
Mesh Denoising via L0 Minimization

Lei He

Texas A&M University

Scott Schaefer

Texas A&M University

Figure 1: From left to right: initial surface, surface corrupted by Gaussian noise in random directions with standard deviation σ = 0.4le (le
is the mean edge length), bilateral filtering [Fleishman et al. 2003], prescribed mean curvature flow [Hildebrandt and Polthier 2004], mean
filtering [Yagou et al. 2002], bilateral normal filtering [Zheng et al. 2011], our method. The wireframe shows folded triangles as red edges.

Abstract

We present an algorithm for denoising triangulated models based
on L0 minimization. Our method maximizes the flat regions of the
model and gradually removes noise while preserving sharp features.
As part of this process, we build a discrete differential operator for
arbitrary triangle meshes that is robust with respect to degenerate
triangulations. We compare our method versus other anisotropic
denoising algorithms and demonstrate that our method is more ro-
bust and produces good results even in the presence of high noise.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Geometric algorithms, languages,
and systems

Keywords: mesh denoising, L0 minimization

Links: DL PDF

1 Introduction

Mesh denoising is an important tool in geometry processing. Sur-
faces obtained through a scanning process [Levoy et al. 2000] or
other reconstruction algorithm are inevitably noisy, even when us-
ing high-fidelity scanners. Hence, these surfaces may need to be
denoised both for aesthetic reasons and for further geometry pro-
cessing. However, mesh denoising is inherently challenging as it
can be difficult to distinguish features from noise. This problem is

especially problematic in the presence of sharp features, which rep-
resent high frequency information, and retaining such features can
be difficult when high levels of noise are present.

A wide variety of mesh denoising algorithms already exist. While
most early work focused on isotropic algorithms that ignore sharp
features, recent methods are anisotropic and attempt to preserve
sharp features in the data. These methods can be divided into two
approaches. The first approach are methods based on prescribed
differential information, such as mean curvature. The second ap-
proach is to extend the bilateral filter from 2D signal processing to
arbitrary 3D meshes in various different fashions.

Contributions
In this paper, we take a different approach to mesh denois-
ing using L0 minimization. In our context, we use the L0 norm,
which directly measures sparsity, to preserve sharp features and
smooth the remainder of the surface. However, the L0 norm can
be difficult to optimize due to its discrete, combinatorial nature.
We base our approach on recent work on L0 minimization for
images [Xu et al. 2011]. Doing so requires extending various ele-
ments of the minimization from 2D grids of pixels to unstructured
triangle meshes representing two-manifolds in R

3. Moreover, our
goal is not to create piecewise constant functions as was done for
images, but to minimize the curvature of the surface except at
sharp features. The benefit of L0 minimization is that our method
handles large amounts of noise and produces higher quality results
than current algorithms. In particular, we

• show how to extend L0 minimization from images to surfaces;

• develop a discrete differential operator to measure planarity
of the surface that is robust to poor meshes including those
with degenerate triangles;

• integrate a fairing term into the L0 minimization that im-
proves mesh quality and reduces folded triangles.

2 Related Work

Most early surface smoothing methods are isotropic, which means
the filter is independent of surface geometry. Laplacian smooth-

http://doi.acm.org/10.1145/2461912.2461965
http://portal.acm.org/ft_gateway.cfm?id=2461965&type=pdf

ing [Vollmer et al. 1999] is an example of a simple smoothing algo-
rithm that filters noise efficiently but does not preserve features and
shrinks the surface. Taubin [1995] approaches surface smoothing
from a signal processing perspective and proposes a non-shrinking,
two-step smoothing algorithm. Desbrun et al. [1999] introduces a
version of mean curvature flow [Dziuk 1990] for surface fairing us-
ing a simplified mass matrix. Kim et al. [2005] combine these two
approaches to design a filtering framework for lowpass/highpass fil-
tering with exaggeration and attenuation options. Liu et al. [2002]
present a smoothing approach for triangle meshes that preserves
volume. Others construct isotropic smoothing methods using global
systems of equations [Nealen et al. 2006; Su et al. 2009].

Given that isotropic methods do not preserve sharp features in the
object, many recent techniques have focused on anisotropic ap-
proaches. Several authors explore anisotropic diffusion algorithms
for surfaces [Desbrun et al. 2000; Clarenz et al. 2000; Tasdizen et al.
2002; Bajaj and Xu 2003] or images [Tschumperlé 2006] based on
PDEs. Hildebrandt et al. [2004] propose a smoothing algorithm
using prescribed mean curvature flow to preserve surface features.

Another approach to anisotropic smoothing has been to extend the
bilateral filter [Tomasi and Manduchi 1998] from image process-
ing to 3D geometry. Fleishman et al. [2003] propose a bilateral
filter inspired approach that filters vertices of the mesh in the nor-
mal direction of the surface using local neighborhoods. Jones et
al. [2003] present a similar approach as well based on robust statis-
tics. El Ouafdi et al. [2008] present a probabilistic smoothing algo-
rithm that designs a Riemannian distance based diffusion tensor for
filtering neighboring vertices.

Several researchers have also explored the idea of filtering face nor-
mals instead of directly filtering vertex coordinates. Many of these
methods follow a two-step framework: filtering surface normals
followed by updating vertex positions [Taubin 2001; Yagou et al.
2002; Yagou et al. 2003; Shen and Barner 2004; Lee and Wang
2005; Sun et al. 2007; Fan et al. 2010; Zheng et al. 2011]. While up-
dating vertices is trivial, filtering normals is important in the qual-
ity of the final surface. Yagou et al. [2002] use mean and median
filters for estimating face normals and later use alpha-trimming fil-
ters [Yagou et al. 2003]. Shen et al. [2004] propose a fuzzy median
filter to better estimate face normals. Sun et al. [Sun et al. 2007]
improve upon this method by ignoring neighboring normals with
large differences when computing face normals and propose a new
vertex updating algorithm. These authors then introduce a random
walk model to determine the filtering weights [Sun et al. 2008].
The bilateral filter has been used in normal filtering as well [Lee
and Wang 2005; Wang 2006]. Most recently Zheng et al. [2011]
propose a mesh denoising scheme using a global bilateral normal
filter and achieve impressive results.

3 L0 Minimization for Images

We will briefly review L0 minimization in the context of images be-
fore extending this algorithm to surfaces. The L0 norm of a vector
is the number of non-zero entries, which directly measures sparsity.
L0 minimization has applications in compressed sensing [Donoho
2006]. However, this norm is difficult to optimize directly due to
its combinatorial nature. Candes et al. [2006] show that L1 min-
imization can also provide a good measure of sparsity. Lipman et
al. [2007] also used the “L1” norm in the context of point denoising.

Recently Xu et al. [2011] provide an algorithm for directly opti-
mizing the L0 norm in the context of image smoothing to create
piecewise constant images. Let c be a vector of pixel colors and
∇c be a vector of gradients of these colors. The authors attempt
to minimize |c − c∗|2 + |∇c|0 where |∇c|0 is the L0 norm of ∇c

Figure 2: From left to right: noisy input surface with σ = 0.3le,
vertex-based cotangent operator, our cotangent edge operator, our
area-based edge operator. The bottom row shows wireframes with
flipped triangles denoted by red edges. None of these results use
regularization.

and c∗ represents the original image colors to provide a data fidelity
term.

To minimize this expression, the authors introduce a set of auxiliary
variables δ. The minimization problem then becomes

min
c,δ
|c− c

∗|2 + β|∇c− δ|2 + λ|δ|0

where λ controls the level of detail in the final image. The authors
optimize this expression with an alternating optimization. First, the
authors hold c constant and only minimize for δ.

min
δ

β|∇c− δ|2 + λ|δ|0

In this minimization, each entry δi will either be 0 or ∇ci to either
minimize the L0 norm of δi or the L2 difference with ∇ci. There-

fore, if
√

λ
β
> ∇ci, δi will be set to 0; otherwise δi = ∇ci. Next,

the authors hold δ fixed and optimize for c.

min
c
|c− c

∗|2 + β|∇c− δ|2

This expression is quadratic in c and trivial to minimize. Both of
these optimizations alternate until convergence, except the authors
multiply β by 2 each iteration to eventually force∇c to match δ.

4 L0 Minimization for Surfaces

We will assume that we are given a triangulated manifold, with
or without boundary, containing vertices p. For surfaces, we can
simply replace c with p and its initial positions p∗. However, we
must design a discrete differential operator to replace ∇c that is
zero when the surface is flat for arbitrary triangulations irrespective
of the rotation or translation of the surface. This constraint implies
that we need some form of second order information rather than
the first order information provided by ∇c. While there are sev-
eral candidates for measuring this information on surfaces [Mallet
1989], an obvious choice is the discrete Laplacian operator [Pinkall
and Polthier 1993], which is computed as a weighted combination
of a vertex and its one-ring where the weights are given by cotan-
gents of angles of the triangles. This operator has found numer-
ous applications in Computer Graphics and has the property that its
value, when applied to the vertices, yields a vector normal to the
surface whose magnitude is proportional to the mean curvature of
the surface at that point [Desbrun et al. 1999].

Figure 2 shows a noisy input surface (left) and the effect of using
the discrete Laplacian operator in this L0 minimization framework

Figure 3: Our notation for the one-ring of a vertex and an edge.

(middle left). While the surface is smoother, the optimization fails
to reproduce sharp features and shrinks the surface away from the
features. The problem is that the vertex-based Laplacian only con-
strains the mean curvature vector as opposed to a metric that di-
rectly measures sharpness per edge. Hence, we will generalize the
construction of the vertex-based cotan operator to an operator that
acts directly on an edge.

4.1 Differential Edge Operator

To make the operator independent of translations and rotations, we
desire a set of weights wj that annihilate constant and linear func-
tions; that is,

∑

j wj = 0
∑

j wjpj = 0
(1)

when pj are planar, which are similar to the properties of general-
ized barycentric coordinates [Floater et al. 2006]. While there have
been many different derivations of the cotan Laplacian operator in
Computer Graphics, we focus on the barycentric construction that
makes the properties in Equation 1 obvious. We will then extend
this construction to build a differential edge operator.

One method of building barycentric coordinates is through the use
of the divergence theorem [Schaefer et al. 2007], which states that
the integral of an outward facing normal over a closed shape is zero.
Figure 3 (left) shows a one-ring of a central vertex and outward
facing normals (pj−pj+1)

⊥ whose lengths are equal to the lengths
of the corresponding edge and are planar with the triangle formed
between pj , pj+1, and p0. Representing (pj−pj+1)

⊥ as a weighted
combination of the vertices of its triangle yields

(pj−pj+1)
⊥ = cot(θ0,j,j+1)(pj+1−p0)+cot(θj,j+1,0)(pj−p0).

Summing these weights around the central vertex gives the discrete
Laplacian from Pinkall et al. [1993]. If the pj are planar, then

∑

j

(pj − pj+1)
⊥ =

∑

j

wjpj = 0

and the weights trivially satisfy Equation 1.

We can apply the same construction to build an edge operator. Fig-
ure 3 (right) shows an edge, e, and the labels we use to identify the
vertices. If we apply the same construction and represent the vec-
tors (pi−pi+1)

⊥ as a weighted combination of the vertices of their
triangle, we obtain the differential operator D(e) for the edge as

D(e) =

− cot(θ2,3,1)− cot(θ1,3,4)
cot(θ2,3,1) + cot(θ3,1,2)
− cot(θ3,1,2)− cot(θ4,1,3)
cot(θ1,3,4) + cot(θ4,1,3)

T

p1
p2
p3
p4

, (2)

Figure 4: From left to right: the ground truth, the input mesh with
large noise in random directions, our method without regulariza-
tion, our method with regularization.

which also satisfies Equation 1. Moreover, when the pj are not
planar, the magnitude of the weights applied to the vertices is equal
to 2 sin

(

γ

2

)

|p3 − p1| where γ is the dihedral angle between the

two polygons. 2 sin
(

γ

2

)

is a good approximation of γ for angles
less than 90◦. Hence, the magnitude of the weights applied to the
vertices is approximately the dihedral angle times the shared edge
length, which provides a measure of the mean curvature.

Figure 2 (middle right) shows the effect of using this cotan edge op-
erator in the L0 optimization. The result is significantly improved,
but there are still shape quality problems. The issue stems from de-
generate triangles where the cotan weights approach infinity as an
angle approaches zero. In practice, this behavior leads to numerical
problems and never allows folded triangles to unfold in planar con-
figurations since the vertex must pass through a singularity in the
weights. Kazhdan et al. [2012] have noted this problem before for
the cotan vertex operator in the context of mean curvature flow.

To improve our edge operator, we return to the properties in Equa-
tion 1. If we assume that the pj are in 2D, then Equation 1 rep-
resents three equations with four unknowns that has exactly a one-
dimensional null space of solutions spanned by the vector

{−∆2,3,4,∆1,3,4,−∆1,2,4,∆1,2,3}

where ∆j,k,ℓ refers to the area of the triangle with vertices pj , pk,
and pℓ. These weights are not scale-independent and require nor-
malization. We use ∆1,3,4 + ∆1,2,3 to normalize the result. Note
that this denominator may be zero if both triangles become degen-
erate. For the cotan weights from Equation 2, the weights are un-
defined if either triangle becomes degenerate. We use this local
normalizer for all of our results and never had any issue on any
of the surfaces we tried, though we typically saw numerical prob-
lems with the cotan weights for meshes with large amounts of noise.
However, it is also possible to use a global normalizer such as the
surface area of the model to avoid all but global degeneracies. Note
that our cotan weights in Equation 2 are a scalar multiple of this
null space vector. Therefore, the magnitude of these new weights
applied to the vertices is also proportional to mean curvature.

Computing these area weights is trivial in 2D, but requires some
thought when pj are in 3D. Moreover, the weights do not take into
account the asymmetry in the vertices due to the edge between p1
and p3. For example, if p1 lies in the triangle defined by p2, p3,
and p4, the shape is a valid planar triangulation whose outer edges
represent a concave polygon and our operator should return zero.
However, if p2 lies in the triangle defined by p1, p3, and p4, the con-
figuration is that of a folded-back triangle and our operator should
be non-zero. Our solution is to compute the areas ∆2,3,4 and ∆1,2,4

using an isometric unfolding of the surface around the shared edge

Figure 5: The effect of the L0 weight. Top left: an input mesh
without any noise, top right: λ = 1

16
default, bottom left: λ =

default, bottom right: λ = 16 default.

(i.e.; ∆2,3,4 = 1
2
|p2−p3||p4−p3| sin(θ1,3,4+θ2,3,1)). Expanding

this equation yields our area-based edge operator.

D(e)=

∆1,2,3((p4−p3)·(p3−p1))+∆1,3,4((p1−p3)·(p3−p2))

|p3−p1|2(∆1,2,3+∆1,3,4)
∆1,3,4

∆1,2,3+∆1,3,4

∆1,2,3((p3−p1)·(p1−p4))+∆1,3,4((p2−p1)·(p1−p3))

|p3−p1|2(∆1,2,3+∆1,3,4)
∆1,2,3

∆1,2,3+∆1,3,4

T

p1
p2
p3
p4

Figure 2 (right) shows the effect of this area-based operator. The
result is a much improved surface with far fewer folded triangles.

4.2 Regularization

For surfaces with relatively uniformly shaped triangles, the method
in Section 4.1 works well. However, under high amounts of noise
with non-uniformly shaped triangles, the optimization still pro-
duces flat surfaces but polygons can fold and overshoot sharp edges
as shown in Figure 4 (middle right). Our solution is to add a triangle
shape regularizer for each edge given by the quadratic

(p1 − p2 + p3 − p4)
2
. (3)

Figure 4 (right) shows the result of adding such a regularizer. Not
only are the triangles better shaped, but the spurious overshoots and
fold-backs have been eliminated.

4.3 Optimization

Our optimization follows that of Section 3, and we minimize

min
p,δ
|p− p

∗|2 + α|R(p)|2 + β|D(p)− δ|2 + λ|δ|0 (4)

where p are the vertices of the shape, p∗ are their initial positions,
D(p) is a vector where the ith entry corresponds to the area-based

edge operator applied to the ith edge, and R(p) is a vector whose

Figure 6: From left to right shows the results of our method us-
ing different speeds µ of 2.0, 1.414 (default) and 1.090. In this
example, smaller values of µ produces near ideal results.

ith entry is the edge regularizer from Equation 3 applied to the ith

edge. We again perform an alternating minimization where we hold
p fixed to solve for δ,

min
δ

β|D(p)− δ|2 + λ|δ|0 (5)

and then hold δ fixed and solve for p in the same way as Section 3

min
p
|p− p

∗|2 + α|R(p)|2 + β|D(p)− δ|2, (6)

which represents a sparse quadratic in p. This entire procedure is
summarized in Algorithm 1.

Algorithm 1 Surface smoothing via L0 minimization

Input:surface with vertices p∗

Initialization: compute λ, p← p∗, β ← 10−3, α← α0

repeat
fix p, solve for δ in (5).
fix δ, solve for p in (6).

β ← µβ, α← 1
2
α

until β ≥ 103

In this procedure µ is the speed at which we increase β. We multi-
ply the weight of the regularizer by 1

2
at each iteration to exponen-

tially decrease the effect of the regularizer during the optimization.
This choice gives high weight to the regularizer at the beginning
of the optimization when the surface is very noisy and reduces its
effect to zero as the optimization continues.

5 Results

Equation 4 contains several parameters. In all of our results, unless
otherwise noted to show the effect of a particular parameter, we use
default values and do not optimize the parameters for a particular

surface. We use µ =
√
2, α0 = 0.1γ̄, and λ = 0.02l2e γ̄ where le

is the average edge length of the initial surface and γ̄ is the average
dihedral angle measured in radians from the initial surface, which
provides a measure of the initial amount of noise in the surface.
Since the L0 norm does not change with the scale of the surface,
we scale λ by l2e to make the result scale independent. In Figures 2
and 4 where we do not use regularization (i.e.; α0 = 0), we increase
λ by a factor of four to make up for the lack of smoothing from the
regularizer in the first few iterations.

Figure 7: The performance of several methods with different amount of noise. Each row shows different levels of noise in random directions
(σ = 0.3le top, σ = 0.6le bottom). From left to right: noisy input, bilateral filtering [Fleishman et al. 2003], prescribed mean curvature
flow [Hildebrandt and Polthier 2004], mean filtering [Yagou et al. 2002], bilateral normal filtering [Zheng et al. 2011], our method.

Figure 8: A model scanned with a laser range scanner. The noisy
input surface (left) and our result (right).

As in Section 3, λ provides a measure of the level of detail to pre-
serve in the input surface. Figure 5 shows the effect of different
values of λ on a surface without noise. A small value for λ only re-
moves small scale details in the surface such as the bumps along the
dragon’s body. Increasing the value of λ gradually removes more
details until only large-scale features are preserved.

Figure 6 shows the effect of changing the speed µ at which we in-
crease β for the input from Figure 1. Xu et al. [2011] use µ = 2.0,
but we found that the results typically had more rounded corners
with this choice. As µ decreases, edges and corners become sharper
at the cost of more iterations. In this example, the surface is a pla-
tonic solid and using a small value for µ (1.090) can provide an
even better result than our default parameter. However, for shapes

with curved regions such as in Figure 7, we have found that µ =
√
2

tends to work best, which is the parameter we used in Figure 1.

We have also compared our method against several popular and re-
cent anisotropic smoothing methods. For each model we create an
input surface corrupted by Gaussian noise with a standard deviation

σ. In these comparisons, we show both the surface and a wireframe
model. We highlight edges with a red color when the dihedral angle
is greater than 150◦ to show folded triangles. Figure 1 illustrates a
comparison between bilateral filtering [Fleishman et al. 2003], pre-
scribed mean curvature flow [Hildebrandt and Polthier 2004], mean
filtering [Yagou et al. 2002], and bilateral normal filtering [Zheng
et al. 2011]. All of these methods have some parameters that con-
trol their results. While we use default parameters for our method,
we searched the parameter space of the other methods to find an
optimal set of parameters for each model. As Figure 6 illustrates,
we can improve upon our result by tuning parameters. However,
our default parameters provide a superior solution by themselves.

Figure 7 shows a comparison where we vary the level of noise for
the different methods. In low noise situations, all of the methods
perform well. As the noise level increases, other methods are un-
able to remove all of the noise in the resulting surface, whereas our
method still produces a high quality result. Figures 8, 9, and 11 also
compare these methods on a variety of different surfaces.

Our implementation uses TAUCS [Sivan Toledo and Rotkin 2001]
to solve the system of sparse equations in each iteration of the op-
timization. We used a Intel Core i7 3770K to perform our tests and
our times range from about 2 seconds for Figures 1 and 4, which
have about 3800 vertices each, to about 3 minutes for the statue in
Figure 11, which has 134345 vertices. We have found that 90%
of the execution time is taken by solving the system of equations.
Since the equations change at each iteration, we cannot simply pre-
factor the matrix, which leads to longer running times.

Limitations: Our method can fail to produce good results in some
cases. Figure 10 shows a CAD shape with an extreme triangulation
in that the only vertices that exist lie at sharp features in the model.
In this case our method does a good job in some of the cylindrical
areas but fails to reproduce the teeth in the gears.

Figure 9: From left to right: the input mesh with large noise in random directions, bilateral filtering [Fleishman et al. 2003], prescribed
mean curvature flow [Hildebrandt and Polthier 2004], mean filtering [Yagou et al. 2002], bilateral normal filtering [Zheng et al. 2011], our
result. We show the wireframe of each surface below.

Figure 10: A failure case. From left to right: the ground truth with
an extreme triangulation, the noisy input, our result.

Acknowledgements

This work was supported by NSF CAREER award IIS 1148976.
We would like to thank Jason Smith, the AIM Shape Repository,
and the Stanford 3D Scanning Repository for models in this paper.

References

BAJAJ, C. L., AND XU, G. 2003. Anisotropic diffusion of surfaces
and functions on surfaces. ACM Trans. Graph. 22, 1, 4–32.

CANDES, E., ROMBERG, J., AND TAO, T. 2006. Robust uncer-
tainty principles: exact signal reconstruction from highly incom-
plete frequency information. IEEE Transactions on Information
Theory 52, 2, 489–509.

CLARENZ, U., DIEWALD, U., AND RUMPF, M. 2000. Anisotropic
geometric diffusion in surface processing. VIS, 397–405.

DESBRUN, M., MEYER, M., SCHRÖDER, P., AND BARR, A. H.
1999. Implicit fairing of irregular meshes using diffusion and
curvature flow. SIGGRAPH, 317–324.

DESBRUN, M., MEYER, M., SCHRÖDER, P., AND BARR, A. H.
2000. Anisotropic feature-preserving denoising of height fields
and bivariate data. Graphics Interface, 145–152.

DONOHO, D. 2006. Compressed sensing. IEEE Transactions on
Information Theory 52, 4, 1289–1306.

DZIUK, G. 1990. An algorithm for evolutionary surfaces. Nu-
merische Mathematik 58, 1, 603–611.

EL OUAFDI, A. F., ZIOU, D., AND KRIM, H. 2008. A smart
stochastic approach for manifolds smoothing. In Proceedings of
the Symposium on Geometry Processing, 1357–1364.

FAN, H., YU, Y., AND PENG, Q. 2010. Robust feature-preserving
mesh denoising based on consistent subneighborhoods. IEEE
Trans. Vis. Comp. Graph. 16, 2, 312–324.

FLEISHMAN, S., DRORI, I., AND COHEN-OR, D. 2003. Bilateral
mesh denoising. SIGGRAPH, 950–953.

FLOATER, M., HORMANN, K., AND KOS, G. 2006. A general
construction of barycentric coordinates over convex polygons.
Advances in Comp. Math 24, 311–331.

HILDEBRANDT, K., AND POLTHIER, K. 2004. Anisotropic filter-
ing of non-linear surface features. Computer Graphis Forum 23,
3, 391–400.

JONES, T. R., DURAND, F., AND DESBRUN, M. 2003. Non-
iterative, feature-preserving mesh smoothing. SIGGRAPH, 943–
949.

KAZHDAN, M., SOLOMON, J., AND BEN-CHEN, M. 2012. Can
mean-curvature flow be modified to be non-singular? Computer
Graphics Forum 31, 5, 1745–1754.

KIM, B., AND ROSSIGNAC, J. 2005. Geofilter: Geometric selec-
tion of mesh filter parameters. Computer Graphis Forum 24, 3,
295–302.

Figure 11: Left to right: the input mesh with large noise in random directions, bilateral filtering [Fleishman et al. 2003], prescribed mean
curvature flow [Hildebrandt and Polthier 2004], mean filtering [Yagou et al. 2002], bilateral normal filtering [Zheng et al. 2011], our result.

LEE, K.-W., AND WANG, W.-P. 2005. Feature-preserving mesh
denoising via bilateral normal filtering. In Proceedings of Com-
puter Aided Design and Computer Graphics, 275–280.

LEVOY, M., PULLI, K., CURLESS, B., RUSINKIEWICZ, S.,
KOLLER, D., PEREIRA, L., GINZTON, M., ANDERSON, S.,
DAVIS, J., GINSBERG, J., SHADE, J., AND FULK, D. 2000.
The digital michelangelo project: 3d scanning of large statues.
SIGGRAPH, 131–144.

LIPMAN, Y., COHEN-OR, D., LEVIN, D., AND TAL-EZER, H.
2007. Parameterization-free projection for geometry reconstruc-
tion. ACM Trans. Graph. 26, 3, 22:1–22:5.

LIU, X., BAO, H., SHUM, H.-Y., AND PENG, Q. 2002. A novel
volume constrained smoothing method for meshes. Graphical
Models 64, 169–182.

MALLET, J.-L. 1989. Discrete smooth interpolation. ACM Trans.
Graph. 8, 2, 121–144.

NEALEN, A., IGARASHI, T., SORKINE, O., AND ALEXA, M.
2006. Laplacian mesh optimization. GRAPHITE, 381–389.

PINKALL, U., AND POLTHIER, K. 1993. Computing discrete min-
imal surfaces and their conjugates. Experimental Mathematics 2,
15–36.

SCHAEFER, S., JU, T., AND WARREN, J. 2007. A unified, integral
construction for coordinates over closed curves. Computer Aided
Geometric Design 24, 8-9, 481–493.

SHEN, Y., AND BARNER, K. E. 2004. Fuzzy vector median-based
surface smoothing. IEEE Trans. Vis. Comp. Graph. 10, 3, 252–
265.

SIVAN TOLEDO, D. C., AND ROTKIN, V. 2001. Taucs: A library
of sparse linear solvers.

SU, Z., WANG, H., AND CAO, J. 2009. Mesh denoising based on
differential coordinates. Shape Modeling International, 1–6.

SUN, X., ROSIN, P. L., MARTIN, R. R., AND LANGBEIN, F. C.
2007. Fast and effective feature-preserving mesh denoising.
IEEE Trans. Vis. Comp. Graph., 925–938.

SUN, X., ROSIN, P. L., MARTIN, R. R., AND LANGBEIN, F. C.
2008. Random walks for feature-preserving mesh denoising.
Computer Aided Geometric Design 25, 7, 437–456.

TASDIZEN, T., WHITAKER, R., BURCHARD, P., AND OSHER, S.
2002. Geometric surface smoothing via anisotropic diffusion of
normals. VIS, 125–132.

TAUBIN, G. 1995. A signal processing approach to fair surface
design. SIGGRAPH, 351–358.

TAUBIN, G. 2001. Linear anisotropic mesh filtering. IBM Research
Report RC22213(W0110-051).

TOMASI, C., AND MANDUCHI, R. 1998. Bilateral filtering for
gray and color images. In Proceedings of the Sixth International
Conference on Computer Vision, 839–846.

TSCHUMPERLÉ, D. 2006. Fast anisotropic smoothing of multi-
valued images using curvature-preserving pde’s. Int. J. Comput.
Vision 68, 1, 65–82.

VOLLMER, J., MENCL, R., AND MLLER, H. 1999. Improved
laplacian smoothing of noisy surface meshes. Computer Graph-
ics Forum 18, 3, 131–138.

WANG, C. C. L. 2006. Bilateral recovering of sharp edges on
feature-insensitive sampled meshes. IEEE Trans. Vis. Comp.
Graph. 12, 4, 629–639.

XU, L., LU, C., XU, Y., AND JIA, J. 2011. Image smoothing
via l0 gradient minimization. ACM Trans. Graph. 30, 6, 174:1–
174:12.

YAGOU, H., OHTAKE, Y., AND BELYAEV, A. 2002. Mesh
smoothing via mean and median filtering applied to face nor-
mals. GMP, 124–131.

YAGOU, H., OHTAKE, Y., AND BELYAEV, A. G. 2003. Mesh de-
noising via iterative alpha-trimming and nonlinear diffusion of
normals with automatic thresholding. Computer Graphics Inter-
national Conference, 28–33.

ZHENG, Y., FU, H., AU, O. K.-C., AND TAI, C.-L. 2011. Bilat-
eral normal filtering for mesh denoising. IEEE Trans. Vis. Comp.
Graph. 17, 10, 1521–1530.

