
1 

622 (ESS) 



2 

Filter Approximation Concepts 

How do you translate  filter specifications into a mathematical 

 expression which can be synthesized ? 
• Approximation Techniques 

 

Why an ideal Brick Wall Filter can not be implemented ? 
• Causality: Ideal filter is non-causal 

• Rationality: No rational transfer function of finite degree (n) can have 

such abrupt transition 
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Filter Approximation Concepts 

Practical Implementations are given via window specs. 

Amin 

Amax 

ωc ωs 

Amax = Ap is the maximum attenuation in the passband 

Amin = As is the minimum attenuation in the stopband 

ωs-ωc is the Transition Width 

|H(jω)| 

ω 

1 
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Definitions 

 

 Ripple = 1-Ap 

 Stopband attenuation =As 

 Passband (cutoff 

frequency) = wc 

 Stopband frequency = ws 

1 

wc ws 

Ap 

As 

Filter specs Maximally flat (Butterworth) 

Equal-ripple (Chebyshev) Elliptic 

Approximation Types of Lowpass Filter 
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Approximation of the Ideal Lowpass Filter 

Since the ideal LPF is unrealizable, we will accept a small error in 

the passband, a non-zero transition band, and a finite stopband 

attenuation 

𝐻 𝑗𝜔 2 =
1

1 + 𝐾 𝑗𝜔 2
 

 

• 𝐻 𝑗𝜔 : filter’s transfer function 

• 𝐾 𝑗𝜔 : Characteristic function 

(deviation of 𝑇 𝑗𝜔  from unity)  
 

 For  0 ≤ 𝜔 ≤ 𝜔𝑐 → 0 ≤ 𝐾 𝑗𝜔 ≤ 1 

 For  𝜔 > 𝜔𝑐 → 𝐾 𝑗𝜔  increases very fast 

|H(jω)| 

ω
ωc

Passband Stopband
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Maximally Flat Approximation 

(Butterworth) 
Stephen Butterworth showed in 1930 that the gain of an nth order maximally flat 

magnitude filter is given by  

 

𝐻 𝑗𝜔 2 = 𝐻 𝑗𝜔 𝐻 −𝑗𝜔 =
1

1 + 𝜀2𝜔2𝑛 

 

𝐾 𝑗𝜔 ≅ 0 in the passband in a maximally flat sense 

 

 
𝑑𝑘 𝐾 𝑗𝜔 2

𝑑 𝜔2 𝑘  
𝜔=0

= 0  for 𝑘 = 1,2, … , 2𝑛 − 1 

 
The corresponding pole locations (for 𝜀 = 1) can be determined as follows 

 

𝐻 𝑠 2 =
1

1+
𝑠

𝑗

2𝑛 =
1

1+ −1 𝑛𝑠2𝑛 →  𝑠𝑝
2𝑛

= − −1 −𝑛 = 𝑒𝑗𝜋 2𝑘−1+𝑛   

𝑠𝑝 = 𝑒
𝑗
𝜋

2

2𝑘−1+𝑛

𝑛   𝑘 = 1, … , 2𝑛 



Pole Locations: Maximally flat (ε=1) 

The poles are located on the unity circle at equispaced angles 

𝑠𝑝 = 𝑒𝑗𝜃𝑘 where 𝜃𝑘 =
𝜋

2

2𝑘−1+𝑛

𝑛
      𝑘 = 1,2, … , 2𝑛 

The real and imaginary parts are 

𝑅𝑒 𝑆𝑝 = − sin
2𝑘−1

𝑛

𝜋

2
  Im 𝑆𝑝 = cos

2𝑘−1

𝑛

𝜋

2
 

Poles in the LHP are associated with 𝐻 𝑠  and poles in the RHP are associated with 

𝐻 −s  

𝜽𝒌 𝟎° ±𝟏𝟑𝟓° ±𝟏𝟐𝟎°, 𝟏𝟖𝟎° ±𝟏𝟏𝟐. 𝟓°,±𝟏𝟓𝟕. 𝟓° ±𝟏𝟎𝟖°,±𝟏𝟒𝟒°, 𝟏𝟖𝟎° 
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Magnitude Response of Butterworth Filter 
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Design Example 

Design a 1-KHz maximally flat lowpass filter with:  
• Attenuation at 10 kHz ≥2000 

 

 Normalized prototype: 𝜔𝑐 = 1 𝑟𝑎𝑑 𝑠  , 𝜔𝑠 = 10 𝑟𝑎𝑑 𝑠  

𝐻 𝑗𝜔𝑠
2 =

1

1+𝜔𝑠
2𝑛 ≤

1

2000

2
  →    102𝑛 ≥ 4 × 106  or  𝑛 ≥ 3.3 

 

 Choose 𝑛 = 4 

 Pole locations 

𝑠𝑝 = 𝑒𝑗𝜃𝑘 where 𝜃𝑘 = ±112.5° , ±157.5° 

𝑠𝑝1,2 = −0.383 ± 𝑗0.924 

𝑠𝑝3,4 = −0.924 ± 𝑗0.383 

 Normalized transfer function 

𝐻 𝑠 =
1

𝑠2 + 0.765𝑠 + 1 𝑠2 + 1.848𝑠 + 1
 

 

 

 

𝐻1  

𝑄 = 1.306, 𝜔𝑐 = 1 

𝐻2  

𝑄 = 0.541, 𝜔𝑐 = 1 



10 

Design Example 

 Denormalized transfer function 𝑠 =
𝑠

𝜔𝑐
 

𝐻 𝑠 =
1.5585 × 1015

𝑠2 + 4.8 × 103 𝑠 + 3.95 × 107 𝑠2 + 1.16 × 104 𝑠 + 3.95 × 107  

 

 

 

𝐻1  

𝑄 = 1.306   ,  𝜔𝑐 = 2𝜋103 

𝐻2  

𝑄 = 0.541    ,  𝜔𝑐 = 2𝜋103 
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Design Example -Discussion 

 We can sharpen the transition in the previous 

example by increasing the quality factor of one of 

the two cascaded filters (Q1=3.5 instead of 1.3) 

 

 

 

 

 

 

 To alleviate the peaking problem in the previous 

response, we can reduce 𝜔𝑐2 𝜔𝑐2
′ = 0.6𝜔𝑐1  

 

 

 Passband ripples are now existing 

• They can be tolerated in some applications 

 

 The resulting response has steeper transition than 

Butterworth response 



Equiripple Filter Approximation 

(Chebyshev I) 
This type has a steeper transition than Butterworth filters of the same order but 

at the expense of higher passband ripples 
 

Magnitude response of this type is given by 

 

 𝐻 𝑗𝜔 2 =
1

1+ 𝐾 𝑗𝜔 2 

 

 𝐾 𝑗𝜔 = 𝜀𝐶𝑛 𝜔  
 
 𝐶𝑛 𝜔 = cos 𝑛 cos−1 𝜔     𝜔 ≤ 1 

 

 

 

𝑪𝒏 is called Chebyshev’s polynomial 

|H(jω)|2 

ω
1-1

|K(jω)|2 

ω
1-1

ε-1|K(jω)| 

ω

1-1

1/(1+ε2) 
1

ε2

0

1

-1

Defining the passband area of 𝑲 𝒋𝝎  

Going back and forth in ±1 range for 

𝜔 ≤ 1 



Equiripple Filter Approximation 

(Chebyshev I) 
Chebyshev’s Polynomial  

 𝐶𝑛 𝜔 = cos 𝑛 cos−1 𝜔 =
e𝑗𝑛𝜙+e−𝑗𝑛𝜙

2
  

 

For the stopband (𝜔 > 1) 

 
 𝜙 = cos−1 𝜔  is complex  

 Thus,  𝐶𝑛 > 1 

 

Since  

 cos 𝑛𝜙 = cosh 𝑛𝑗𝜙  

and 

 𝑗𝜙 = cosh 𝜔  

Then 

 𝐶𝑛 𝜔 = cosh 𝑛 cosh−1 𝜔       for     𝜔 > 1  
 

 

𝒏 𝑪𝒏 

0 1 

1 𝜔 

2 2𝜔2 − 1 

3 4𝜔3 − 3𝜔 

4 8𝜔4 − 8𝜔2 + 1 

𝑛 2𝜔𝐶𝑛−1 − 𝐶𝑛−2 

13 
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Properties of the Chebyshev  polynomials 

11))(cosncos(C
1

n ww


In the passband, w<1, Cn is 

limited to 1, then, the ripple is 

determined by e 

  1n21n31n22
n 2n2C

ChebyshevhButterwort


ww

w



Faster response in the stopband  

For n>3 and w>1 

2
n

2

2

C1

1
)j(N

e
w

The -3 dB frequency can be found as:  
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1
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



Pole Locations (Chebyshev Type I) 

 

 

15 



Magnitude Response (Chebyshev Type I) 
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Comparison of Design Steps for Maximally Flat 

and Chebyshev Cases 

17 

Step Maximally Flat Chebyshev 

Find n 𝑛 =
log 100.1𝛼𝑚𝑖𝑛 − 1 / 100.1𝛼𝑚𝑎𝑥 − 1

2 log 𝜔𝑠
 

Round up to an integer 

𝑛 =
cosh−1 100.1𝛼𝑚𝑖𝑛 − 1 100.1𝛼𝑚𝑎𝑥 − 1 0.5

2 cosh−1 𝜔𝑠
 

Round up to an integer 

Find ε 100.1𝛼𝑚𝑎𝑥 − 1 1 2  100.1𝛼𝑚𝑎𝑥 − 1 1 2  

Find pole 

locations 

If 𝑛 is odd  𝜃𝑘 = 0°, ±𝑘
180°

𝑛
 

If 𝑛 is even  𝜃𝑘 = ±𝑘
180°

2𝑛
 

 

Radius = Ω0 = 𝜀−1 𝑛 𝜔𝑝 

−𝜎𝑘 = Ω0 cos 𝜃𝑘   
±𝜔𝑘 = Ω0 sin 𝜃𝑘  

Find 𝜃𝑘 as in Butterworth case 

Find  

𝛼 =
1

𝑛
sinh−1

1

𝜀
 

Then,  

−𝜎𝑘 = sin 𝜃𝑘 sinh 𝛼  

±𝜔𝑘 = cos 𝜃𝑘 cosh(𝛼) 



Inverse Chebyshev Approximation 

(Chebyshev Type II) 
This type has  

• Steeper transition compared to Butterworth filters (but not as steep as type I) 

• No passband ripples 

• Equal ripples in the stopband 

 

Magnitude response of this type is given by 

 𝐻 𝑗𝜔 2 =
1

1+ 𝐾 𝑗𝜔 2 

 

 𝐾 𝑗𝜔 =
1

𝜀𝐶𝑛
1

𝜔

 

 

 𝐶𝑛
1

𝜔
= cos 𝑛 cos−1 1

𝜔
  

1

𝜔
≤ 1 

    𝜔 ≥ 1 

 

 

 

𝑪𝒏 is Chebyshev’s polynomial 

|H(jω)|2 

ω
1-1

|K(jω)|2 

1-1

ε|K(jω)| 

1-1

1/(1+ε-2) 

1

ε-2

0

1

-1

ω

ω

∞ 

∞ 

∞ 

Defining the stopband area of 𝑲 𝒋𝝎  

Going back and forth in ±1 range for 

𝜔 ≥ 1 



Inverse Chebyshev Approximation 

(Chebyshev Type II) 
For the passband (𝜔 < 1) 

 

 𝐶𝑛
1

𝜔
= cosh 𝑛 cosh−1 1

𝜔
 for 𝜔 < 1 

 𝐶𝑛
1

𝜔
≅ 2𝑛−1 1

𝜔

𝑛
  for 𝜔 ≪ 1 

Attenuation 𝛼 

 𝛼 = 10 log 1 +
1

𝜀2𝐶𝑛
2 1

𝜔

 𝑑𝐵 

 𝛼𝑚𝑎𝑥 = 10 log 1 +
1

𝜀2𝐶𝑛
2 1

𝜔𝑝

 𝛼𝑚𝑖𝑛 = 10 log 1 +
1

𝜀2  

 

To find the required order for a certain filtering template 

 𝐶𝑛
2 1

𝜔𝑝
= cosh 𝑛 cosh−1 1

𝜔𝑝
=

10𝛼𝑚𝑖𝑛 10 −1

10𝛼𝑚𝑎𝑥 10 −1

1 2 

 

 

𝑛 =
cosh−1 10𝛼𝑚𝑖𝑛 10 − 1 10𝛼𝑚𝑎𝑥 10 − 1 

1 2 

cosh−1 1
𝜔𝑝

 
19 



Pole/zero Locations (Inverse Chebyshev) 
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Pole/zero locations 

𝐻 𝑗𝜔 2 =
1

1 + 𝜀−2𝐶𝑛
−2 1

𝜔

=
𝜀2𝐶𝑛

2 1
𝜔 

1 + 𝜀2𝐶𝑛
2 1

𝜔 
 

We have imaginary zeros at ±𝜔𝑧,𝑘 where  

𝐶𝑛
2

1

𝜔𝑧,𝑘
= 0 

𝜔𝑧,𝑘 = sec
𝑘𝜋

2𝑛
    , 𝑘 = 1,3,5, … , 𝑛 

If 𝑠𝑘 = 𝜎𝑘 + 𝑗𝜔𝑘 are the poles of Chebyshev filter 

 

Then,  

 𝑝𝑘 = 𝛼𝑘 + 𝑗𝛽𝑘 =
1

𝑠𝑘
 are the poles of inverse Chebyshev filter 

 

Magnitude and quality factor of imaginary poles  

𝑝𝑘 =
1

𝑠𝑘
  𝑄𝑖𝐶ℎ𝑒𝑏 = 𝑄𝐶ℎ𝑒𝑏 



Pole/zero Locations (Inverse Chebyshev) 
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Poles of Chebyshev and inverse Chebyshev filters are reciprocal 

 

Since the poles are on the radial line, they have the same pole Q 

 

Imaginary zeros creates nulls in the stopband  

 
 

n=2 n=3 n=4 n=5 



Magnitude Response (Inverse Chebyshev) 
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Elliptic Filter Approximation 

Elliptic filter 

 
• Equal ripple passband and 

stopband 

 

• Nulls in the stopband 

 

• Sharpest transition band compared 

to same-order Butterworth and 

Chebyshev (Type I and II) 

 

 wjH

w

Im 

Re 

Ellipse 



Pole/zero Locations (Elliptic) 
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Imaginary zeros creates nulls in the stopband  

 
 

n=2 n=3 n=4 n=5 



Magnitude Response (Elliptic) 

 

 

25 



26 

Design Example 

Design a lowpass filter with:  
• 𝜔𝑝 = 1  𝑅𝑝 = 1 𝑑𝐵 

• 𝜔𝑠 = 1.5   𝑅𝑠 = 40 𝑑𝐵 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Matlab function buttord, cheb1ord, cheb2ord, and ellipord are used to find the least order filters that 

meet the given specs. 

 

 

 



Magnitude response 

 

 

 

 

 

 

 

 

 

 

 

 

 
Filter approximation meeting the same specification yield  

Order (Butterworth)> Order (Chebyshev)> Order (Elliptic) 
27 

Design Example 



Pole/zero locations 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note that Chebyshev and Eliptic approximations needs high-Q poles 
28 

Design Example 



Filter order for 𝑅𝑝 = 1 and 𝑅𝑠 = 40 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Eliptic filter always yields the least order. Is it always the best choice ? 
29 

Design example 



 

 

 

 

 

 

 

 

 

 
• Inverse Chebyshev filter has the least overshoot and ringing 

 

• Ringing and overshoots can be problematic in some applications 

 

• The pulse deformation is due to the fact that the filter introduces different time delay 

to the different frequency components (Phase distortion) 

30 

Step response of the design example 



• Consider a filter with a transfer function  

𝐻 𝑗𝜔 = 𝐻 𝑗𝜔 𝑒𝑗𝜙 𝜔  

• Let us apply two sine waves at different frequencies 

𝑣𝑖𝑛 𝑡 = 𝐴1 sin 𝜔1𝑡 + 𝐴2 sin 𝜔2𝑡  

• The filter output is  

𝑣𝑜𝑢𝑡 𝑡 = 𝐴1 𝐻 𝑗𝜔1 sin 𝜔1 𝑡 +
𝜙1

𝜔1
+ 𝐴2 𝐻 𝑗𝜔2 sin 𝜔2 𝑡 +

𝜙2

𝜔2
 

 

• Assuming that the difference between 𝐻 𝑗𝜔1  and 𝐻 𝑗𝜔2  is small, the shape of 

the time domain output signal will be preserved if the two signals are delays by the 

same amount of time 
𝜙 𝜔1

𝜔1
=

𝜙 𝜔2

𝜔2
 

• This condition is satisfied for  

 

𝜙 𝜔 = 𝑡0𝜔        𝑡0 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

 

• A filter with this characteristic is called “linear phase” 31 

Phase Distortion 



• For this type of filters: The magnitude of the signals is scaled equally, and they are 

delayed by the same amount of time 

 

 

 

 

 

 

• The filter transfer function is  

𝐻 𝑠 = 𝐾𝑒−𝑗𝜔𝑡0 

𝐻 𝑗𝜔 = 𝐾 𝜙 𝑗𝜔 = 𝑡0𝜔 

 

• In this types of filters the phase delay 𝜏𝑃𝐷 = −
𝜙 𝑗𝜔

𝜔
, and the group delay 𝜏𝐺𝐷 =

−
𝑑𝜙 𝑗𝜔

𝜔
 are constant and equal 
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Linear Phase Filters 

Filter Vin Vout 

 )t(j

inout

0inout

0Ke)s(V)s(V

)tt(Kv)t(v

w






• For a typical lowpass filter 

𝐻 𝑠 =
𝐾

1 + 𝑎1𝑠 + 𝑎2𝑠2 + ⋯
=

𝐾

1 − 𝑎2𝜔2 + ⋯ + 𝑗𝜔 𝑎1 − 𝑎3𝜔3 + ⋯
 

 

Thus the phase shift is given by 

𝜙 𝜔 = arg 𝐻 𝑗𝜔 = − tan−1
𝑎1 − 𝑎3𝜔3 + ⋯

1 − 𝑎2𝜔2 + ⋯
 

 

• Using power-series expansion  tan−1 𝑥 = 𝑥 −
𝑥3

3
+

𝑥5

5
− ⋯ 

The condition for linear phase is satisfied if  

 

𝜕

𝜕𝜔
tan−1 𝑥 =

𝜕

𝜕𝜔
𝑥 −

𝑥3

3
+

𝑥5

5
− ⋯ = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

 

These are called Bessel polynomials, and the resulting networks are called Thomson 

filters 

33 

Linear Phase Filter Approximation 



• Typically the phase behavior of these filters shows some deviation 
 

 

34 

Linear Phase Filter Approximation 

w 

Ideal response 

Actual response 

𝜏𝐺𝐷 

t0 

• Errors are measured in time 

 

• 𝜏𝐺𝐷 is the Group Delay  

𝜏𝐺𝐷 = −
𝜕𝜙

𝜕𝜔
 

 

 



• All poles 

 

• Poles are relatively low Q 

 

• Maximally flat group delay (Maximally 

linear phase response) 

  

• Poor stopband attenuation 
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Bessel (Thomson) Filter Approximation 

http://www.rfcafe.com/references/electrical/bessel-poles.htm 
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Bessel Filter Approximation 
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Comparison of various LPF Group delay 

Ref: A. Zverev, Handbook of filter synthesis, Wiley, 1967. 
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Transform your filter specs into a normalized LPF 

 

Filter order, zeros, poles and/or values for the passive elements can be 

obtained from tables or from a software package like FIESTA or Matlab 

 

If you use biquadratic sections, you need  poles and zeros  matching 

 

For ladder filters, the networks can be obtained from tables 

 

Transform the normalized transfer function to your filter by using 

Filter transformation (LP to BP, HP, BR) 

Frequency transformation 

Impedance denormalization 

 

You obtain the transfer function or your passive network 

Filter Design Conventional Procedure 
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Frequency Transformations 

Lowpass to Highpass 

p

1
s 




















n

0i

in
i

n
0

n

0i

i

i

0
hpn

0i

i
i

0
lp

pa

pH

p

1
a

H
)p(H

sa

H
)s(Hthen

H(s) 

w 

0.5 1 1.5 2 

p 
 2 1 0.66 0.5  

H(p) 

0.66 1 1.5 2 
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 Lowpass to Highpass 









n

0i

in
i

n
0

hpn

0i

i
i

0
lp

pa

pH
)p(H

sa

H
)s(H

N zeros at  are translated to zero 

Poles are not the same!!! 

The main characteristics of the lowpass filter are 

maintained 

for a highpass filter with cutoff frequency at w0, 

then 

 

p
s 0w

 This transformation scheme  

translates w=1 to p=w0 

H(p) 

0.66 1 1.5 2 

1 

p 

 p/w0 
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Frequency Transformations 

 The Lowpass to Highpass transformation can also be applied to the elements 

 The resistors are not affected 
 

 L is transformed in a capacitor Ceq=1/w0L 
 

 C is transformed in an inductor Leq=1/w0C 
 

C

p

sC

1
capacitor

p

L
sLinductor

RRsistorRe

dtransformeimpedanceElement

0

0

w

w

Example: Design a 1KHz HP-filter from a LP prototype.  

1.4142 

1.4142 

1 

1 

1.12x10-4 

1.12x10-4 

1 

1 
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Frequency Transformations 

Lowpass to Bandpass transformation 

• n zeros at w=0 and n zeros at   

•even number of poles 

•The bandwidth of the BP is equal to the bandwidth of the LP 

 

•In the p-domain 

p

1p
s

2 


 

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Frequency Transformations 

Note that 1vvand1vv 1212 
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Frequency Transformations 

General transformation 
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Frequency Transformations 

The Lowpass to Bandpass transformation can also be applied to the elements 

p

1

BW

C
p

BW

C

1

sC

1
capacitor

p

1

BW

L
p

BW

L
sLinductor

RRsistorRe

dtransformeimpedanceElement

2
0

2
0

w


w


  Note that for w=w0 

 

 for the inductor Zeq=0 

 for the capacitor Yeq=0 (Zeq=) 

BW

L
2

0L

BW

w

2
0C

BW

w

BW

C



46 

Frequency Transformations 

• In general, for double-resistance terminated ladder filters 

 around w=w0 

 
Lossless 
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 In the passband, the transfer function 

can be very well controlled 

 

Low-sensitivy 
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Frequency Transformations 

  Lowpass to Bandreject transformation 

• Lowpass to Highpass transformation (notch at w=0) 

 

•Shifting the frequency to w0 and adjusting the bandwidth to BW            

.                      Bandpass transformation!!! 
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Transformation Methods 
• Transformation methods have been developed where a low 

pass filter can be converted to another type of filter by simply 

transforming the complex variable s. 

 

• Matlab  lp2lp, lp2hp, lp2bp, and lp2bs functions can be used to 

transform a low pass filter with normalized cutoff frequency, 

to another low-pass filter with any other specified frequency, 

or to a high pass filter, or to a band-pass filter, or to a band 

elimination filter, respectively. 
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LPF with normalized cutoff frequency, to  

another LPF with any other specified frequency 

• Use the MATLAB buttap and lp2lp functions to find the transfer function of 
a third-order Butterworth low-pass filter with cutoff frequency fc=2kHz. 
 

% Design 3 pole Butterworth low-pass filter (wcn=1 rad/s) 

[z,p,k]=buttap(3); 

[b,a]=zp2tf(z,p,k);             % Compute num, den coefficients of this filter 
(wcn=1rad/s) 

f=1000:1500/50:10000;   % Define frequency range to plot 

w=2*pi*f;                           % Convert to rads/sec 

fc=2000;                             % Define actual cutoff frequency at 2 KHz 

wc=2*pi*fc;                       % Convert desired cutoff frequency to rads/sec 

[bn,an]=lp2lp(b,a,wc);     % Compute num, den of filter with fc = 2 kHz 

Gsn=freqs(bn,an,w);        % Compute transfer function of filter with fc = 2 kHz 

semilogx(w,abs(Gsn));  

grid;  

xlabel('Radian Frequency w (rad/sec)') 

ylabel('Magnitude of Transfer Function') 

title('3-pole Butterworth low-pass filter with fc=2 kHz or wc = 12.57 kr/s') 
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LPF with normalized cutoff frequency, to  

another LPF with any other specified frequency 
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• Use the MATLAB commands cheb1ap and lp2hp to find the transfer function of 
a 3-pole Chebyshev high-pass analog filter with cutoff frequency  fc = 5KHz. 

 
% Design 3 pole Type 1 Chebyshev low-pass filter, wcn=1 rad/s 

[z,p,k]=cheb1ap(3,3); 

[b,a]=zp2tf(z,p,k);              % Compute num, den coef. with wcn=1 rad/s 

f=1000:100:100000;          % Define frequency range to plot 

fc=5000;                                % Define actual cutoff frequency at 5 KHz 

wc=2*pi*fc;                          % Convert desired cutoff frequency to rads/sec 

[bn,an]=lp2hp(b,a,wc);       % Compute num, den of high-pass filter with fc =5KHz 

Gsn=freqs(bn,an,2*pi*f);   % Compute and plot transfer function of filter with fc = 5 KHz 

semilogx(f,abs(Gsn));  

grid;  

xlabel('Frequency (Hz)');  

ylabel('Magnitude of Transfer Function') 

title('3-pole Type 1 Chebyshev high-pass filter with fc=5 KHz ') 
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High-Pass Filter 



High-Pass Filter 
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Band-Pass Filter 

• Use the MATLAB functions buttap and lp2bp to find the transfer function 
of a 3-pole Butterworth analog band-pass filter with the pass band 
frequency centered at fo = 4kHz , and bandwidth BW =2KHz. 

 
[z,p,k]=buttap(3);       % Design 3 pole Butterworth low-pass filter with wcn=1 rad/s 

[b,a]=zp2tf(z,p,k);      % Compute numerator and denominator coefficients for wcn=1 rad/s 

f=100:100:100000;    % Define frequency range to plot 

f0=4000;                      % Define centered frequency at 4 KHz 

W0=2*pi*f0;              % Convert desired centered frequency to rads/s 

fbw=2000;                  % Define bandwidth 

Bw=2*pi*fbw;            % Convert desired bandwidth to rads/s 

[bn,an]=lp2bp(b,a,W0,Bw);         % Compute num, den of band-pass filter 

% Compute and plot the magnitude of the transfer function of the band-pass filter 

Gsn=freqs(bn,an,2*pi*f);  

semilogx(f,abs(Gsn));  

grid; 

xlabel('Frequency f (Hz)');  

ylabel('Magnitude of Transfer Function'); 

title('3-pole Butterworth band-pass filter with f0 = 4 KHz, BW = 2KHz') 
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Band-Pass Filter 
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Band-Elimination (band-stop) Filter 

• Use the MATLAB functions buttap and lp2bs to find the transfer function 
of a 3-pole Butterworth band-elimination (band-stop) filter with the stop 
band frequency centered at fo = 5 kHz , and bandwidth BW = 2kHz. 

 
[z,p,k]=buttap(3);                       % Design 3-pole Butterworth low-pass filter, wcn = 1 r/s 

[b,a]=zp2tf(z,p,k);                       % Compute num, den coefficients of this filter, wcn=1 r/s 

f=100:100:100000;                     % Define frequency range to plot 

f0=5000;                                       % Define centered frequency at 5 kHz 

W0=2*pi*f0;                                % Convert centered frequency to r/s 

fbw=2000;                                    % Define bandwidth 

Bw=2*pi*fbw;                             % Convert bandwidth to r/s 

% Compute numerator and denominator coefficients of desired band stop filter 

[bn,an]=lp2bs(b,a,W0,Bw); 

% Compute and plot magnitude of the transfer function of the band stop filter 

Gsn=freqs(bn,an,2*pi*f);  

semilogx(f,abs(Gsn));  

grid;  

xlabel('Frequency in Hz'); ylabel('Magnitude of Transfer Function'); 

title('3-pole Butterworth band-elimination filter with f0=5 KHz, BW = 2 KHz') 
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Band-Elimination (band-stop) Filter 
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How to find the minimum order to meet  

the filter specifications ? 
The following functions in Matlab can help you to find the 

minimum order required to meet the filter specifications: 

 

• Buttord for butterworth  

• Cheb1ord for chebyshev 

• Ellipord for elliptic 

• Cheb2ord for inverse chebyshev 
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Calculating the order and cutoff frequency  

of a inverse chebyshev filter 
• Design a 4MHz Inverse Chebyshev approximation with Ap gain at passband 

corner. The stop band is 5.75MHz with -50dB gain at stop band. 

 

 clear all; 

 Fp = 4e6; Wp=2*pi*Fp; 

 Fs=1.4375*Fp; Ws=2*pi*Fs; 

 Fplot = 20*Fs; 

 f = 1e6:Fplot/2e3:Fplot ; 

 w = 2*pi*f; 

 Ap = 1; 

 As = 50; 

 % Cheb2ord helps you find the order and wn (n and Wn) that  

 %you can pass to cheby2 command. 

 [n, Wn] =   cheb2ord(Wp, Ws, Ap, As, 's'); 

 [z, p, k]  = cheby2(n, As, Wn, 'low', 's'); 

 [num, den] = cheby2(n, As, Wn, 'low', 's'); 

 bode(num, den) 
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Bode Plot 

59 

-200

-150

-100

-50

0

M
a
g
n
itu

d
e
 (

d
B

)

10
5

10
6

10
7

10
8

10
9

10
10

540

720

900

1080

1260

P
h
a
s
e
 (

d
e
g
)

Bode Diagram

Frequency  (rad/sec)



References 

[1] S. T. Karris, “Signals and Systems with Matlab 

Computing and Simulink Modeling,” Fifth Edition. 

Orchard Publications 

[2] Matlab Help Files 

60 



61 

Ladder Filters 

The ladder filter realization can be found in tables and/or can be obtained 

from FIESTA 

 

The elements must be transformed according to the frequency and impedance 

normalizations 
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Sensitivity 

 Definition 
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Sensitivity 

• Sensitivity is a measure of the change in the performance 

of the system due to a change in the nominal value of a 

certain element. 
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Example:  

If the senstivity function is 10, then variations of Dx/x=0.01(1%) produce 

Dy/y=0.1(10%)  

 

For a good design, the sensitivity functions should be  < 5. 

Effects of the partial positive feedback (negative resistors)? 
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Sensitivity 

 For a typical amplifier  
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• Typically the transfer function 

presents the form of a ratio of two 

polynomials 

• For non-negative elements the 

coefficients are real and 

positive 

• The poles are located in the left 

side of the s-plane 

 

• System is stable 

• BOUNDED OUTPUT FOR 

BOUNDED INPUT 

Properties of Stable Network Functions 
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 Most of the filter 

approximations are normalized 

to 1 rad/sec. Hence, it is 

necessary to denormalize the 

transfer function. 

 

 Using the frequency 

transformation 

 

 

   

  1 rad/sec is translated to 

                  rad/sec  

 

 

Properties of Network Functions: 

Frequency Transformation 
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 Typically the network elements are normalized to 1 . Hence an 
impedance denormalization scheme must be used 

 

 

 or 

 

 

 

 

 Note that the transfer function is invariant with the impedance 
denormalization (RC and LC products remain constant!!!!) 

 

 In general both frequency and impedance denormalizations are 
used 
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• There is a number of conventional filter magnitude approximations 

 

• The choice of a particular approximation is application dependent 

 

• Besides the magnitude specifications, there exists also a phase  

  (group delay) specification. For this the Thompson (Bessel)  

   approximation is used 

 

• There are a host of Filter approximation software programs, including 

   Matlab, Filsyn, and Fiesta2 developed at TAMU 
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