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1.i) Obtain the transfer function of circuit shown below assuming ideal Op Amp 

 

Figure P1.1. 

We start by finding the T-network equivalent impedance given by 𝑍𝑒𝑞 = 𝑍1 + 𝑍2 + 𝑍1𝑍2/𝑍3. With this we can 

simply write the gain as an inverting amplifier. 

 
𝐻(𝑠) =

𝑍𝐹

𝑍𝑒𝑞

=
𝑍𝐹

𝑍1 + 𝑍2 +
𝑍1𝑍2

𝑍3

 
(P1.1) 

 

1.ii) Let 𝒁𝟏 = 𝒌𝑹𝟏, 𝒁𝟐 = (𝟏 − 𝒌)𝑹𝟏, 𝒁𝑭 = 𝑹𝟏, and 𝒁𝟑 = 𝟏/𝑪𝟑𝒔. Identify the filter type and sketch the 
Bode Plot 

By assuming the impedances indicated by the instructions we obtain the following expression 

 𝐻(𝑠) =
1

1 + 𝑘𝑅1𝐶3(1 − 𝑘)𝑠
 (P1.2) 

 

This expression shows the behavior of a single pole low pass filter, which pole position depends on the 
value of k, where its limits are 0 < k < 1, given that the if k is outside of those limits 𝑅1𝑜𝑟 𝑅2will become 
negative and that is not possible for passive components. 

To sketch the bode plot of (P1.2) we assume 𝐶3 = 𝑅1 = 1. The following figure shows the behavior of (P1.2) 
for different values of k, where the expected behavior is appreciated. 

 

Figure P1.2 Bode plot for (P1.2) with Z3 = 1/C3s 
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1.iii) Same as before but not Z3 is the input impedance shown below with A2 non ideal. 

 

Figure P1.3 

From circuit analysis we find that the equivalent input impedance for figure P1.3 is given by 

 𝑍3 =
𝑅3𝑅5 + [(

1
1 + 𝐴(𝑠)

) (𝑅4𝑅5 + 𝑅3𝑅4𝑅5𝐶𝑠)]

𝑅3 + 𝑅3𝐶(𝑅5 + 𝑅4)𝑠
 

 

(P1.3) 

From (P1.2) if we were to assume and ideal op amp (𝐴(𝑠) → ∞) the input impedance will be the parallel 

combination of 𝑅5 and 𝐶, with a contribution by 𝑅4 as the frequency increases.  

Now to find the transfer function we reevaluate (P1.1) with 𝑍3 as the expression in (P1.3) due to the length 
of the equation we write the transfer function without substituting A(s), obtaining the following expression. 

𝐻(𝑠)

=
𝑅3𝑅5 + [(

1
1 + 𝐴(𝑠)

) (𝑅4𝑅5 + 𝑋3𝑠)]

[𝑘2𝑅1𝑅3 − 𝑘𝑅1𝑅3 − 𝑅3𝑅5 + (
1

1 + 𝐴(𝑠)
) (𝑘2𝑅1𝑅4 − 𝑘𝑅1𝑅4 − 𝑅4𝑅5)] + [𝑘2𝑋1(𝑅4 + 𝑅5) − 𝑘𝑋1(𝑅4 + 𝑅5) + (

1
1 + 𝐴(𝑠)

) (𝑘2𝑋2 − 𝑘𝑋2 − 𝑋3)] 𝑠
 

 

Where 𝑋1 = 𝑅1𝑅3𝐶, 𝑋2 = 𝑅1𝑅4𝑅5𝐶, 𝑋3 = 𝑅3𝑅4𝑅5𝐶. Following the same procedure as before we assume all 
component values as 1 and substitute 𝐴(𝑠) = 𝐺𝐵/𝑠 to find an expression in terms of GB, k and s. 

 𝐻(𝑠) =
𝐺𝐵 + 2𝑠 + 𝑠2

[𝑘2𝐺𝐵 − 𝑘𝐺𝐵 − 𝐺𝐵] + [2𝑘2 + 2𝑘2 − 2𝑘𝐺𝐵 − 2𝑘 − 2]𝑠 + [3𝑘3 − 3𝑘 − 1]𝑠2
 (P1.4) 

 

The following figures show the bode plot for (P1.4) for different GB and k. 
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(P1.4) shows a behavior like a notch filter where the k controls the selectivity and GB controls the 
attenuation.  
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2) Obtain the H(s) using Butterworth, inverse Chebyshev and elliptic approximations that meet the 
following specs: Amax = 0.25dB, Amin = 18dB, and ws = 1.4M rad/s, wp = 1M rad/s. 

In order to obtain the approximations needed we use the following MATLAB code 

%Butterworth 

[nbut,Wn] = buttord(Wp,Ws,Rp,Rs,'s'); %Returns the minimum order and Cutoff Frequency 

[zbut,pbut,kbut] = butter(nbut,Wn,'s'); %Find the poles and zeros for the transfer function 

Hbut = zpk(zbut,pbut,kbut); %Creates the Transfer Function 

 

%Inverse Chevi (type II) 

[Nch2,Wchs] = cheb2ord(Wp,Ws,Rp,Rs,'s'); %Returns the minimum order and Cutoff Frequency 

[z,p,k] = cheby2(Nch2,Rs,Wchs,'s'); %Find the poles and zeros for the transfer 

Hch2 = zpk(z,p,k); %Creates the Transfer Function 

 

%Elliptic 

[Nel,Wel] = ellipord(Wp,Ws,Rp,Rs,'s'); %Returns the minimum order and Cutoff Frequency 

[z,p,k] = ellip(Nel,Rp,Rs,Wel,'s'); %Find the poles and zeros for the transfer 

Hel = zpk(z,p,k); %Creates the Transfer Function 

 

The functions buttord, cheb2ord, and ellipord finds the minimum filter order that complies with the 
specifications given. In the code Rp = Amax, Rs = Amin. 
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The previous figures show the behavior of the designed filters and the markers show that the restriction for 
passband, stopband, and the maximum gain is achieved. The abrupt change in phase is due to the 
closeness of the zeros in the transfer function. 

The Butterworth filters is of 11th order and is compromised by 5 second-order filters cascaded with one 
extra first order filter. 

𝐻𝐵𝑢𝑡𝑡𝑒𝑟(𝑠) = (
1.16𝑒6

𝑠 + 1.16𝑒6
) (

1.347𝑒12

𝑠2 + (2.227𝑒6)𝑠 + 1.1347𝑒12
) (

1.347𝑒12

𝑠2 + (1.952𝑒6)𝑠 + 1.1347𝑒12
) (

1.347𝑒12

𝑠2 + (1.52𝑒6)𝑠 + 1.1347𝑒12
) 

(
1.347𝑒12

𝑠2 + (9.641𝑒5)𝑠 + 1.1347𝑒12
) (

1.347𝑒12

𝑠2 + (3.303𝑒5)𝑠 + 1.1347𝑒12
) 

The inverse Chebyshev filter is of 5th order and is compromised by 2 second-order filters cascaded with 
one extra first order filter. 

𝐻𝐶ℎ𝑒𝑏𝑦𝑠ℎ𝑒𝑣(𝑠) = (
8.683𝑒5

𝑠 + 2.356𝑒6
) (

𝑠2 + 2.07𝑒12

𝑠2 + (3.956𝑒5)𝑠 + 1.508𝑒12
) (

𝑠2 + 5.41𝑒12

𝑠2 + (1.883𝑒6)𝑠 + 2.742𝑒12
) 

The elliptic filter is of 4th order and is compromised by 2 second-order filters cascaded. 

𝐻𝐸𝑙𝑙𝑖𝑝𝑡𝑖𝑐(𝑠) = 0.12589 (
𝑠2 + 1.425𝑒12

𝑠2 + (1.188𝑒6)𝑠 + 8.841𝑒11
) (

𝑠2 + 5.265𝑒12

𝑠2 + (1.697𝑒5)𝑠 + 1.099𝑒12
) 

A table is provide next summarizing the minimum and maximum Q, in addition with a settling time 
measurement for 1% for a step input. 

MEASUREMENT BUTTERWORTH INVERSE CHEBYSHEV ELLIPTIC 

QMIN 0.5211 0.8793 0.7914 
QMAX 3.513 3.1479 6.1775 

1% SETTLING TIME 23.756μs  17.942μs 32.936μs 
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3) Design a LP second-order filter using the Tow-Thomas topology with HLP(0)=1, wo = 2π x106 rad/s, 
and Q = 2. 

i) Assume 𝑨(𝒔) → ∞ 

R3

R1

C1 r r R2 C2R4Vi Vo

 

Figure P3.1 Tow-Thomas Low Pass Topology 

Figure P3.1 shows the schematic for a Tow-Thomas low pass filter topology, for which we have the following 
expression for its transfer function. 

𝐻(𝑠) = −
(

𝑅3

𝑅4
) (

1
𝑅2𝑅3𝐶1𝐶2

)

𝑠2 + 𝑠 (
1

𝑅1𝐶1
) +

1
𝑅2𝑅3𝐶1𝐶2

=
𝐻𝑜𝑤𝑜

2

𝑠2 +
𝑤𝑜

𝑄
𝑠 + 𝑤𝑜

2
  

From which we can find the component values needed by making 𝑅2 = 𝑅3 = 𝑅4 = 𝑅, and 𝐶1 = 𝐶2 = 𝐶, thus 
we can now express the coefficients as 

𝑤𝑜 =
1

𝑅𝐶
, 𝑄 =

1

𝑤𝑜𝑅
, 𝑅1 = 𝑄𝑅, 𝐻𝐿𝑃(0) = 1 

Now we find the component values to be 

R1 = 15.914kΩ  ≈ 16kΩ  C = 20pF R = 7.957kΩ ≈ 8kΩ  
   

We will use Simulink to represent the system as block diagram, simulate the filter and later add non-
idealities 

 

Figure P3.2 Block Diagram Representation. 

In the following figure we show the bodeplot for the filter with the component values that we found.  
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Figure P3.3 Frequency Response for Tow-Thomas Low Pass Filter 

We see the expected behavior of the ideal low pass filter with the peaking at the cutoff frequency due to 
the Q value. 

ii) Assume A(s) = GB/s, with 𝑮𝑩 = 𝟏𝟔𝒙𝟏𝟎𝟔𝒙𝟐𝝅 𝒓𝒂𝒅/𝒔 

The Tow-Thomas topology is composed by an inverting amplifier, a lossy integrator and a lossless 
integrator.  

In order to consider the non idealities caused by the lossless integrator we substitute the ideal integrator 
block (1/s) by  

𝐻𝑖𝑛𝑡(𝑠) =
−1

𝐺𝐵𝑠2 + 𝑠
 

The inverting amplifier block is replaced for a transfer function that represents the non-idealities of the op 
amp with 

𝐻𝑖𝑛𝑣(𝑠) =
𝐻𝑖𝑑𝑒𝑎𝑙

1 +
1 + 𝐻𝑖𝑑𝑒𝑎𝑙

𝐴(𝑠)
 

=
1

1 + (
2𝑠
𝐺𝐵

)
 

Now for the lossy integrator we can consider the parallel combination of 𝑅1 and 𝐶1 as a single impedance 

𝑍𝐹 and consider the expression found in the previous homework for the non-ideal summing amplifier 

𝑉𝑜𝑙𝑜𝑠𝑠𝑦
=

−1

1+
𝑍𝐹𝑌𝑇𝑜𝑡𝑎𝑙

𝐺𝐵/𝑠

[𝑉𝑖𝑍𝐹/𝑍4 + 𝑉𝑜𝑍𝐹/𝑍3 ] Where 𝑍𝐹 = (𝑅1||
1

𝐶1𝑠
), and 𝑌𝑡𝑜𝑡𝑎𝑙 =

1

𝑅3
+

1

𝑅4
+

1

𝑅1
+ 𝐶1𝑠 

This notation allows us to isolate the ideal gain for each input while still consider the non-idealities of the 
op amp.  
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Figure P3.4 Block Diagram Representation with Non idealities. 

The following figure show the bode plot for the filter considering non-ideal op amps. 

 

Figure P3.5 Bode plot for Tow-Thomas Low Pass Filter with Non-idealities 

In the same fashion that occurred in the KHN low pass filter the gain is almost doubled and the phase also 
suffer from the error. The following table summarizes the comparison of results from these simulations. 

Measurement Ideal Op Amp Non-ideal Op Amp Error % 

Magnitude @ wo 5.95dB 11.7dB +93% 
Phase @ wo -270° -287° +6.3% 

 

iii) Modify the integrators to cancel the non-idealities 

For this section we will apply the same technique that we used in the previous homework to add a series 
resistor to the feedback capacitor in the lossless and lossy integrator. 

By placing a 𝑅𝑐 resistor in series with the feedback capacitor we create a zero that can cancel the parasitic 

pole created by the op amp, by defining the value 𝑅𝑐 =
1

𝐺𝐵𝐶
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R C

Vi

Vo

Rc

 

Figure P3.6 Compensated RC Integrator 

This leads the transfer function to be 

𝐻(𝑠) =
1

𝑅𝐶𝑠 (1 +
1

𝐺𝐵𝑅𝐶
)

 𝑖𝑛 𝑤ℎ𝑖𝑐ℎ
1

𝐺𝐵𝑅𝐶
≈ 0 

The following figure shows the bode plot of the three systems designed so far, the low pass filter with ideal 
op amps, the one with non-ideal op amps and the compensated integrators. 

 

Figure P3.7 Bode Plot Comparison for the three design cases. 

In figure P3.7 we can see that the Compensated response is closest to the ideal response, however since 
the inverting amplifier doesn’t have any kind of compensation to reduce the non-idealities of its op amp we 
still see an error although is small. 

Measurement Ideal Op Amp Non-ideal Op Amp Error % Compensated Error % 

Magnitude @ wo 5.95dB 11.7dB +93% 8.38dB 32% 
Phase @ wo -270° -287° +6.3% -280° 3.7% 

 

The simulations and errors reported so far were done by using GB = 16wo, as we know from the previous 
homework if we increase the GB we can reduce the error, for this reason the following table shows the 
minimum GB needed for 1% error in magnitude for each of the systems we decided in this section. 
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Measurement Ideal Op Amp Non-ideal Op Amp Compensated 

Magnitude @ wo 5.95dB 6.03 5.99dB 

Phase @ wo -270° -270° -272° 

Minimum GB for 1% error - 800 * wo 31 * wo 

 

The Compensated integrators need a much lower GB to reduce the error than the non-compensated does, 
although the design can be more complex when adding the compensation components. Overall it is a good 
trade-off, as the power needed to achieve such GB is considerable smaller in comparison if we didn’t add 
the compensation. 

 


