sampling
is irregular. If so, we estimate the noise level of the original, noisy input surface by calculating the proportion of
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Figure 3: Example illustration of region-based pre-filtering (Section 4.2): (1) a noisy model with irregular surface sampling (see the red and blue
rectangles), (2) a rough initialization using our initial pre-filter (Section 4.1), (3) region-based clustering for (2), (4) Laplacian smoothing for noisier
places (blue) of (3), (5) anisotropic pre-filtering (Section 4.3) for (4).

edges whose dihedral angles are greater than a threshold, which is empirically set to 130◦ in our work. If this ratio is
reasonably large (e.g., ≥ 10%), then we perform this additional region-based pre-filtering step.

First we begin with the output of the initial pre-filtering in Section 4.1 and perform a K-means clustering to
cluster faces into regions based on the similarity of the area of the triangles and the distance between face centroids.
Hence, we cluster triangles in a high dimensional space by appending the triangle area onto the coordinates of the
triangle centroid. Figure 3-(3) shows an example result of region-based clustering, where two clusters are generated.
Ideally, the number of clusters (K) in this step should be consistent with the number of different sampling densities
of the model. Note that various mesh segmentation algorithms (Shamir, 2008) could be used as the alternative for the
region-based clustering, but we choose the K-means clustering due to its efficiency and effectiveness.

In general, the regions with small triangles will have larger amounts of noise in the normals than large triangles
since small geometric deviations lead to large deviations in orientation (refer to Figure 3-(3)). In this case, uniformly
smoothing the whole surface tends to produce unsatisfactory results (e.g., flipped triangles). Instead, our method
handles such clusters (noiser regions) using a form of Laplacian smoothing (Chuang and Kazhdan, 2011), defined as
follows:

arg min
P̃

∥∥∥P̃ − P
∥∥∥2

F + β
∥∥∥LP̃

∥∥∥2
F , (2)

where P̃ = ( p̃1, · · · , p̃n)T is the vectorized form of unknown vertex positions within a single cluster, P = (p1, · · · , pn)T

is the vectorized form of the corresponding vertex positions of the rough initialized mesh, L is the uniformly weighted
Laplacian matrix, and β (we use β = 6) is a user-defined smoothness parameter. Figure 4 demonstrates that only initial
pre-filtering and anisotropic pre-filtering fails to produce decent pre-filtering results when handling very noisy meshes
with irregular sampling.

4.3. Anisotropic Pre-Filtering

While our initial pre-filtering and region-based pre-filtering can remove folded faces, these isotropic filters tend
to blur geometric features, which provides a poor initialization for subsequent steps (see Figure 5). Therefore, we
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(1) (2) (3)

Figure 4: The importance of region-based pre-filtering: (1) noisy input with irregular surface sampling, (2) only initial pre-filtering (Section 4.1)
and anisotropic pre-filtering (Section 4.3), (3) combined initial pre-filtering, region-based pre-filtering and anisotropic pre-filtering.

(1) (2) (3) (4)

Figure 5: Vertex pre-filtering with different levels of noise: (1) noisy input (σ = 0.2` top, σ = 0.6` bottom), (2) only initial pre-filtering (Section
4.1), (3) only anisotropic pre-filtering (Section 4.3), (4) combined initial pre-filtering and anisotropic pre-filtering. As shown in (4), using a
combination of our initial pre-filter (Section 4.1) and anisotropic pre-filter (Section 4.3) preserves features the best.

perform a subsequent anisotropic filtering step to help preserve geometric features written as

arg min
{p̃i}

∑
i

‖p̃i − pi‖
2
2 + α

∑
e

we ‖S (e)‖22, (3)

where pi are the input vertices that come either from the output of the initial pre-filter (Section 4.1) or the region-based
pre-filter (Section 4.2), and S (e) is the shape term from Section 4.1.

we, the weight for edge e, is a non-negative, decreasing function with respect to the angle between the normals of
the edge-sharing faces. In this work, we design we as an exponential function, defined as follows:

we = b
−

(
1−cos(θ)

1−cos(σθ )

)
(4)

where b is a constant number (we have empirically found that b =
√

3 works well), θ is the angle between the normals
of two edge-sharing faces, and σθ is used to scale the similarity of the face normals (in our experiments, σθ is usually
set to 30◦). Note that the weights we are small for edges with large dihedral angles (possible features) and large for
edges with small dihedral angles. Hence, this optimization will smooth the mesh while retaining its features. We
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Figure 6: Isotropic normal smoothing when using two different ways: (1) an isotropic patch corrupted with noise, (2) squared error (
∑

i
∥∥∥ni − navg

∥∥∥2)
computed at each iteration, where navg is the average normal of this patch. “Error1” and “Error2” are computed with adding a small constant to the
denominator in ωi j and our strategy, respectively. Smaller error values mean faster isotropic normal smoothing.

(a) Noisy model (b) [Zheng et al. 2011] (c) Bilateral form of Eq. (7) (d) L1-median filtering

Figure 7: Applying different normal filters to the same vertex pre-filtering result of (a). Our L1-median filter better preserves shallow features
(highlighted in red) compared with the bilateral filters in (b) and (c).

perform this optimization iteratively (typically between 0-12 times depending on the noise level) using the output of
one iteration as the input to the next iteration to smooth the surface.

5. L1-Median Normal Filter

After pre-filtering, we now estimate the normals of the denoised surface using an L1-median filter. The L1 median
of a set of data points {yi} is the point x that minimizes the sum of Euclidean distances to the yi.

arg min
x

∑
yi

‖x − yi‖2, (5)

Unlike a typical average, the L1 median is robust to outliers and noise in the data (Lipman et al., 2007). Since the face
normals still contain noise after vertex pre-filtering, we propose to filter these normals using the L1-median filter.

We measure the face normal difference between the i-th face and its neighboring faces (we use vertex adjacency to
determine neighbors, as suggested by Zheng et al. (2011); Wei et al. (2015)) with a localized version of Equation (5).∑

j∈N(i)

a jφ
(

1−cos(γi j)
1−cos(σγ)

)
φ
(
‖ci−c j‖2

σc

) ∥∥∥ni − n j

∥∥∥
2 , (6)

where N(i) denotes the neighboring faces of the i-th face, ai/ci are the area/centroid of the i-th face, and γi j is the angle
between ni and n j. σγ is the angle threshold parameter (30◦ by default) which can be adjusted by users. φ(x) = e−x2

is
the Gaussian function and we set σc = 3

2 d, where d is the average distance between centroids of adjacent faces.
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Optimization. The nonlinear nature of Equation (6) makes optimization with respect to ni difficult. Therefore, we
develop an iterative form of the optimization. Differentiating Equation (6) with respect to ni and setting the derivative
equal to 0 yields a local update formula (see Appendix for the derivation procedure).

nt+1
i =

∑
j∈N(i) ωi jnt

j∑
j∈N(i) ωi j

(7)

where nt+1
i is the normal of the i-th face at the t + 1-th iteration and ωi j =

a jφ

(
1−cos(γi j)
1−cos(σγ)

)
φ

‖ci−c j‖2
σc


‖ni−n j‖2

. While Equation (7)

works well, ωi j is undefined when ni = n j. Hence, when
∥∥∥ni − n j

∥∥∥ < 10−3 we switch to the bilateral weights ωi j =

a jφ
(

1−cos(γi j)
1−cos(σγ)

)
φ
(
‖ci−c j‖2

σc

)
, which we found leads to faster isotropic normal smoothing than adding a small constant to

the denominator in ωi j (Figure 6).

(a) (b) (c) (d)

---
---
---
--

------
-----

Figure 8: The importance of both pre-filtering and L1-median filtering. (a) a noisy dodecahedron, (b) the result of only applying pre-filtering, (c)
the result of only applying L1-median filtering, (d) the result of applying both filters. Applying both filters produces better results than either filter
individually.

(a) Noisy input (b) Bilateral (c) Mean shift (d) Our method

--------------------
------------------------

------
--------

---
---
--

Figure 9: Denoising results of Solomon et al. (2014) and our method. (b) and (c) are the results of the generalized bilateral and mean shift filtering
of Solomon et al. (2014).

Equation (7) can be regarded as a regularized mean shift for robustly filtering normals. ωi j acts as a kernel
function. The mean shift filter results from iterative bilateral filtering (Solomon et al., 2014; Weijer and Boomgaard,
2001). Note that Equation (7) bears some similarity to a bilateral filter if

∥∥∥ni − n j

∥∥∥
2 is set to 1 (indeed we use this

form when
∥∥∥ni − n j

∥∥∥ < 10−3). We tested always using these bilateral weights versus our L1-median filter as well as
the bilateral filter in Zheng et al. (2011). Figure 7 shows that our L1-median filter outperforms both bilateral filters
when attempting to preserve shallow features.

To demonstrate the necessity of both vertex pre-filtering and L1-median normal filtering, we compared the de-
noised results by only applying one of the filters and by applying both filters. As shown in Figure 8, applying both
filters produces better results than either filter individually.
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(a) Noisy model (b) Our method (c1) [Zheng et al. 2011]
(local mode)

(c2) [Zheng et al. 2011]
(global mode)

(d) [He and Schaefer 2013] (e) [Wei et al. 2015]

Figure 10: Shallow feature preservation during the mesh denoising process (σ = 0.2`). Note that the result of our method is smoother than that of
He and Schaefer (2013) (refer to the top zoomed region).

(a) Noisy model 
(impulsive noise)

(b) Our method (c1) [Zheng et al. 2011]
(local mode)

(c2) [Zheng et al. 2011]
(global mode)

(d) [He and Schaefer 2013] (e) [Wei et al. 2015]
---------------

Figure 11: Denoised results of the Vase model whose 20% vertices are corrupted with 0.6 mean edge length impulsive random noise.

6. Vertex Update

After normal filtering, we use the vertex update algorithm from Sun et al. (2007) to iteratively update vertex
positions based on the filtered normals.

pk+1
i = pk

i +
1

|NF(i)|

∑
j∈NF(i)

n j(n j · (ck
j − pk

i )), (8)

where pk
i is the vertex at the (k)-th iteration, NF(i) is the neighboring faces of the i-th vertex, and |NF(i)| is the number

of neighboring faces of the i-th vertex. See Sun et al. (2007) for proof of convergence.

7. Experimental Results

We tested our approach on a variety of 3D mesh models with either raw or synthetic noise (different levels of
Gaussian noise with zero mean and standard deviation σ), including irregularly sampled meshes. While synthetic
noise is artificial, it allows us to easily generate different levels of noise and obtain ground-truth models for quantitative
analysis, similar to almost all previous mesh denoising works. We also compared our approach with a number of state
of the art mesh denoising approaches including Zheng et al. (2011), He and Schaefer (2013), Wang et al. (2014),
Solomon et al. (2014), and Wei et al. (2015). We obtained the source code from the authors of Zheng et al. (2011)
for the comparisons; several results (in Figures 9, 12 and 13) were provided by those authors as well; finally, we
implemented He and Schaefer (2013) and Wei et al. (2015) based on their original papers.

Parameter choices. In our comparison experiments, we used the following parameter sets for the above methods:
ours = (α, σθ, iterations of anisotropic pre-filtering, σγ, iterations of normal filtering, iterations of vertex update);
Zheng et al. (2011) (local) = (normal filtering iterations, σs, vertex update iterations); Zheng et al. (2011) (global) =
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(a) Noisy model (b) Our method (c1) [Zheng et al. 2011]
(local mode)

(c2) [Zheng et al. 2011]
(global mode)

(d) [He and Schaefer 2013](e) [Wang et al. 2014](f) [Wei et al. 2014]

-------
-------

------
---
---
---
---

Figure 12: Denoised results of the noisy Dodecahedron model (σ = 0.3`). Note that the sharp edges generated by Wang et al. (2014) are not
straight.

(a) Noisy model (b) Our method (c1) [Zheng et al. 2011]
(local mode)

(c2) [Zheng et al. 2011]
(global mode)

(d) [He and Schaefer 2013](e) [Wang et al. 2014](f) [Wei et al. 2014]

-----------

--------------

Figure 13: Denoised results of the Fandisk model (σ = 0.1`). Wang et al. (2014) over-smooth some features (see blue box).

(λ, σs, vertex update iterations); He and Schaefer (2013) = (µ, α0, λ); Wang et al. (2014) = (τ); and Wei et al. (2015)
= (σs1, n1, σs2, n2). We used the default parameter values for He and Schaefer (2013) and Wang et al. (2014) specified
in their papers. For the remaining methods, we carefully tuned the parameters to generate the best visual results for
each model in our experiments. Specifically, in our method, α, σθ, the iterations of anisotropic pre-filtering, σγ, the
iterations of normal filtering and the iterations of vertex update are within [0.05, 0.2], [20, 50], [0, 12], [20, 50], [5,
100] and [5, 100], respectively. In Zheng et al. (2011), σs and the vertex update iterations are in the ranges of [0.2,
0.5] and [5, 100] for both local and global modes. The normal filtering iterations in Zheng et al. (2011) (local) is
within [3, 60] and λ in Zheng et al. (2011) (global) is within [0.001, 0.1]. In Wei et al. (2015), σs1, n1, σs2 and n2 are
in the ranges of [0.2, 0.5], [3, 45], [0.2, 0.5] and [3, 50]. In these methods, the parameters generally increase as the
noise level increases. The specific parameter values of each method for some models are summarized in Table 1. In
addition to the denoised results in this paper, we have included more results in the supplemental document.

Denoising meshes with different levels of noise. Most existing anisotropic methods can produce reasonable
results on models with moderate noise (e.g., high-quality scanned data or the standard deviation of the noise σ ≤ 0.3`)
but struggle with large noise (e.g., low-quality scanned data or σ > 0.3`). Figure 9 shows a comparisons with the
generalized bilateral and mean shift filter (Solomon et al., 2014) where our method can remove the noise from the
input effectively. Figures 10 and 13 show that our approach can preserve both sharp and shallow features on input
noisy meshes when the noise level is comparatively low (σ ≤ 0.2`). Figure 12 demonstrates our results on a platonic
solid where the desired shape is planar everywhere except at sharp features. Figure 11 shows that our method is also
robust to impulse noise. Figure 14 demonstrates the performance of our method on denoising models with high levels
of noise (σ ≥ 0.5`) compared to other methods that fail to achieve similar quality results.

Denoising meshes with irregular surface sampling. Meshes with irregular polygon densities pose a difficult
problem for most denoising methods. Figure 16 shows a comparison of our method on a model with irregular sampling
and relatively small amounts of noise (σ ≤ 0.2`). While most methods perform poorly with irregular sampling, our
method and He and Schaefer (2013) perform much better. However, the method of He and Schaefer (2013) tends to
produce sharp features even in smooth areas like the eye-lids. Figure 15 shows another example of irregular sampling
with large amounts of noise (σ ≥ 0.4`). Again, the majority of methods fail to handle the irregular sampling well, and
our method creates the highest quality results.

Denoising real 3D scanned data. We also compared these approaches on real scanned data. Figure 1 shows the
results of the methods applied to a raw scan of an armadillo model. Our method produces a higher quality result than
the other methods particularly around the neck where the triangle density is non-uniform due to missing data in the
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(a) Noisy model (b) Our method (c1) [Zheng et al. 2011]
(local mode)

(c2) [Zheng et al. 2011]
(global mode)

(d) [He and Schaefer 2013] (f) [Wei et al. 2015]

-----
----

----

Figure 14: Denoised results of the Double-torus model contaminated with large noise (σ = 0.5`).

(a) Noisy model

-----------------
------------------

(b) Our method (c1) [Zheng et al. 2011]
(local mode)

(c2) [Zheng et al. 2011]
(global mode)

(d) [He and Schaefer 2013] (e) [Wei et al. 2015]

Figure 15: Denoised results of an irregularly sampled cube with large noise (σ = 0.4`). Note that (d) does not recover the corners exactly.

original scan. Figure 17 shows another example of a scanned model denoised where our method produces cleaner
sharp features than the other techniques.

Quantitative comparisons. We also compared our approach to other methods using two quantitative metrics,
shown in Table 1. We use Ev (the L2 vertex-based error) and MSAE (the mean squared angular error) advocated
by previous work (Zheng et al., 2011; Wei et al., 2015). Ev is a numerical error measurement between the denoised
mesh and the ground-truth. Ev generally, but not always, is in agreement with visual comparison results (Sun et al.,
2007). MSAE measures the mean square angular error between the face normals of the denoised mesh and those of
the ground truth.

As shown in Table 1, in terms of Ev, the results are mixed. The reason is that our method repositions vertices using
our triangle shaping metric. Hence, in relatively flat areas vertices may move along those planes without significantly
affecting the visual appearance of the shape. However, the MSAE numbers indicate that our method significantly
outperforms most methods and even improves upon the error numbers of He and Schaefer (2013).

Table 2 shows the computation time of our method for each step and the whole pipeline, as well as the selected
state of the art methods. Vertex pre-filtering generally occupies a significant portion of the total computation time
since it involves multiple iterations of solving a global, linear system of equations. However, overall, our denoising
method is generally faster than Zheng et al. (2011) (global), He and Schaefer (2013) and Wei et al. (2015) but slower
than Zheng et al. (2011) (local).

8. Conclusions and Limitations

In this paper, we introduced a robust and effective approach to denoise 3D models with various levels of noise,
with or without irregular surface sampling, while preserving geometric features. By utilizing both a pre-filtering step
followed by an L1-median normal filter, our approach outperforms recent anisotropic mesh denoising methods.

Despite the robustness exhibited by our work, our approach does have some limitations. Very large amounts of
noise can cause errors in the result (see Figure 18). Similar to other methods (He and Schaefer, 2013; Wei et al., 2015),
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Table 1: Quantitative comparisons among different methods. Ev and MSAE are scaled by 10−3 and 10−2 respectively.
Models Methods Ev MSAE Parameters

Fandisk
(Figure 10)
|V |: 6475
|F|: 12946

Our
Zheng et al. (2011) (local)
Zheng et al. (2011) (global)
He and Schaefer (2013)
Wei et al. (2015)

8.974
8.809
8.670
9.373
8.694

0.337
10.41
7.797
0.655
8.891

(0.1, 30, 2, 30, 20, 10)
(3, 0.3, 10)
(0.01, 0.3, 10)
Default
(0.3, 3, 0.3, 6)

Double-torus
(Figure 14)
|V |: 8702
|F|: 17408

Our
Zheng et al. (2011) (local)
Zheng et al. (2011) (global)
He and Schaefer (2013)
Wei et al. (2015)

17.19
21.15
21.37
17.63
28.28

1.828
183.6
161.6
3.384
207.4

(0.2, 30, 12, 30, 50, 80)
(50, 0.35, 80)
(0.01, 0.35, 80)
Default
(0.35, 45, 0.35, 50)

Nicolo
(Figure 16)
|V |: 31433
|F|: 62254

Our
Zheng et al. (2011) (local)
Zheng et al. (2011) (global)
He and Schaefer (2013)
Wei et al. (2015)

4.257
3.881
3.870
4.409
3.871

1.842
29.56
28.61
3.521
27.82

(0.15, 30, 0, 50, 10, 8)
(3, 0.4, 8)
(0.07, 0.4, 8)
Default
(0.4, 3, 0.4, 5)

Cube
(Figure 15)
|V |: 4808
|F|: 9612

Our
Zheng et al. (2011) (local)
Zheng et al. (2011) (global)
He and Schaefer (2013)
Wei et al. (2015)

46.16
47.75
48.25
48.55
47.31

0.024
150.7
143.2
0.374
150.4

(0.15, 20, 1, 40, 100, 100)
(50, 0.3, 100)
(0.001, 0.25, 100)
Default
(0.3, 30, 0.3, 30)

Table 2: Timing statistics of different approaches. Steps 1, 2 and 3 indicate vertex pre-filtering, L1-median filtering and vertex update, respectively.
The running time (in seconds) was recorded on an Intel Core i7-3770 3.40-GHz CPU.

Models
Fandisk
(Figure 10)

Vase
(Figure 11)

Double-torus
(Figure 14)

Nicolo
(Figure 16)

Cube
(Figure 15)

Step 1 0.399 0.412 1.752 0.584 0.415
Step 2 0.342 0.263 1.137 0.931 1.249
Step 3 0.018 0.023 0.123 0.096 0.084
Total 0.759 0.698 3.012 1.611 1.748
Zheng et al. (2011) (local) 0.146 0.246 2.200 0.975 1.245
Zheng et al. (2011) (global) 1.183 0.682 2.621 9.017 0.776
He and Schaefer (2013) 3.235 2.089 4.871 18.668 2.484
Wei et al. (2015) 1.118 0.985 2.696 5.1 1.139
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(a) Noisy model (b) Our method (c1) [Zheng et al. 2011]
(local mode)

(c2) [Zheng et al. 2011]
(global mode)

(d) [He and Schaefer 2013] (e) [Wei et al. 2015]

Figure 16: Denoised results of an irregularly sampled Nicolo model (σ = 0.2`). The input noisy model (a) is generated by resampling to decrease
the density of the right side of the original Nicolo model and then adding Gaussian noise.

(a) Raw noisy model (b) Our method (c1) [Zheng et al. 2011]
(local mode)

(c2) [Zheng et al. 2011]
(global mode)

(d) [He and Schaefer 2013] (f) [Wei et al. 2015]

------------------

------------------

----------------------

-----
-----
-----
-----

Figure 17: Denoised results of a scanned Iron model.

our method can fail when the sampling is extremely irregular. Like many other methods, our method also requires a
few seconds to minutes to find a decent set of parameters that depend on the input model. While we have provided
parameter ranges and examples for the models we used, automatically finding an optimal set of parameters for a given
model is still a challenge.
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Appendix

Taking the derivative of Equation (6) with respect to ni and equating it to 0, we can obtain

∂

∂ni
=

∑
j∈N(i)

a jφ
(

1−cos(γi j)
1−cos(σγ)

)
φ
(
‖ci−c j‖2

σc

) ni − n j∥∥∥ni − n j

∥∥∥
2

= 0

⇔

ni =

∑
j∈N(i)

a jφ

(
1−cos(γi j)
1−cos(σγ)

)
φ

‖ci−c j‖2
σc


‖ni−n j‖2

n j

∑
j∈N(i)

a jφ

(
1−cos(γi j)
1−cos(σγ)

)
φ

‖ci−c j‖2
σc


‖ni−n j‖2
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We denote ωi j =
a jφ

(
1−cos(γi j)
1−cos(σγ)

)
φ

‖ci−c j‖2
σc


‖ni−n j‖2

, and ni can be finally expressed by the following iterative form (same as
Eq. (7)).

nt+1
i =

∑
j∈N(i) ωi jnt

j∑
j∈N(i) ωi j
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