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Introduction

• Need for Low voltage Low power amplifier.

• High gain + low voltage        multistage architecture 

• High capacitive loads are required in error amplifiers 

in a linear regulator which is a part of low power 

portable devices.

• Large capacitive loads degrade the frequency 

response. 

• Robust Phase compensation technique required.



Design Considerations
• Large Capacitive Load

• Low Power

• Less Area

• High Gain

• Moderate GBW and PM

Existing solutions in the 

literature?
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NMC (contd..)
Stability analysis:
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Stability condition:

Cm1 and Cm2 very 

large for large load!!



Damping Factor-Control Frequency 

Compensation (DFCFC)
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[2] K. N. Leung et al., “Three Stage Large Capacitive Load Amplifier with Damping-Factor Control Frequency Compensation,”

IEEE Journal of Solid State Circuits, Vol.35, No.2, February 2000.



DFCFC (contd.)
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Active Feedback Frequency 

Compensation(AFFC)
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IEEE Journal of Solid State Circuits, Vol. 38, pp- 511-520, March, 2003.



AFFC (contd.)
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Proposed Solution 1

Single Miller Capacitor (SMC)
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SMC (contd.)

Transfer function analysis
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SMC (contd.)
Poles and Zeros:
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SMC (contd.)
Stability analysis:
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SMC (contd.)
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Proposed Solution 2

Single Miller Capacitor Feedforward 

Compensation (SMFFC)
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SMFFC (contd.)

Transfer function analysis
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SMFFC (contd.)
Poles and Zeros:
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SMFFC (contd.)
Stability analysis:

Stability condition:

Cm is much smaller 

even for large load!!
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SMFFC (contd.)
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Chip Micrograph

SMC

SMFFC



AC Response (SMC)



AC Response (SMFFC)



Transient Response (SMC)
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Comparison Table
 NMC 

 

DFCFC 

 

AFFC  

 

SMC 

This Work 

SMFFC 

This Work 

Load pF/KΩ 1 2 0 / 2 5  1 0 0 / 2 5  1 2 0 / 2 5  1 2 0 / 2 5  1 2 0 / 2 5  

P o w e r  S u p p l y  1V 

DC gain (dB) >100 >100 >100 >100 >100 

GBW (MHz) 0.4 2.6 4.5 4.6 9 

Phase margin 61
 o
 43

 o
 65

o
 57

o 
57

o
 

Power (mW@Vdd) 0.38 @2 0.42 @2 0.4 @2 0.38@2 0.41@2 

Capacitor Value 

(pF) 

Cm1=88 

Cm2=11 

Cm1=18 

Cm2=3 

Cm=3 

Ca=7  

Cm=7 

 

Cm=4 

 

Slew Rate 

SR+/ SR- (V/S) 

0.15/0.13 1.36/1.27 2.20/0.78 3.28/1.31 4.8/2 

Settling Time 

TS
+
/TS

-
 (s) (to 1%) 

4.9/4.7 0.96/1.37 0.42/0.85 0.53/0.4 0.58/0.43 

FOMS(MHz.pF/mW) 127 619 1350 1453 2634 

FOML(V/s.pF/mW)
 45 314 447 726 996 

Area (mm
2
)  0.14 0.11 0.06 0.02 0.015 

Normalized Area 9.33 7.33 4 1.33 1 

Technology 0.8m 

CMOS 

0.5m 

CMOS 

Note: Average value of the slew rate is used in the calculation of FOML parameter 

Power

CGBW
FOM L

S

*
  and 

Power

CSR
FOM L

L

*
 , where CTotal = Total value of compensation 

capacitors 



Conclusions

 Two low power multistage amplifier topologies are 

introduced for large capacitive loads.  

 Performance parameters such as GBW and Area

are improved without sacrificing   same power 

consumption.

 Pole splitting and feedforward approaches are 

combined for better performance.

 The proposed approaches have better small-

signal and large-signal performances than other 

reported compensation topologies .



A Robust Feedforward 

Compensation Scheme for Multi-

Stage OTA’s with no Miller 

capacitors

Thanks to Bharath Kumar Thandri  and 

Dr José-Silva Martínez  for the material provided

ELEN 607  (ESS)



Outline

• Need for high performance amplifiers

• Conventional approaches and problems

• Proposed NCFF compensation scheme

• Pole-zero mismatch effects

• OTA design 

• Simulation and Experimental results

• Conclusion
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degrades because of the 

amplifier characteristics

• Output deviates from ideal 

value due to finite gain

• Settling time increases with 

decreasing GBW

• Amplifiers with high gain and 

GBW are required in  high 

precision ADC’s (pipelined, 

sigma-delta etc)  and switched 

capacitor filters.
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Step response of an amplifier with 

sufficient phase margin.



 (=C1/C2) is the ideal amplifier gain,  (=C2/ (C1+C2+C3))

is the feedback factor and Av (=gm/g0) 
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Step response of an amplifier (continues)

• Two phases - slewing phase and quasi-linear phase

• Slew rate is limited by current available to charge/discharge the load capacitor. 

Response is usually dominated by second phase

• High GBW => fast settling time ; High gain => accuracy ; sufficient phase 

margin  => no ringing or overshoot

• Best settling performance requires high performance amplifier

amplifier   of

   widthgainband   is  
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• High gain amplifiers => multistage architectures, 

low bias currents, large channel lengths

• High bandwidth amplifiers => single stage, high 

bias currents, minimum channel lengths

• Difficult to obtain high gain and bandwidth 

simultaneously

• Previous architectures settle for an optimal tradeoff 

between speed and accuracy requirements

Contradicting requirements for Gain vs Bandwidth ?



Cascaded amplifiers

• Cascade of individual gain stages gives high gain

• Poles created by each stage degrade phase response by -90°

• Stable closed loop operation =>  phase margin > 45°

• Robust phase compensation scheme is required for multi-

stage amplifiers

• Miller compensation (pole splitting/lead compensation) used 

for two stage amplifiers has been extended for multi-stage 

amplifiers
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Miller compensation for 2-stage amplifier

• Miller effect of Cc pushes dominant pole to 

lower frequencies => low GBW

• Non-dominant pole is pushed to higher 

frequencies => more power consumption

• RHP zero is created by addition of Cc which 

creates negative phase shift

• Rz is used to cancel RHP zero 
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Reported compensation schemes(cont)

• Damping factor frequency controlled 

compensation (DFCFC) and embedded frequency 

compensation schemes have also been reported.

• All reported schemes are often a variant of the 

two-stage miller compensation and have similar 

disadvantages

• A multistage feedforward compensated amplifier 

has been reported by Cirrus Logic for low-noise 

application, but it also uses compensation 

capacitor



EQUIVALENT BLOCK DIAGRAMS

A1 + A2Vin

Vo

A1 +A2Vin

Vo

A2

A1 +A2Vin

Vo

A3

  ino VAAAV 221 

  ino VAAAV 221 

  ino VAAAV 321 

A2 and A3 must have only one pole. 

Different gains are okay.

The number of poles of A1 determines 

the number of  poles of the system.



No-Capacitor FeedForward (NCFF) 

compensation scheme

• Main concept : Feedforward path with same phase 

shift as compared to the normal path produces LHP 

zeros.

• LHP zeros create positive phase shift and cancels 

the negative phase shift of poles

• No pole splitting => improvement in BW

• Combines high gain, high GBW and good phase 

margin
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Miller vs NCFF compensation:Why the difference?



Effect of non-dominant pole

• Number of LHP zeros created is equal to 

the order of the first stage

• Main constraint - No non-dominant pole 

of second stage before the overall GBW

• For N poles in the system, (N-1) LHP 

zeros are created => overall amplifier’s 

response is effectively a single pole phase 

response
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Block diagram of basic NCFF compensation scheme for 2-stage amplifier.

Typical OTA based capacitor amplifier
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Optimization of Loop Equations
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Extending the scheme to multi-stage amplifiers: 

Conceptual Representation

• Constraint - Last stage should not have non-

dominant pole before overall GBW

• Number of LHP zeros is one less than the total 

number of poles in the system
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NCFF compensation scheme for 

N-Stage Amplifier Implementation



Main features of NCFF compensation 

scheme

• Combines high gain and GBW, resulting in a good 

settling time and accurate final value

• Good phase margin - when zero exactly cancels the 

pole, phase margin is 90°

• No compensation capacitors => lot of reduction in 

area, esp for multi-stage amplifiers with 2 or more 

compensation capacitors

• Disadvantage - pole-zero mismatch due to process 

variations. Pole-zero doublet affects settling time 

and phase margin



Effect of pole-zero doublet

• Pole zero doublet causes minor change in 

frequency response, but may degrade the settling 

time based on their spacing and the zero frequency

• For more accuracy (0.01%), lower frequency 

doublet causes more degradation in settling time 

because of higher time constant

• For lesser accuracy(0.1%) higher frequency 

doublet will cause more degradation because of its 

larger amplitude, though it decays faster



Effect of pole-zero mismatch

• Settling time depends on pole-zero 

mismatch and zero frequency

• When pole-zero cancellation is at 

high frequencies , effect is very 

minimal
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• When zero occurs before the pole, it improves the phase 

margin

• When pole occurs before zero : It is always stable when the 

gain of the second stage > 1. It can be unstable when the 

second stage is an attenuator

• Since cancellation is done at high frequencies, percentage 

change due to process variations is relatively small 

B) Phase margin and stability

Two scenarios

111 )1( pwAz 

112 )1( pwAAGBWOverall 

21  pz 

Effect of pole-zero mismatch(cont)



Gain distribution

• First stage - High gain and low bandwidth

• Feedforward and second stage - low gain and high 

bandwidth
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Amplifier frequency response and pole-zero locations in open and closed loop.

a) Perfect pole-zero cancellation b) Pole-zero mismatch .



Parasitic capacitance in feedforward path

• Parasitic Cgd capacitance in the feedforward path 

exists from input to output node 

• When used in closed loop, it is in parallel to 

feedback capacitor and attenuates the signal

• Possible solution - use cascode amplifier in the 

feedforward stage



Single-ended amplifier (first try)
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Fully Differential Amplifier

First stage - High gain

telescopic cascode

Second and 

feedforward stage

Differential amplifier



Common-mode feedback for first stage

Fully differential amplifier (cont.)



Fully differential amplifier (cont)
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Modified fully differential amplifier
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Chip microphotograph (AMI 0.5µm technology)
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Post-layout simulation results for the capacitive amplifier. Pulse 

response with a real input signal, including all parasitic capacitors.  1 % 

settling time is around 14 ns.
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Post-layout simulations for OTA’s 
designed in AMI 0.5µm technology

Parameter Single-ended

OTA

Fully

differential

OTA

DC gain (dB) 94 97

Gainbandwidth (MHz) 300 350

Phase Margin  (deg) 74 90

1% settling time (ns) 
*

6.3 5.1

Current consumption (mA) 5.36 7.16

Power supply 1.25 1.25

Load capacitor = 12 pF

* PCB and probe parasitics not included; ideal step input
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Pulse response post-layout simulation – parametric 

sweep of feedback and load capacitors.



Simulation plots for single-ended amplifier



Simulation plots for differential amplifier



Experimental results :Step response of amplifier 
(Falling step input)



. Measured pulse response for large input signal.



Remarks

• NCFF compensation scheme for multi-stage  amplifiers 

was presented. 

• Compensation scheme uses positive phase shift of LHP 

zeros to cancel negative phase shift of poles. It combines 

high gain, GBW and good phase margin

• Other potential optimal NCFF implementations  are 

possible by meeting the poles and number of poles of 

individual blocks conditions.

• How much saving in power and area versus other schemes 

such as DFCFC need to be explored



A 92 MHz 80 dB peak SNR SC 

Bandpass ΣΔ ADC based on NCFF 

OTA’s in 0.35µm CMOS technology

Bharath Kumar Thandri and Jose Silva Martinez

AMSC, Texas A&M University

College Station, Texas

Presented at CICC 2003

Reference: A 92MHz, 80dB peak SNR SC bandpass Sigma Delta modulator based on a high GBW OTA with no Miller 

capacitors in 0.35 um CMOS technology

Thandri, B.K.; Martinez, J.S.; Rocha-Perez, J.M.; Wang, J.; Custom Integrated Circuits Conference, 2003. Proceedings 

of the IEEE 2003 , 21-24 Sept. 2003 Pages:123 - 126



Modulator architecture

• 4th order cascade of resonators in feedback

• Resonator – inverting and non-inverting 

integrator with local feedback

• For stability, out-of-band gain of NTF =1.5

• Simulations in Matlab/Simulink

• Signal swing, capacitance spread and SNR
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Amplifier requirements

• Amplifier non-idealities : Finite DC gain and GBW

• Gain > 70 dB and GBW > 1 GHz  for fs =100 MHz and SNR > 85 dB

 
2

10
  

  5  
2





clock
GBW

GBWclock
GBW

f
f

bandwidthGain  ωf





Ca Cf

Cf
Ca

Vo-

Vo+

Vi+

Vi-

gain  DC

1
Error





vo

vo

A

A

Limited by

GBW and PM
Slew

limit
factorFeedback 



Amplifier design

• Two stage amplifier with NCFF compensation 

scheme

• First stage : High gain stage

• Second and Feedforward stage : Medium gain 

and high BW

• Pole-zero cancellation at high frequencies



Amplifier (final version)

• Use cascode in FF stage 

• Conventional CMFB for both 

stages

• CMFB capacitors increase 

loading at output 

• Bias network to fix Vg of 

M2,M3 and M6

• Currents

First stage = 100 μA

Second stage = 1.25 mA 

FF stage = 3.25 mA
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Amplifier performance

Parameter CICC 2002 [*] This design

DC gain 61 dB 80 dB

GBW 430 MHz 1.4 GHz

Phase margin 61° 62°

Current 9 mA 4.6 mA

Settling time 

(CLOAD)

N/A 2 ns

( 2pF)

Architecture Single-stage folded 

cascode

Two-stage with 

NCFF scheme

Technology 0.35µm CMOS 0.35µm CMOS

[*] T. Salo et al, “An 80 MHz 8th-order bandpass ΔΣ modulator with a 75 dB 

SNDR  for IS-95 “, CICC, May 2002



4th order Modulator

• Two-stage latched comparator

• Single-bit DAC – inherently linear

• NMOS switches with boosted clock voltage (2.5V) 

• RC time constant of switches limit the speed of operation
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Measurement setup

• Output bit stream is directly injected into spectrum analyzer

• SNR measurement is a conservative estimate as it includes noise 
in the bit stream

• Modulator works properly @110 MHz clock

• SNR degrades for fs > 92 MHz

Signal generator Spectrum analyzer



Measurement results

• Noise floor is measured by grounding inputs

• Includes quantization and circuit (kT/C) noise

• Fs = 92 MHz

-127 dBV / Hz

0 Hz 46 MHz23 MHz



Output spectrum
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Two tone IMD test

• Two tone input @ -11 dBr, 23.1 and 22.9 MHz 

• Measured IMD3 = -58 dB

-70 dBm

-12 dBm

22.9 MHz 23.1 MHz



Plot of SNR vs input amplitude
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Performance summary of the modulator

Technology TSMC 0.35μm 

CMOS

Peak SNR for 270 KHz BW 80 dB

Peak SNR for 3.84 MHz BW 54 dB

IMD3 @ -11dBr input -58 dB

Supply voltage ±1.25V

Power consumption 47.5 mW

Sampling frequency 92 MHz

Core area 1.248 mm2
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