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Problem 1 
Part A 
 The figure below shows the schematic of the Sallen-Key lowpass filter. 

 

 From the lecture notes, if the resistances in the Sallen-Key lowpass filter are equal, we can obtain 
the following: 

ଶܥ = 4ܳଶܥଵ, ܴ =
1

2߱௢ܳܥଵ
 

Therefore, we set C1 to a reasonable value of 1pF.  Therefore, we find the following: 

ଶܥ = 4 ∙ 4ଶ ∙ ܨ݌1 = ,ܨ݌64 ܴ =
1

2 ∙ ߨ2 ∙ 10଺ ∙ 4 ∙ ܨ݌1
= 19.9݇Ω 

The figure below shows the magnitude and phase of the output plotted against the input frequency.   

 



As expected, the gain magnitude at ߱௢ is equal to 12.1dB which matches the value of 4 set for Q.  In 
addition, the frequency ߱௢ is 2ߨ ∙ 10଺ݏ/݀ܽݎ, which matches the desired value 

Part B 
 First, the transfer function of the filter with a finite opamp gain is found.  First, the gain of the 
amplifier can be found as: 

௢ܸ =
ܣ

ܣ + 1 ଶܸ 

Next, we write the nodal equations for the filter: 

ଶܸ + ଶܸܥܴݏଵ − ଵܸ = 0 
2 ଵܸ + ଵܸܥܴݏଶ − ௢ܸܥܴݏଶ − ଶܸ − ௜ܸ௡ = 0 

If we use these three equations to solve for Vo/Vin, we obtain the following: 

௢ܸ

௜ܸ௡
ሺݏሻ =

ܣ
1 + ሺ1 − ݏଶܥሻܴܣ + ݏଵܥ2ܴ + ܴଶܥଵܥଶݏଶ 

If the amplifier is ideal and A is 1, then the expression above matches the expression in the lecture notes.  
Next, we assume the amplifier gain is given by: 

ܣ =
ܤܩ

ݏ + ߱௣
 

Substituting this into the above expression provides: 

௢ܸ

௜ܸ௡
ሺݏሻ =

ܤܩ

൫߱௣ + ൯ܤܩ + ݏ ቀ1 + ߱௣ܴܥଶ + ଵ൫߱௣ܥ2ܴ + ൯ቁܤܩ + ଶݏ ቀܴܥଶ + ଵܥ2ܴ + ܴଶܥଵܥଶ൫߱௣ + ൯ቁܤܩ + ଶܥଵܥଷܴଶݏ

 

Therefore, the finite GBW of the op-amp creates a third-order response.  This effectively shifts the value of ߱௢ 
downwards as well as increases the Q of the filter.  This is clearly seen in the figure below, which shows the 
magnitude and phase response for three different GBW values.  With a GBW of 10MHz, the natural frequency 
of the filter is clearly shifted to a lower value while the peak gain of the circuit is increased to 13.2dB.   

 



In order to quantify the required performance for the op-amp, the GBW of the op-amp is swept over a 
wide range and the gain error (in percent) at ߱௢ is calculated.  This is shown in the figure below: 

 

In order to achieve a gain error of less than 5%, the op-amp GBW must be higher than 68.4MHz.  This is 
due to the fact that a low value for the GBW leads to an increase in the effective Q of the filter.  As a result, 
the gain error for low GBW values is quite small. 

 Next, the phase error at ߱ଷௗ஻ is measured to quantify the phase performance for a wide range of 
op-amp GBW: 

 

In order to achieve a phase error less than 5%, a GBW of 22.87MHz is required.  This indicates that the 
GBW requirement for a 5% phase error is actually less demanding than the GBW requirement for a 5% 
peak gain error.   

 



Problem 2 
Part A 
 The figure below shows the Tow-Thomas biquad used to implement the LP filter: 

 

The forward gain from the input to the output is: 

ሻݏሺܩܨ = −
ܴଵ

ܴସ
∙

1

1 +
ݏ

ܴଵܥଵ

∙
଼ܴ

ܴ଻
∙

1
ܴଶܥଶ

∙
1
ݏ

 

The gain of the single loop is: 

ܩܮ = −
ܴଷ

ܴସ
∙

1
1 + ଵܥଵܴݏ

∙
଼ܴ

ܴ଻
∙

1
ܴଶܥଶ

∙
1
ݏ

 

Therefore, the total transfer function is: 

ሻݏሺܪ = −
1

ܴସܴଶܥଵܥଶ
∙

1

ଶݏ +
1

ܴଵܥଵ
ݏ +

1
ܴଶܴଷܥଵܥଶ

 

Therefore: 

߱௢ =
1

ඥܴଶܥଵܥଶ

, ܳ = ඨ
ଵܥ

ଶܥ
 

We set C2 to 1pF which means that for a Q of 4, C1 must be 16pF.  We can then find the required resistance value: 

ߨ2 ∙ 10଺ =
1
ܴ

∙
1

ඥ1ܨ݌ ∙ ܨ݌16
→ ܴ = 39.79݇Ω 

Therefore, all component values have been determined.   



Part B 
 First, the filter was simulated using ideal op amps with infinite gain-bandwidth.  The figure below 
shows the transfer function’s magnitude and phase.   

 

Next, the op amp model was replaced with a non-ideal op-amp with a gain-bandwidth 20 times higher 
than the natural frequency of the filter.  The figure below shows the function’s magnitude and phase.  As 
in the previous problem, the Q of the filter increases which, in turn, increases the peak gain magnitude 
seen in the output response.  In addition to this, the natural frequency of the filter is shifted downwards. 

 

Part C 
 The table below shows the magnitude, phase, and group delay for the two cases shown in the 
previous section. 

Simulation Gain (at ߱௢) Gain Error (at ߱௢) Phase (at ߱௢)  Phase Error (at ߱௢) Group Delay 
Ideal 4 0dB 89.6° 0° 1.309us 



Non-Ideal 3.6597 0.7723dB 13.5° 76.1° 3.608us 
Clearly, the finite GBW of the op-amps creates a very large phase error at the natural frequency of the 
filter.  As a result, the performance of the filter is severely degraded.  In addition to this, the finite GBW 
leads to increased group delay in the filter. 

Part D 
 Lastly, passive compensation was used to attempt to mitigate the effects of the finite GBW on the 
filter’s performance.  The figure below shows all changes: 

 

 

First, a compensation resistor is added to the lossy integrator at the input.  The finite GBW of the 
amplifier creates a parasitic pole in the lossy integrator at a frequency approximately equal to the GBW of 
the amplifier.  Therefore, a compensation resistor is added in series with the feedback capacitor.  The 
lossy integrator then has, assuming an ideal op-amp, the transfer function: 

ሻݏሺܪ =
ܴଵܴ௖ଵܥݏଵ + ܴଵ

ଵሺܴଵܥݏ + ܴ௖ଵሻ + 1
 

Therefore, a zero is created at ߱௭ =
ଵ

஼భோ೎భ
.  RC1 is chosen to place the zero at the op-amp’s GBW.  

Therefore: 

ܴ௖ଵ =
1

ܹܤܩ ∙ ଵܥ
= 497.35Ω 

The pole of the lossy integrator should remain in the same location, so the value of R1 is adjusted to 
39.292݇Ω.  As a result, R4 and R3 are adjusted to the same values to maintain the same DC gain. 

 Next, a compensation capacitor is added to the inverter.  The finite GBW of the op-amp creates a 
pole at half the GBW frequency.  Therefore, CC1 is added in parallel to R7 to create a zero to cancel this 
pole.  The value of CC1 is determined by: 



1
ܴ଻ܥ஼ଵ

=
ܤܩ
2

→ ஼ଵܥ =
1

39.79݇Ω ∙ π ∙ 10଺ ∙ 20
=  ܨ400݂

Lastly, the lossless integrator is compensated using a series resistance with the feedback capacitor.  Its 
value is determined by (according to the lecture notes): 

1
ܴ஼ଶܥଶ

= ܤܩ → ܴ஼ଶ =
1

ܨ݌1 ∙ 20 ∙ ߨ2 ∙ 10଺ = 7.86݇Ω 

The value of R2 is adjusted to 31.83kΩ in order to ensure the integrator gain remains constant.   

 The filter was once again simulated with these modifications.  The results can be seen in the 
figure below: 

 

As seen in the figure above, the compensation of the filter corrects the frequency response errors 
introduced by the finite GBW of the op-amps.  The gain and phase of the compensated filter match very 
closely to the gain and phase of the ideal filter.  This is further confirmed in the comparison table below: 

Simulation Gain (at ߱௢) Gain Error (at ߱௢) Phase (at ߱௢)  Phase Error (at ߱௢) Group Delay 
Ideal 4 0dB 89.6° 0° 1.309us 
Non-Ideal 3.6597 0.7723dB 13.5° 76.1° 3.608us 
Compensated 4.0410 0.0886dB 87° 2.6° 1.307us 

The table above indicates that the gain error and phase error are reduced to very small values after using 
the compensation techniques discussed above.  In addition to this, the group delay of the compensated 
filter is very close to the ideal group delay.  This indicates that passive compensation is a powerful tool 
that can help break the tradeoff between filter accuracy and power consumption. 



 The figure below shows the group delay of the three simulations: 

 

Problem 3 
Part A 
 The figure below shows the RC Miller integrator used: 

 

A nominal value of 1pF for C1 is chosen.  R1 can therefore be calculated as: 

ܴଵ =
1

ଵ߱௢ܥ
=

1
ܨ݌1 ∙ ߨ2 ∙ 10଺ݏ/݀ܽݎ

= 159.15݇Ω 

The transfer function’s magnitude and phase is plotted in the figure below for an ideal op-amp.  As expected, 
the integrator exhibits a high DC gain with a pole at the origin.  In addition to this, the phase remains at 90 
degrees for all frequencies. 

 

 



 

Part B 
 Next, the GBW of the op-amp was set to a value five times higher than the cutoff frequency of 
the integrator.  The resulting magnitude and phase plot is shown in the figure below.  As expected, the 
finite GBW of the op-amp introduces a parasitic pole at the GBW frequency.  This, in turn, adds another -
20dB/dec to the integrator’s output magnitude response.  In addition to this, the parasitic pole also reduces 
the phase at the output.  Therefore, the output phase at the cutoff frequency of the integrator is no longer 
90 degrees, it is now 80.54 degrees.  Therefore, the finite GBW has introduced excess phase in the 
integrator. 

 

Part C 
 Lastly, a compensation resistor was added in series with the feedback capacitor to obtain an ideal 
integrator transfer function.  The compensation capacitor adds a zero in the filter transfer function that 
cancels the effect of the op-amp’s finite GBW.  The schematic for this compensation is shown below: 



 

The required value for RC can be calculated as follows: 

1
ଵܴ஼ܥ

= ܤܩ → ܴ஼ =
1

ܨ݌1 ∙ ߨ2 ∙ 5 ∙ 10଺ = 31.83݇Ω 

The value for R1 must be adjusted to 127.32kΩ to ensure the cutoff frequency of the filter remains constant.   

 The figure below shows the magnitude and phase of the filter transfer function for the ideal op-amp 
and for the non-ideal op-amp with compensation: 

 

The parasitic pole due to the finite GBW has been cancelled and the magnitude and phase response of the 
compensated integrator tracks very closely with the ideal case.  The phase remains very close to 90 
degrees at the cutoff frequency. 

 The results from these simulations are summarized in the table below.  Clearly, the compensation 
is able to correct the effects of the finite GBW and a response that is very close to the ideal case is 
obtained.   

 

Simulation Gain at ߱௢ Phase at ߱௢ 
Ideal 0dB 90° 
Non-Ideal -1.7dB 80.54° 
Compensated 0.035dB 90° 



Bonus 
Part A 
 The figure below shows the Rauch filter used in this problem. 

 

According to the lecture notes, the transfer function is: 

ሻݏሺܪ =

1
ܴଶܥଵܥଶ

ଶݏ +
ݏ

ଵܥ
∙

3
ܴ +

1
ܴଶܥଵܥଶ

 

Therefore: 

߱଴ =
1

ܴඥܥଵܥଶ

, ܳ =
1
3

ඨ
ଵܥ

ଶܥ
 

After setting R=10kΩ, we can solve these equations simultaneously to set: 

߱௢ = ߨ2 ∙ 10଺ݏ/݀ܽݎ, ܳ = 4 

We obtain C1=190.94pF and C2=1.326pF.   

 The magnitude and phase for this filter is plotted in the figure below.  The peak gain matches the 
expected 12dB for a Q value of 4 and occurs at the desired natural frequency of 1MHz.  This indicates 
that the component values chosen above are correct.  The magnitude and phase response also matches the 
magnitude and phase of the Sallen-Key filter designed in Problem 1. 

 



Part B 
 Next, we assume that the amplifier used in the Rach filter has a gain given by: 

ܣ =
ܤܩ

ݏ + ߱௣
 

Therefore, the non-ideal op-amp will introduce gain and phase errors into the filter due to its finite GBW.  
In order to quantify the required GBW to obtain a 5% phase or gain error, the GBW is swept.  The peak 
gain error at the natural frequency is then plotted and can be found below for a wide range of op-amp 
GBWs: 

 

The peak gain reaches a relative error of 5% at an op-amp GBW of 12.92MHz.  It is interesting  to note 
that the Rauch filter reaches the 5% gain error at a much lower GBW frequency than the Sallen-Key 
filter, which  reached this error at a GBW of 68.4MHz. 

 Next, the phase error at the natural frequency was found: 

 



The phase error at the natural frequency reaches an error of 5% at an op-amp GBW of 288.3MHz.  This is 
much higher than the GBW of 22.87MHz required in Sallen-Key filter.  It is interesting to note that the 
Sallen-Key filter requires a higher GBW for the gain requirement, but a lower GBW for the phase 
requirement.  Therefore, the Rauch filter may be used where the gain accuracy is most important while 
the Sallen-Key filter may be used where the phase accuracy is most important.  One important 
consideration in the selection of these filters is also the large capacitor ratio required in the Rauch filter to 
obtain a large Q-value.  This means that the C1 capacitor will most likely be very large for large Q values 
which may make this filter difficult to integrate on an integrated circuit. 

 


