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Abstract.-The bipolar transconductance amplifier (OTA) was commercially introduced in
1969 by RCA. Designers began using OTAs in the middle  80’s, since then the CMOS-
OTA has becoming a vital component in a number of electronic circuits, both in open
loop and in closed loop applications. Here, we will focus on open loop applications.
Continuous-time filters implemented with transconductance amplifiers and capacitors
known as Gm-C or OTA-C are very popular for a host of applications. These applications
involve frequency of operation from a few tents of a hertz up to several gigahertz. Several
of those applications are in medical electronics and seismic area where the frequency
range is between 0.1Hz up to 20Hz. Other applications in the audio range do not
commonly use OTA-C filters because switched-capacitor techniques excel in this range.
But for frequency range of a few MHz like in Intermediate Frequency (IF) filters in RF
receivers OTA-C implementations are very attractive. For a few GHz range applications
where the OTA becomes a simple differential pair there is number of researchers
investigating LC-oscillators and filters. In this tutorial we discuss practical
implementations of transconductance amplifiers oriented for wide range of applications
for example in medical, IF filters, hard disk drive linear phase filters, LC-oscillators and
RF filters. Furthermore the unavoidable tuning scheme to compensate the Gm/C
deviations due to process technology variations is discussed. OTA single ended, fully
differential and pseudo differential versions are introduced together with the common-
mode feedback circuits needed for proper operation of differential architectures.



Continuous-Time Filters from 0.1Hz to 2.0GHz
Outline.-

• Introduction and Motivation

• A family of Transconductance for different
frequency ranges (applications).

• Common-mode feedforward and feedback
strategies needed for differential output filters.

• Frequency- and Q-tuning techniques for
OTA-C filters
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• Medical

• Seismic

• Built-in
generators

• Hard disk
drivers filters
• XDSL
Sigma-delta
ADC
• IF Receiver
filters    
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Typical applications of OTA-C filters and frequency ranges



A few examples of continuous-time
filters in a host of applications

ota



Applications for continuous time
filters

Read channel of disk drives --
for phase equalization and
smoothing the wave form

Top view of a 36 GB, 10,000 RPM,
 IBM SCSI server hard disk, with its
 top cover removed.



Hard Disk Driver Read Channel

LPF is needed to:
Limit signal and noise bandwidth;
Provide anti-aliasing prior to sampling;
Provide significant contribution to overall equalization.

ADC EqualizerLPF
AGC

PreAmp

Detector
Magnetic
Storage

Timing
Recovery

Continuous-Time Analog

Signal Processing

Digital

Signal Processing



Vout

Typical configuration for the measurement of bio-potentials

Output Signal

Block Diagram of a general purpose bioelectric signal acquisition system.

Transducer Preamp Filter Signal Processor

Electrical Signal

Biological System
Analog Processing Blocks

Parameter Typical range

Gain
Bandwidth

Dynamic Range (DR)
CMRR
Zinput
Vnoise
Inoise

1-1000
0.1 Hz-10KHz
60dB-100dB

80-140dB
10MΩ-1GΩ at 60Hz

<10nV/
<1[A/

Hz
Hz

-

+

Differential
Amplifier

Common Mode
     Reference



Continuous-Time Linear Ramp Implementation
LMS Integrator

• The Timer is a cascode current source with Vctrl controlling the gate
voltage of the current source transistor

• The LMS block is an OTA-C integrator with a switch to control the
charging of the capacitor

LMS

Timer

Vctrl

VTARGET

Vout

Reset

Vctrl

Step

VDD

M 1

V
OUT

C R

+

-

Vtarget

Vout from
Timer

Vctrl
+
-



Receivers and Transmitters in wireless
applications -- used in PLL and for
image rejection

6185i digital cell phone
from Nokia.



Low-IF Bluetooth Receiver

RF
Filter

Low Noise
Amplifier

d/dt

Synthesizer
 and VCO

Polyphase
Filter

Demodulator

Data
Out

PLL

Frequency Offset
Tracking and

Canceling Circuit

-
d/dt

RSSI

90

Receiver

ω0 = 2.45GHz

ω0 = 2.45GHz

ω0 = 2 ΜHz

ω1 = 2.448GHz

ω0 = 2 ΜHz

• Active polyphase filter is used to reject image and select
channel.



All multi media
applications --Anti
aliasing before ADC and
smoothing after DAC.
Filters in the Sigma-Delta
Converters

CMP-35 portable MP3 player



Sigma-Delta Oversampled A/D Conversion

Functional level diagram of a general continuous-time
sigma-delta oversampled analog-to-digital converter

Σ∆
modulator

output
(digital)

H(s)
Input

(analog)

Loop Filter

DAC

( Digital-to-Analog
Converter )

Quantizer
Sampler

Decimation
Filter Nyquist

output
(digital)

Σ∆ modulator

High sample
rate, low
resolution

Low sample
rate, high
resolution

Anti-Alias
Filter
(AAF)





OPERATIONAL  TRANSCONDUCTANCE
AMPLIFIER  (OTA)

First commercial OTA produced by RCA in 1969,  i.e., CA3080

Io
V2

V1

Iabc .

Io = gm(Iabc)(V1-V2)
VCVS

The transconductance gain “ gm” is a function of the

gm= h1 Iabc    for bipolar and weak inversion MOSFETs

 gm= h2 [ Iabc]1/2 for MOSFETs in saturation

Iabc

Io = gmVdV1

V2

+
Vd

-



OPERATIONAL  TRANSCONDUCTANCE
AMPLIFIER  (OTA) Frequency Dependence

.

Gm = gmo/ (1 + s/p)

Where gmo is the DC transconductance gain

p is the dominant pole which is around 10MHz to 100Mhz

frequency

gmo

p



Issues about the OTA:

• Operated in open loop conditions

• High-Frequency Operation

• Poor Linearity Range

Gm

Vin

Linearity Range from 50mV to 200 mV



Linearity Issues:

Differential Pair as a V-I converter
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How to improve the linearity ?



Differential Pair with Source Degeneration

Improved linearity

1/n =
1

1 + g m R

HD 2 = 0

id =
2β1I B

2















vd
n

1 −
vin

2n(v
GS

− vT )













2

Ideally

HD 3 =
1

32 n 2

v
in
2

(v
G S

− v
T

)
2



          Active  Source  Degeneration topologies;  (a)  and (b) transistors biased on
triode region and (c) with saturated transistors.
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gm linearization schemes via source degeneration.



Table 3. Properties of OTAs using source degeneration

Reference/Figure Transconductance Properties

Fig. (a)

Fig. (b)

Fig. (c)

3

1
1

4
1

β
β+

mg
Low sensitive to common-mode input
signals.  The linear range is limited to
Vin<VDSAT, and THD=-50 dB.

( )Tgsoxo

m

m

VVCR
Rg

g

−=
+

µ1
1 1

1 Highly  sensitive  to  common-mode  input
signals.   For   better  linearity   large  VGS3
voltages are required. Large tuning range if
VG is used.

31

1

/1 mm

m

gg
g

+

Low   sensitive   to  common-mode   input
signals.   Limited  linearity   improvement,
HD3  reduces  by  -12  dB.   More  silicon 
area is required.M1=M2

M1=M2, M3=M4



A Linear CMOS OTA Macromodel
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           Single Input (a) Negative  Simple Transconductor,  (b) Cascode  Transconductor,  (c) Enhanced Trans-
           conductor, (d) Folded-Cascode Transconductor, (e) Positive Simple Transconductor.

Ib
Ib IbIb

io
vin

M1 vb
vbvb

+
- M2

M1
vin

Ib

io

1:1

vinIb2

M2

M1
vin

(a) (b) (d) (e)(c)

M2

M1

A

ioio

vin

io

• Observe that:
    gm = f(Ib), the exact relation is a function of the  transistor region 
    of operation.
• Note that output impedance of (a) and (e) are only 1/gds and (b),(c) and (d)
  implementations have larger output impedances.

Single-input Transconductor (ST)  Implementations



Properties of Simple (single input/ single output) Transconductors 

Structure/
Figure

Rout Min VDD *

Simple/1(a)

1

1

dsg BI,sat
B V

k
I +2

Cascode/l(b)

2

2

1 ds

m

ds g
g

g
( )

BI,sat
B V

k
I

m ++ 2
1

Enhanced/1(c)

2

2

1 ds

m

ds
g
g

g
A ( )

BI,sat
B V

k
I

m ++ 2
1

Folded/1(d)
2

2

1 ds

m

ds g
g

g     
BI,satTp

B VV
k
I ++2

* The bottom devices of the cascode pairs have an aspect ratio of (W/L )1/(W/L)2=m2. k is
a technological parameter determined by the mobility, and the gate oxide; Vsat,IB is the
saturation voltage for the I B current source.



Based on the simple (single input) transconductance
how can one generate differential input/single output

and fully differential  transconductances?

Ib

Single
Transconductor

(ST)
vin

io

Vdd

-Vss or ground

Basic Building Block



(ST) (ST)

Itail

Current-
Mirror

vin+vin-

ioIb

Vdd

vin+

io+

vin-

Ibio-

(ST) (ST)

Itail

Differential Input -
Differential Output

Differential Input -
Single-ended Output

Two possible implementations of OTAsTwo possible implementations of OTAs



IB

M1 M1

io

vi
+ vi

-

Differential Pair

Current-
Mirror

Basic  Differential Transconductance (Single-ended)

• Both current-mirror and/or
   differential pair can be simple
   or more complex to improve 
   performance and/or  to increase 
   design tradeoffs



VB

Vi+ Vi-

IB

Io+ Io-

FG DP Implementation

M1 M2

IB

VB

Vi+ Vi-
ViFG+ ViFG-

Io+ Io-

C1

C2 C2'

C1'

FG DP Equivalent circuit

M1 M2IB

Io+ Io-

Vi-
Vi+

VB

 Bulk Driven DP

Potential Solutions for Rail-to-Rail Amplifiers:
 OTAs suitable for Low Frequency Applications
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ITAIL

M1 M2
Vin

- +Vin

io

CMp

-+ VinVin

ITAIL

M1 M2

Vo

Three Conventional Differential Input –Single Ended OTAs

(a) Simple differential input OTA. (b) Balanced OTA
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-

io
Vin

Vin

+

-

+
inv

vb1

vB2

vout

vb1

(c)  Cascode

−
inv



High DC Gain Differential OTA

“amp”

Transistors M1 operate in Linear region: Wide linear range; Large tuning range;

RGC loop: Fix VDS1    better linearity.

M2
2GV

M4

M3

amp

M1

M2
2GV

M4

M3

amp

M1

VDD

1DV 1DV

CMFBVCMFBV

BIASV
BIASV

oCM vV − oCM vV +

iCM vV −
iCM vV +

TUNEV TUNEV

VDD

2GV

M2M2

M3M3

1DVM1

TUNEV



Basic Operational Transconductance Amplifier Characteristics

DESIGN CONSIDERATIONS:

vd = v1-v2 < VDSAT

V1,2 -VSS >VGS1+VDSATB

( )

( )21mout

21BOXnout
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Simple OTA Design Equations
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Simple OTA Frequency Response
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VERY LOW FREQUENCY FILTERS

The Design of Analog Circuits below 100 Hz 

is not trivial

• RC > 0.001 sec
• if C = 10 pF then R > 100 MOHMS

• for a 1 Hz filter (pace makers and other applications)
 
•C = 10 pF,    R = 628 GOHMS  (Gm = 2 pA/V)

• C = 1000 pF,    R = 6.28 GOHMS  (Gm = 2 nA/V)



WE NEED SMALL GWE NEED SMALL GMM

• We need very small gm for very low frequency applications

• As an example, for τ = 1s and gm = 16nA/V, CL = 1.6 nF !!

• For a POLY-I POLY-II Capacitor ( C/A ~ 600 aF/µm2 ) in the
  AMI 1.2µ process, this means a Si area of 2.7 mm2 !! =>
  Impractical for IC’s ( Tiny chip area ~ 4 mm2 )

For the basic OTA-C integrator,

L 

m

m C 2
gf

g π
τ =⇔= LC



Possible Solutions for high-performanceVery small transconductance

OTA’s circuits involve operating transistor in their transistion region and:

•    Current division techniques

•    Floating Gate Techmiques

•    Bulk- Driven transistors

•Impedance scalers

•Z==> NZ or Z/N  (C ==> NC)

•low-noise impedance scalers

•small silicon area

Analog and Mixed-Signal Center, TAMU



IMPEDANCE SCALERS

vi

CiC

iC v)sC(i =

vi

Ciin

-AV vi

( )( ) iVin vA1sCi +=

Single capacitor Voltage amplifier Current amplifier

vi

CiC NiC

iin

( )( ) iin vN1sCi +=

Remarks:
Voltage amplification is useless for low-voltage continuous-time filters.

Impedance scaler based on currrent amplification is precise for moderated N.



CAPACITOR MULTIPLIER
CIRCUIT IMPLEMENTATION

1     :     N

1  :  Nii

vi

CiC NiC

( ) Ci

i
i1N

vi
i
v

+
=

( )[ ]C1Ns
1Zeq +

=

A

The following conditions must be satisfied:

Low impedance at node A
Transistor output resistance can be neglected
Current gain is precise



0.00 4.00 8.00 12.00
frequency [Hz]

0.00E+0

2.00E-9

4.00E-9

6.00E-9

8.00E-9

cu
rr

en
t [

A
]

scaled capacitor

ideal capacitor 100 pF capacitor.

Scaled capacitor uses a 5 pF

capacitor and N=19.

DESIGN EXAMPLE: Capacitor Multiplier



Design procedure:

MP is optimized for frequency.

N-type transistors are optimized
for precision.

The loop must be stable

IMPROVING ITS FREQUENCY
RESPONSE

Cascode transistor improves
frequency response

1     :     N

1  :  Nii

vi

CiC NiC

VB

MP



CURRENT DIVISION PRINCIPLE
PLUS SOURCE DEGENERATION TRANSCONDUCTANCE
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CURRENT CANCELLATION PRINCIPLE
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PARTIAL POSITIVE
FEEDBACK !!!



OTA FOR VERY LOW-FREQUENCY APPLICATIONS
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Floating Gate plus Current Division OTA

Vi- Vi+

ISS

Vb

VDD

VSS

VSS

M1 M2MM1 MM2

M3 M4M5 M6

M7M8
M9 M10

Vout



Bulk Driven plus Current Deviation OTA

Vi- Vi+

ISS

VG

VDD

VSS

VSS

M1 M2MM1 MM2

M3 M4M5 M6

M7M8
M9 M10

Vout



BULK DRIVEN OTABULK DRIVEN OTA
EXPERIMENTAL RESULTS (0.5 um)EXPERIMENTAL RESULTS (0.5 um)

Input Ch1 214mVpp @ 1 HzInput Ch1 214mVpp @ 1 Hz
Output Ch2 15.2mVppOutput Ch2 15.2mVpp

THD ~ -39dBm ~ 1.1% @214mVpp, 1HzTHD ~ -39dBm ~ 1.1% @214mVpp, 1Hz



EXPERIMENTAL RESULTS FOR THE DIFFERENT OTA DESIGNS

PARAMETER REFERENCE SD+CD FG+CD BD+CD
GM (nA/V) 9.4 9.3 9.2 9.4
HD3(%) 0.9@162mV+pp 1.0@242mVpp 1.1@330mVpp 0.9@900mVpp

Input noise (µVrms) 18.1 26.1 39.1 104.7
SNR@1%HD3(dB) 69.9 70.3 69.5 69.6
IBIAS(nA) 2.6 120 232 560

Key:
SD source degeneration
CD current division
FG floating gate
BD bulk driven



VY+vy

i4

io1 io2
i3

i1 i2

M2M2 M2M2

M2 in saturation

M1 in triode

M1 M1 M1 M1VX+vx

VY+vy

Basic topology of the four-quadrant multiplier

How to make a transconductor with a wide Gm tuning range?
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Fully Differential and Pseudo Differential OTAs

Common - Mode Feedforward and 
Feedback strategies needed for 

differential output filters



Fully Differential OTA CharacteristicsFully Differential OTA Characteristics

Limited linear input rangeLimited linear input range
Limited tuning rangeLimited tuning range

Simple Differential OTA
With tail Currrent Source

VSS

VDD
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+

Vbias

Vout
- Vout

+

Vi
-

M1 M1

M2 M2

Itail

VDD

Vd

Vbias
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-VdM1 M1

M2 M2

VSS

Gm=gm1

Reasonable Common-mode gainReasonable Common-mode gain
Reasonable PSRRReasonable PSRR
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M2 M2

VSS
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m
m Rg
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Differential-ModeDifferential-Mode

Common-ModeCommon-Mode



Fully
Differential
Amplifier

CM (H2)
Level
Sense

Circuit

CM Detector
Reference

Voltage

+

-Vcorrection

H3

VCMC

(H1)

Vin
-

Vin
+ Vo

+

Vo
-

Conceptual Architecture of
Common-Mode Feedback Loop



CM Detector 

Performance Observations
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• High DC offset due to source
followers

• Other buffers can be used to
reduce the DC offset

• Mismatching between the
passive resistors is the dominant
error in α2

• Highly non-linear CM signal
detector

CM Detector 

J.F. Duque-Carrillo, “ Control of the Common-Mode Component in CMOS
Continuous-Time Fully Differential Signal Processing, Analog Integrated 

and Signal Processing,Vol. 4, No.2, pp131-140, Sept. 1993
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CM signal detectors : two conventional cases
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Example of a compensated Op Amp and a CM sense circuit
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Common-mode feedback circuit. (a) Block diagram. (b) Circuit using floating gates.



Pseudo Differential TransconductancePseudo Differential Transconductance

VSS

VDD

Vi
+
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+

Vi
-

M1 M1

M2 M2

Advantages
Suitability for low voltage
Wider common-mode input range

Disadvantages
Poor common-mode gain

   ACM=ADM>>1
Poor PSRR
 Low output impedance
Need for fast and strong Extra
CMFB Circuit to
(1) Fix output common-mode voltage
(2) Suppress common-mode signals

Simple PseudoSimple Pseudo
Differential OTADifferential OTA



Pseudo-Differential OTA with large output impedance

Pseudo-differential OTA RGC amplifier “amp”

Transistors M1 operate in Linear region: Wide linear range; Large tuning range;

RGC loop: Fix VDS1   provides better linearity.
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OTA Design Issues: RGC Loop

OTA Gm’s Linearity: Limited by how well the drain voltage of the input
transistor is fixed.
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Design Issues: Short-Channel Effects
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Behavior of symmetric circuits

Circuit1

Exact
replica

of
Circuit1

V1 V2

Line of symmetry

Inter connections
between the two circuits

Circuit1

Exact
replica

of
Circuit1

V1+ V1- Circuit1

Exact
replica

of
Circuit1

V1 V1

Equivalent circuit for common mode inputEquivalent circuit for fully differential input

An example of fully symmetric circuit



Derivation of CMFF Pseudo-differential OTA

Single ended OTA circuit

iout

Vin M1

M2

iout-

Vin+

iout+

Vin-M1 M1

M2
M2
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Circuit of OTA for common mode signals
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Fully-balanced, fully-symmetric CMFF OTA
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OTA with improved performance
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Transistors operating in
linear region
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Fully-balanced, fully-symmetric, pseudo differential CMFF OTA



What are the Solutions toWhat are the Solutions to

Overcome those Limitations?Overcome those Limitations?



 CMFB FOR OTAS:
Solution 1

Typical OTA connection in
pseudo- differential OTA-C
based circuits.
 The common-mode voltage
is obtained from the input of
the following stage. Poor
PSRR

Pseudo-differential OTAs including the
CMFB for the first one with good PSRR
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A PD Solution 2 In the LiteratureA PD Solution 2 In the Literature

Pseudo differential OTA With CMFFPseudo differential OTA With CMFF

CMFF is applied to cancel the common mode input signalCMFF is applied to cancel the common mode input signal
Add load to the driving stage, input capacitance doublesAdd load to the driving stage, input capacitance doubles
CMFB is still neededCMFB is still needed
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Proposed OTA Block Diagram (solution 3)Proposed OTA Block Diagram (solution 3)

Common-mode detection using the same differentialCommon-mode detection using the same differential
transconductance by making copies of the currenttransconductance by making copies of the current
Input capacitance is not increasedInput capacitance is not increased
CMFF is inherently achievedCMFF is inherently achieved
CMFB can be easily arrangedCMFB can be easily arranged
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How to Implement theHow to Implement the

Proposed OTA?Proposed OTA?



Proposed OTA ArchitectureProposed OTA Architecture
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Combine CMFB and CMFFCombine CMFB and CMFF
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CMFB is arranged exploiting the direct connection of the OTAsCMFB is arranged exploiting the direct connection of the OTAs
Avoid using a separate common-mode detectorAvoid using a separate common-mode detector
Differential-mode signals and common-mode signals shareDifferential-mode signals and common-mode signals share
basically the same loopbasically the same loop



Small Signal AnalysisSmall Signal Analysis

The path from the differential signal to the ouputThe path from the differential signal to the ouput
encounters one poleencounters one pole
The other path is a common-mode pathThe other path is a common-mode path
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Simulation ResultsSimulation Results

 Output voltage applying common-mode current step (Icm)
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How to use OTAs as CM Detector?How to use OTAs as CM Detector?

 A  A 22ndnd Order Filter is used as an example Order Filter is used as an example
Exploit direct connection of the cascaded OTAs in the filterExploit direct connection of the cascaded OTAs in the filter
Differential OTA used as CM detector alsoDifferential OTA used as CM detector also

_

+

+
_

+

-

+
_

_

+

+
_

_

+

+

_
1mg 2mg

CVin
+

Vin
-

VBP1
+

VBP1
-

VLP1
-

VLP1
+

CMFB
Information

1mg 1mg

CMFB
Information

CC

C



How to design filters operating 
in microwave frequencies ?



Q-Enhancement Bandpass Filters
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A CMOS Programmable RF Bandpass
Filter

Programmable in:
•Peak Gain (not exploited previously)
•Filter Q
•Center Frequency
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A CMOS Programmable Bandpass Filter

• The peak gain programmability through the input Gm stage.

• Increasing Q also increases the peak gain.

• If ωοand Q are fixed, the peak gain can be modified through
Gm.
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Measured Q-Tuning

Q~170

Q~20

More than 3
octaves at

fo=2.16GHz
 5dB/div

30
M

Hz



Measured Frequency Tuning

1.93GHz 2.19GHz

13% around 
2.1GHz with 

Q~100



Measured Peak Gain Tuning

Around 
2 octaves with
fo=2.12GHz
and Q=40

Providing gain at
the ωο of an
image-reject filter
is useful in a
receiver front-end
after the LNA, to
relax the NF spec
of the mixer.





Need for Automatic Tuning

• Process variations can change fo and Q by at least 20%
• Parameters also change with temperature and

time(aging)

• Automatic tunining is a critical issue for the optimal
    performance of continuous-time circuits.



Methods of tuning

• Master-Slave
• Based on trigonometric properties
•  Based on filter phase information
• Pre-tuning
• Burst tuning
• Switching between two filters



Automatic Frequency Tuning Scheme
BASED ON TRIGONOMETRIC FUNCTION PROPERTIES

sin2x + cos2x = 1

Integrator--Gm & C:

Level shifter--Maximize the linear range of the automatic tuning system.
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Reference Signal

fo- voltage
control

Q- voltage
control

Master
Filter

Frequency
Control

Q-
Control

Main Filter (Slave)
OutputInput



Frequency Tuning
Phased-Locked Loop (PLL)

• Most widely used scheme
• Accurate (less than 1% error is reported)
• Square wave input reference
• Only Phase - Frequency Detector, and LPF are the

additional components
• It may take a large area overhead

VCF, VCO, Single OTA, Peak detect, adaptive….



Q Tuning Schemes

Based on an envelope detector and a switched-
capacitor integrator. It yields an accuracy of
about 30%

Modified LMS
• Q-accurate of about 1%
•  It does not use envelope detector
• Square wave input, any periodic function is sufficient
• Independent of frequency tuning



Adaptive LMS Algorithm:
Introduction

• Called Adaptive “Least-Mean-Squares”
Algorithm because it learns by minimizing
the mean-square error (MSE) between a
desired response and the actual response of
a system

• Minimizes error by updating system
coefficients through a feedback loop



Adaptive LMS Algorithm:  Theory
• Using the steepest descent algorithm to

minimize the MSE we obtain:
• W(t) = k[d(t) - y(t)]G(t) = k[e(t)]G(t)

– W(t) = tuning signal
– d(t) = desired system output
– y(t) = actual system output
– G(t) = tuning gradient (partial derivative of y(t)

with respect to W(t))
– k = adaptation constant



LMS Algorithm:  Block Diagram
(Linear System)

Tunable
Circuit +

1/s

X(t) y(t)

d(t)

+

-

W(t)
e(t)=error signal

W(t)

G(t)=X(t)



Stevenson, J.M.; Sanchez-Sinencio, E    “An accurate quality factor tuning scheme for IF and 
high-Q continuous-time filters”. IEEE Journal of Solid-State Circuits, Volume: 33 
No.12 , Dec. 1998 , Page(s): 1970 -1978

• Three Filters are needed
• An accurate attenuation
1/QD block is required
• Reference signal does not
need to be a pure sinusoid

BP Filter

LP Filter

Comparator
Reference Clock

BP
Filter

Integrator

Q

f

Q

f

Q

BP Filter

f

1/QD

Phase
Detector

VCO



An enhanced  Q-tuning scheme

   New implementation of modified-LMS Q-tuning scheme. Note that the
LMS has been implemented in a different way yielding a structure with
less offset voltages. See reference for more details.

BP Filter

Integrator

Input reference
1/Q



The enhanced tuning scheme
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Improvements over the previous
Tuning scheme comparison

• Area overhead decreased
    (Previous scheme => 2 extra filters
      New scheme => 1 extra filter )

• Eases the matching restrictions
    (Previous tuning scheme => match 3 filters
     New tuning scheme => match 2 filters )

• Improves accuracy of tuning
    (New tuning scheme is more tolerant to offsets than the previous one)
    The Q-tuning loop speed can be equal to the f0-tuning loop for optimal

performance



Simulated results for tuning scheme
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Die Photograph

900um

900um



Buffer Characterization

This response should be subtracted from other plots to get actual response

Experimental results



• Qs of 16, 5 and 40 at 80,95 and 110 MHz

Experimental Q tuning range results



DM-CM response of the filter

• CMRR is more than 40dB in the band of interest



Supply response of the filter

• PSRR- is more than 40dB in the band of interest



Noise response of the filter

• Total integrated noise power at the output= -60dBm



Two-tone inter-modulation test

• IM3 of 45dB when the input signal is 44.6mV



• The tuning works!

Filter response for four different ICs
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