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1.i) Obtain the transfer function of circuit shown below assuming ideal Op Amp

Figure P1.1.

We start by finding the T-network equivalent impedance given by Z,., = Z, + Z, + Z,Z,/Z;. With this we can
simply write the gain as an inverting amplifier.
ZF ZF

Hs)=-t=—""——
Zew 7,4 2,1 L2l (PL.1)
3

l.ii) Let Zy = kR, Z, = (1 — k)R, Zr = R4, and Z3 = 1/C;s. Identify the filter type and sketch the
Bode Plot

By assuming the impedances indicated by the instructions we obtain the following expression

1

HE) = T rc.a s

(P1.2)

This expression shows the behavior of a single pole low pass filter, which pole position depends on the
value of k, where its limits are 0 < k < 1, given that the if k is outside of those limits R,or R,will become
negative and that is not possible for passive components.

To sketch the bode plot of (P1.2) we assume C; = R; = 1. The following figure shows the behavior of (P1.2)
for different values of k, where the expected behavior is appreciated.

Z3=1/C3s
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Figure P1.2 Bode plot for (P1.2) with Z; = 1/Css
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1.iii) Same as before but not Z3 is the input impedance shown below with A2 non ideal.

Z3 AZ

Figure P1.3
From circuit analysis we find that the equivalent input impedance for figure P1.3 is given by

1
B R3R5 + [(m) (R4R5 + R3R4RSCS)

T =
3 R; + R3C(Rs + Ry)s

(P1.3)

From (P1.2) if we were to assume and ideal op amp (A(s) — o) the input impedance will be the parallel
combination of Ry and C, with a contribution by R, as the frequency increases.

Now to find the transfer function we reevaluate (P1.1) with Z; as the expression in (P1.3) due to the length
of the equation we write the transfer function without substituting A(s), obtaining the following expression.

H(s)
R3Rs + [(%A(s)) (R4R5 + X3s)]

(k?R R, — kR\R, — R4R5)] + [kzXl(R4 +Rs) —kX; (R, + Rs) + (

k2R,R; — kR,Rs — RyRs + (

)(k2X2 kX, — X s

;) _ 1
1+ A(s) 1+ A(s)

Where X; = Ry{R;C, X, = R{R,R:C, X5 = R3R,R;C. Following the same procedure as before we assume all
component values as 1 and substitute A(s) = GB/s to find an expression in terms of GB, k and s.

H(s) = GB + 25 + 5?2 (PL.4)
) = k2GB — kGB — GB] + [2k? + 2k? — 2kGB — 2k — 2]s + [3k® — 3k — 1]s2 '

The following figures show the bode plot for (P1.4) for different GB and k.

Z3 = Non-ldeal Op Amp, GB = 1e3

102 107! 10° 10" 102 108
Frequency (Hz)
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Z3 = Non-ldeal Op Amp, GB = 1e6
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Z3 = Non-ldeal Op Amp, GB = 1e9
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(P1.4) shows a behavior like a notch filter where the k controls the selectivity and GB controls the

attenuation.
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2) Obtain the H(s) using Butterworth, inverse Chebyshev and elliptic approximations that meet the
following specs: Amax = 0.25dB, Amin = 18dB, and ws = 1.4M rad/s, wp = 1M rad/s.

In order to obtain the approximations needed we use the following MATLAB code

$Butterworth

[nbut,Wn] = buttord(Wp,Ws,Rp,Rs, 's'); %Returns the minimum order and Cutoff Frequency
[zbut,pbut, kbut] = butter (nbut,Wn, 's'); %Find the poles and zeros for the transfer function
Hbut = zpk(zbut,pbut,kbut); %Creates the Transfer Function

%Inverse Chevi (type II)

[Nch2,Wchs] = cheb2ord(Wp,Ws,Rp,Rs, 's'"); %Returns the minimum order and Cutoff Frequency
[z,p,k] = cheby2 (Nch2,Rs,Wchs, 's'); %Find the poles and zeros for the transfer

Hch2 = zpk(z,p,k); %Creates the Transfer Function

$Elliptic

[Nel,Wel] = ellipord(Wp,Ws,Rp,Rs,'s'); SReturns the minimum order and Cutoff Frequency
[z,p, k] = ellip(Nel,Rp,Rs,Wel, 's'); %Find the poles and zeros for the transfer

Hel = zpk(z,p,k); %Creates the Transfer Function

The functions buttord, cheb2ord, and ellipord finds the minimum filter order that complies with the
specifications given. In the code Rp = Amax, Rs = Amin.

Butterworth 11th Order
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Elliptic Low Pass Filter 4th Order
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The previous figures show the behavior of the designed filters and the markers show that the restriction for
passband, stopband, and the maximum gain is achieved. The abrupt change in phase is due to the
closeness of the zeros in the transfer function.

The Butterworth filters is of 11t order and is compromised by 5 second-order filters cascaded with one
extra first order filter.

1.16e6 ) ( 1.347e12 )( 1.347e12 )( 1.347e12 )

H = (
putter (5) s+ 1.16e6/ \s2 + (2.227e6)s + 1.1347e12/ \s2 + (1.952e6)s + 1.1347e12/ \s2 + (1.52e6)s + 1.1347e12

( 1.347e12 ) ( 1.347e12 )
52+ (9.641e5)s + 1.1347e12/ \s? + (3.303e5)s + 1.1347e12

The inverse Chebyshev filter is of 51 order and is compromised by 2 second-order filters cascaded with
one extra first order filter.

H (s) = ( 8.683e5 ) s% + 2.07e12 s* + 5.41e12
chebyshev'S) = \ T 35606) \ 5 + (3.95605)s + 1.508¢12 ) \ 52 + (1.883¢6)s + 2.742¢12

The elliptic filter is of 4 order and is compromised by 2 second-order filters cascaded.

Hguipeic(s) = 0.12589 s* + 1425e12 s +5.265e12
.. (s) =0.
Elliptic s? + (118866)3 + 8.841e11 52 + (169765)5 ¥ 1.099¢12

A table is provide next summarizing the minimum and maximum Q, in addition with a settling time
measurement for 1% for a step input.

MEASUREMENT BUTTERWORTH INVERSE CHEBYSHEV ELLIPTIC
Quin | 0.5211 0.8793 0.7914
Quiax | 3.513 3.1479 6.1775

1% SETTLING TIME | 23.756ps 17.942us 32.936ps
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3) Design a LP second-order filter using the Tow-Thomas topology with H p(0)=1, w, = 21 x10° rad/s,
and Q = 2.

i) Assume A(s) - o

Vi R4 Cc1 r r R2 Cc2 Vo

Figure P3.1 Tow-Thomas Low Pass Topology

Figure P3.1 shows the schematic for a Tow-Thomas low pass filter topology, for which we have the following
expression for its transfer function.

H(s) = — (g_i) (m) _ H,w?
45 (g trmas Ot oY

From which we can find the component values needed by making R, = R; = R, = R, and C; = C, = C, thus
we can now express the coefficients as

1 1
= ﬁ' Q= ’ R; = QR, Hp(0) =1

WO
Now we find the component values to be
R1 =15.914kQ = 16kQ C = 20pF R =7.957kQ = 8kQ

We will use Simulink to represent the system as block diagram, simulate the filter and later add non-
idealities

-]
G

| | out
Gant cam megraon

Figure P3.2 Block Diagram Representation.

In the following figure we show the bodeplot for the filter with the component values that we found.
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Low Pass Tow-Thomas Ideal OpAmp
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Figure P3.3 Frequency Response for Tow-Thomas Low Pass Filter

We see the expected behavior of the ideal low pass filter with the peaking at the cutoff frequency due to
the Q value.

ii) Assume A(s) = GB/s, with 6B = 16x10°x2m rad/s

The Tow-Thomas topology is composed by an inverting amplifier, a lossy integrator and a lossless
integrator.

In order to consider the non idealities caused by the lossless integrator we substitute the ideal integrator
block (1/s) by

-1
GBs? +s
The inverting amplifier block is replaced for a transfer function that represents the non-idealities of the op
amp with

Hine(s) =

Higear 1
H' S) = =
mv() 1+1+Hideal 1+(2_S)
A(s) GB

Now for the lossy integrator we can consider the parallel combination of R; and C; as a single impedance
Z and consider the expression found in the previous homework for the non-ideal summing amplifier

-1

lossy 1+ZF:;';)Stal

1 101 1
| A (ViZp/Zy + V,Zp/Z3 ] Where Zp = (R,]| a): and Yyopq = =T ™ + i +Cis

This notation allows us to isolate the ideal gain for each input while still consider the non-idealities of the
op amp.
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Figure P3.4 Block Diagram Representation with Non idealities.

The following figure show the bode plot for the filter considering non-ideal op amps.

Low Pass Tow-Thomas Non-ldeal OpAmp
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Figure P3.5 Bode plot for Tow-Thomas Low Pass Filter with Non-idealities

In the same fashion that occurred in the KHN low pass filter the gain is almost doubled and the phase also
suffer from the error. The following table summarizes the comparison of results from these simulations.

Measurement Ideal Op Amp Non-ideal Op Amp Error %
Magnitude @ wo 5.95dB 11.7dB +93%
Phase @ wo | -270° -287° +6.3%

iii) Modify the integrators to cancel the non-idealities

For this section we will apply the same technique that we used in the previous homework to add a series
resistor to the feedback capacitor in the lossless and lossy integrator.

By placing a R, resistor in series with the feedback capacitor we create a zero that can cancel the parasitic

pole created by the op amp, by defining the value R, = .

GBC
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Figure P3.6 Compensated RC Integrator

This leads the transfer function to be

1 . .
H(S) = m in which GBRC
GBRC

The following figure shows the bode plot of the three systems designed so far, the low pass filter with ideal
op amps, the one with non-ideal op amps and the compensated integrators.
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Figure P3.7 Bode Plot Comparison for the three design cases.

In figure P3.7 we can see that the Compensated response is closest to the ideal response, however since
the inverting amplifier doesn’t have any kind of compensation to reduce the non-idealities of its op amp we
still see an error although is small.

Measurement Ideal Op Amp Non-ideal Op Amp Error % Compensated Error %
Magnitude @ wo 5.95dB 11.7dB +93% 8.38dB 32%
Phase @ wo -270° -287° +6.3% -280° 3.7%

The simulations and errors reported so far were done by using GB = 16w,, as we know from the previous
homework if we increase the GB we can reduce the error, for this reason the following table shows the
minimum GB needed for 1% error in magnitude for each of the systems we decided in this section.
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Measurement Ideal Op Amp Non-ideal Op Amp Compensated

Magnitude @ wo | 5.950B 6.03 5.99dB
Phase @ wo | -270° -270° -272°
Minimum GB for 1% error ‘ - 800 * wo 31 *wo

The Compensated integrators need a much lower GB to reduce the error than the non-compensated does,
although the design can be more complex when adding the compensation components. Overall it is a good
trade-off, as the power needed to achieve such GB is considerable smaller in comparison if we didn’t add
the compensation.
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