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NOISE

• NOISE limits the minimum signal level that a circuit can process with
acceptable quality.

Can you identify the signal buried in the noise?

How does the minimal signal must be with respect to the noise level?

Noise Level

Mr. Signal
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• Let us consider the street noise, can one predict the (exact) noise at

any time?

No, because it is a random process

• If you decide to blow your car’s horn every 5 minutes, then you can say

this signal is deterministic.

• So, how can we incorporate noise in circuit design?

- Observe the noise for a long time

- Construct a “statistical model”

• The average power noise is predictable

• Most noise sources  in circuits exhibit a constant average power
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• Average power delivered by a periodic voltage v(t), of period T, to
a load resistance RL is given by

• For non-periodic signals, T becomes a large quantity

• How much power a signal carries at each frequency is defined by the
“power spectral density” (PSD) (Sx(f))

• Sx(f) is defined as the average power carried by x(t) in a one-hertz
bandwidth around f.
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• Sx(f) is expressed in V2/Hz rather than VI/Hz = w/Hz, in fact

{Sx(f)} 1/2 = v/Hz-1/2  is often used.  Say a filter at 1MHz is equal to

1.414 nV/Hz-1/2, means an average power in a 1-Hz bandwidth at

1MHz is equal to (1.414x10-9)2V2=2x10-18V2

• Another spectrum is the “White Spectrum” or white noise

In practice is band limited.

• How do you determine the output spectrum of a linear, time-

invariant system with transfer function, H(s)?

f

Sn(f)
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• How is the shape of the output spectrum?

• A practical example is the telephone bandwidth, where BW
of Sxin(f) is between 0-20KHz, BW of H(f) is 4KHz and
consequently BW of Syout(f) is 4 KHz.
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If there are more than two noise sources, how do you compute
their total effects?

xn1(f), xn2(f), …   are uncorrelated noise sources

Superposition is applied to obtain the total output spectrum.
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Assume an input signal, Vni(f)=Vnw (constant)

If this same input signal, Vnw, is applied to the (brick-wall) filter
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Equivalent Noise Bandwidth
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• Amplitude Distribution of Noise

Probability Density Function (PDF), the distribution of x(t) is

• An important example of PDFs is the Gaussian (or normal)
Distribution.

Where s and m are the standard deviation and mean of the
distribution, respectively.
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• How do you determine the total average power due to two or

more noise sources?

If noise sources are uncorrelated the third term is zero.

Example of uncorrelated and correlated noises is that of spectators

in a sports stadium.
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• Device Electronics Noise

• Environmental Noise

Noise
Types

• Thermal Noise

Example
22192
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Noise Voltage
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• Flicker or 1/f Noise

PSD is given by
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Noise Considerations

Flicker
Noise
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How to compute the total output noise due to individual noise sources?

How to compute the input-referred noise?

Example.___
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• Can we always use the input-referred noise by a single voltage
source in series with the input?

A necessary and sufficient
representation

• Simplifications

- For zero source impedance, I2
n,in not affecting the output

- For infinite source impedance, then V2
n, in has no effect

• Note that both sources will not count the noise twice.
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To compute the rms output noise:

(i)   Compute the frequency response bandwidth   f3dB

(ii)  Compute the noise bandwidth,    f

 f = 1.571 * f3dB (assuming a single pole)

(iii)  

where            is the spectral density

value of the output noise at low

frequency.
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622 (ESS)
NOISE CONSIDERATIONS REMARKS

Basic elements and their noise models

Resistor. -

Op Amp
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Noise in an op amp macromodel

Particular Cases:

• Ideal capacitors and inductors do not generate noise, but accumulate.
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Computation of Total RMS Noise Voltage at Filter Output

1. Determine the noise transfer function  
k
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3. Obtain the total output noise power by integrating the mean square
noise spectral density  .V2

no 

That is:
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Dynamic range of an Active-RC is obtained as:
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Where  
rmssoV is the maximum undistorted rms voltage at the output.
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How do you simulate noise in SPICE?

- Noise is associated with AC analysis

• Noise V(N) VIN

• AC DEC FI FSTEP FFINAL

Reader.___

Simulate an example dealing with first-order active 

RC filter, plot frequency responses and noise spectrum, as well 

as the total noise at each frequency (total rms noise)

Obtain the signal to noise ratio

)rms(NoiseTotal

)rms(THD%forsignal
log20

N
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LTSPICE Noise:

Analysis & Simulation 

Contributed by Kyoohyun Noh

24



LM741’s open loop ac response

25

LM741’s DC gain : 106dB

LM741’s -3dB frequency: 5Hz

LM741’s unity gain frequency: 1MHz



LM741’s noise simulation
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LM741’s input-referred noise PSD is simulated: R4’s 
noise contribution is small enough to be neglected.

HznVfv inputopenLMn /51.6/2
,,741,  HzfVfv inputRn /67.0/2

,4, 



Filter Schematic for .noise simulation
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Filter’s midband gain : 50 (34dB) from R2/R1

Expected upper -3dB bandwidth : about 5kHz (from 1/R2C1)

Expected  lower -3dB bandwidth : about 0.16Hz (from 1/R3C2)

Coupling cap

Output: V(OUT), Input source:V3
20 simulation points per decade over 
0.1Hz ~ 100kHz 



Filter Transfer Function

28

Simulated Midband gain = 34dB

Simulated Upper -3dB = 4kHz

Simulated Lower -3dB = 0.16Hz



Input/Output-referred noise PSD

29

Midband input-referred noise PSD

HznVfv inputn /77.6/2

, 

Midband output-referred noise PSD
HznVfv outputn /338/2

, 

+20dB/dec of filter gain 
flattens input-referred 
noise PSD

-20dB/dec of filter gain 
flattens input-referred 
noise PSD



Noise contribution to Input-referred 

noise

30

Output 
Resistance 
R3

Feedback
Resistance 
R2

Input
Resistance 
R1

Noise 

Component

Theoretical 

input-referred noise voltage

Simulation

R1

R2

R3 0

HznVkTR /29.14 1 

HzpVkTRRR /1824)/( 221 

HznV /29.1

HzpV /182

HzfV /90

Assume 
T=300K



Input-referred noise contribution in the filter
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LM741’s noise contribution cannot be obtained 
directly in the filter simulation. Instead, it should be 
estimated from the other noise values

HznVfVpVnVnVfv inputfilterLMn /64.6)90()182()29.1()77.6(/ 22222
,,741, 

HznVfv inputopenLMn /51.6/2
,,741, 

The input-referred noise voltage of the LM741 was 
obtained in the open loop simulation. 

Theoretical LM741’s input-referred noise 
contribution agrees well with the simulation result

fv
R

R
fv inputopenLMninputfilterLMn  /)1(/ 2

,,741,
2

12
,,741,

HznVHznV /64.6/51.6*02.1 



Summary

32

A dominant contributor to the filter noise is LM741

Theoretical noise analysis agrees well with simulation 
results 

Noise 

components

Midband input-referred

noise voltage 

[nV/sqrt(Hz)]

Midband input-

referred noise PSD 

[V2/Hz]

Contributio

n [%]

R1 1.29 1.66x10-18 3.63

R2 0.182 3.31x10-20 0.07

R3 0.00009 8.10x10-27 ~0

LM741 6.64 4.41x10-17 96.3

Total 4.58x10-17 100



Biquad Filter Noise
Courtesy of Mohamed Abuzaid



Biquad Filter

• 𝐻𝐿𝑃𝐹 𝑗𝜔 =
1

1−
𝜔

𝜔𝑜

2
+𝑗

𝜔

𝜔𝑜𝑄

• 𝐻𝐵𝑃𝐹 𝑗𝜔 = 𝑗
𝜔

𝜔𝑜
𝐻𝐿𝑃𝐹 𝑗𝜔

• R2=R4=R5=R6=R

• C3=C7=C

• 𝜔𝑜 = 1/𝐶𝑅

• 𝑄 = 𝑅3/𝑅

IN
BPF

LPF

R1

R3

C3

R7=1G

C7

R4
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R9
R10

R2

Bruton, L.T.; Trofimenkoff, F.N.; Treleaven, D.H., "Noise Performance of low-sensitivity
active filters," Solid-State Circuits, IEEE Journal of , Feb. 1973



Noise Analysis

• Power Spectral Density of output noise:

• 𝜖𝑂𝑅
2 𝑓 = 4𝐾𝑇 𝑖=1

6 𝑅𝑖 𝐻𝑖𝑜 𝑗𝑓
2 (

𝑉2

𝐻𝑧
)

• Power Spectral Density of output noise:

• 𝜖𝑂𝑅
2 𝜔 =

2𝐾𝑇

𝜋
 𝑖=1
6 𝑅𝑖 𝐻𝑖𝑜 𝑗𝜔

2 (
𝑉2

𝑟𝑎𝑑/𝑠
)

• Integrated output noise:

• 𝐸𝑂𝑅 = 𝐾𝑇𝑅 5𝑄 + 1 𝜔𝑜 𝑉2

Divide by:
2𝜋



Continue Noise Analysis

• Assumptions for next results:

– In band, 𝐻𝐵𝑃𝐹 𝑗𝜔 = 𝐻𝐿𝑃𝐹 𝑗𝜔

– Assume 𝑄 >> 1

• Power Spectral Density of output noise:

• 𝜖𝑂𝑅
2 𝑓 ≈ 20𝐾𝑇.𝐻𝐵𝑃𝐹 𝑗𝜔 (

𝑉2

𝐻𝑧
)

• At the center frequency

• 𝜖𝑂𝑅
2 𝑓 ≈ 20𝐾𝑇. 𝑄 (

𝑉2

𝐻𝑧
)

– “this is not correct in paper (12), they put an extra 𝜔 term”



Simulation Ideal Opamp

• Biquad with the specs:

• 𝑓𝑜 = 1.5 𝑘𝐻𝑧

• 𝑄 = 150

• So, the values:

• 𝑅 = 10 𝐾Ω

• 𝑅3 = 1.5 𝑀Ω

• 𝐶 = 10.6 𝑛𝐹

IN
BPF

LPF

R1

R3

C3

R7=1G

C7

R4

R5

R6

R8

R9
R10

R2



Simulation Ideal Opamp

• Compare the PSD of the output noise and 

the theoretical expression.

• Inband, expressions

are identical.



Noise Contribution

• There are three groups in terms of 

contribution



Noise Comparison
Theoretical Spice Simulation

Integrated Noise -95.33 dB -95.33 dB

Noise at peak -107 dB/Hz -107 dB/Hz



Using Actual Opamp

• Opamp noise: 6.3 𝑛𝑉/ 𝐻𝑧

• Compare the PSD of the output noise and 

the theoretical expression.

• In band, there is

extra contribution

due to opamp

(15 dB higher)



Noise Comparison
Theoretical Spice Simulation

Integrated Noise -95.33 dB -80.17 dB

Noise at peak -107 dB/Hz -92 dB/Hz

Resistors

Opamps



Biquad Tow-Thomas Filter 

Noise Analysis & Simulation

Courtesy of Kyoohyun Noh

43



Tow-Thomas(TT) Biquad Filter

44

Simultaneous Biquad Filter Implementations
•Low-pass(LP), Band-pass(BP) output

Independent tuning of Q and filter 
frequency



TT Filter Analysis
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Key Specifications of TT BPF

46

64273

5
0

RRRCC

R


4267

5333
330

RRRC

RRRC
CRQ






2
0

02

0

1

3)(










s
Q

s

s
Q

R

R
sTBPinv



Output Noise PSD from passive components
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Integrated output noise components
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Angular freq. 
integration

Ideal Op-amps are assumed
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Total integrated output noise
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BPF Simulation
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Ideal Op-amps are assumed

BPF with different Qs are implemented with ideal op-
amps

•C=10.6nF is assumed
•Each R is listed in the next slide



Simulated total integrated output 

noise
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Ideal Op-amps are assumed
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 Theoretical estimation agrees well with the simulation 
results
 Feedback resistor R3 of the lossy integrator makes the 
least contribution to the High-Q High-gain BPF output 
noise among passive components



BPF Output Noise PSD
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 Theoretical estimation agrees well with the simulation 
results
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Theory

[uV/sqrt(Hz)]

Simulation

[uV/sqrt(Hz)]

Peak

output 

noise PSD

[V/sqrt(Hz)]

4.31 4.3

Q=150, R=10k
Ideal opamps are assumed



OP Amp Design for BPF
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BPF Q =15, f0=1.5kHz

Assume GB is large enough
•GB=8MHz >>Qf0=22.5kHz

Amplifier gain is set to larger 
than 3000 from behavioral 
simulation

Q vs. op amp gain 
under GB=8MHz



OP Amp example
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Gain Stage1 Gain Stage2 Buffer Stage



OP Amp details

55

Bias Current Generation

ibias = 20uA

W/L

Diode connected PMOS 14/0.6

Current source 14/0.6

Specification

Process CMOS 180nm

VDD [V] 1.8

1st Stage 

VBP=0.85, 

VBN=0.7

W/L 2nd Stage W/L Buffer 

Stage

Cm=2pF

W/L

PMOS input 10/0.36 PMOS current 

source

14/0.6 NMOS 20/0.18

PMOS cascode 10/0.36 NMOS battery 20/0.18 PMOS 20/0.18

NMOS 

cascode

2/0.36 PMOS battery 80/0.18

NMOS Mirror 2/0.36 NMOS Gm 40/0.36



OP Amp/BPF AC response
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Gain = 77.8dB (7.7k)
GB=8.15MHz

Op Amp
Freq. Response

BPF
Freq. Response f0=1.5kHz

Q=14.83



Op Amp input-referred noise PSD 
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Op Amp’s flicker noise is dominant below about 
100kHz

•BPF output noise is expected to be dominated by 
flicker noise of the Op amps



BPF output noise
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BPF OUTPUT NOISE 
PSD [V2/Hz]

Noise 

Components

Simulation

[V2]

Contribution

[%]

OA1 9.35e-8 45.9

OA2 7.39e-8 36.3

OA3 3.61e-8 17.8

Total 2.04e-7 100

Op Amp’s noise is dominant in 
this example

•Flicker noise of each amp’s  
1st stage current mirror is 
dominant in this design due 
to low BPF frequency

BPF OUTPUT Integrated NOISE

Noise from passive components are negligible

Major noise contributors

/I20: lossy Integ., /I22: Inverting amp, /I21: 
Integ.
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Introduce Af to reduce noise without modifying the original transfer function.
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Class - AB

Design Example: rmn,outrmson,outo V524 noise integratedV,V34.1f@V,20Q,MHz5.2f 
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Note that in order to obtain the noise reduction without Af , A1 would have to increase its power

by 150%. The Af power added is about 60% of A1. Also note that a simple short circuit of x to

node j also reduce the output noise by 2.4dB.
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Noise Reduction Comparison Plots



Conclusions
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Noise reduction can be done by inserting one or more reduction paths 

without affecting original transfer function.  These paths can be active

or passive when power is limited.
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